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4. Supplementary File

4.1. Proof of Lemma 1

Proof. Let x € R™ and g; € 9p;(z;) for all i € N. From convexity of p; and Cauchy-Schwarz, it follows that
pi(xi) < p(z;) + ||lgill2]|x: — Zi]|2 for all i € N. Hence, we have

AP0+ ) < M0(8) + 1)+ Y (Bl = il + 2 SR = 3 + Sl = 113

iEN

Minimizing on both sides and using the separability of the right side, we have miny,cpnv A\p(x) + f(x) < Ap(X) +
f()_() + Zie/\/ minmeRn hl(xl), where hl(xl) = VLLf()_()T(Il — i‘i) + /\Blel — i‘iHQ + %sz — .f1||% Let .f;k =
argmin,, cgn hi(x;). Then the first-order optimality conditions imply that 0 € V., f(X) + L;i(Z; — ;) + AB; O||lz; —

@Hg‘ ~ foralli e V.

't'—ﬂf
LetZ :={i € N : ||V, f(X)|2 < AB;}. For each i € N\, there are two possibilities.
Case 1: Suppose that i € Z, i.e., |V, f(X)|l2 < AB;. Since min,,cgn h;(x;) has a unique solution, and -V, f(X) €

AB; O||x; — :El||2‘ ~ when |V, f(X)[|2 < AB;, it follows that 7 = z; if and only if ||V, f(X)|2 < AB;. Hence,
hi(z%) = 0. o
Case 2: Suppose thati € Z¢ := N\ Z, ie., |V, f(X)|l2 > AB;. In this case, T} # Z;. From the first-order optimality
condition, we have V, f(X) + L;(z} — ;) + AB; B z ;CH = 0. Lets; := ”;: _;_7‘”2 and t; = ||z} — T||2, then
s = %’;(;) Since ||s;]l2 = 1, it follows that t; = W > 0, and 5; = %. Hence, 7} =
- IV, f(R)2—ABi Vo, f(X) sy IV, f®)2=AB;: )2 '
T L; v Fese and hi(zf) = L, .
From the a-optimality of X, it follows that
Ve, — AB))
EZI(” S = = e <0+ ) i NAK) () < o

which implies that |V, f(X)||2 < V2L, + AB; for all i € Z. Moreover, |V, f(X)||2 < AB; for all : € Z°. Hence, the
result follows from these two inequalities. O
4.2. Proof of Lemma 2

Proof. For all i € N, since V~; is Lipschitz continuous with constant L., for any x,x € RV, we have 7;(z;) <
_ _ _ L,
Yi( @) + V(@) T (2 — T;) +

x; — ¥;||3. Then, it follows that

N
_ _ _ Ly, _
%) < 0@ + V@) (@ — ) + 2l — 2l
i=1
<) + V()T (x - %) + Z L gy — . (15)
Let h®(x) = 1[|Ax — b — A®O®)|2. It follows that VA(*) is Lipschitz continuous with constant o2, (A). Since
fE) = XF 5 4 ) the result follows from (15). O

4.3. Proof of Lemma 3
Proof. Fix k > 1. Suppose that x(*) satisfies (9)(a). Then Lemma 1 implies that for all i € N

192,59 x®) 2 = MOV + AT (AxE = b= 2O |, < /20D a® + A0 B,
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Now, suppose that x(®) satisfies (9)(b). Then triangular inequality immediately implies that ||V, f) (x(¥)]|,
") /\/N + X*) B, for all i € N'. Combining the two inequalities, and further using triangular Cauchy-Schwarz inequali-

max{\/zLﬁ’”ak, €9 IV }ex®) (Bt |91

ties, it follows for all i € A that || Ax*) — ")y < E—
conclude by diving the above inequality by )\(k) and using the definition of §(++1). O

. Hence, we

4.4. Proof of Theorem 1

Proof. Let A = [A1, Ay, ..., Ay] € R™ N guch that A; € R™*" for all i € A/. Throughout the proof we assume that
Omax(A) > vVmax;en d; —|—1 and oyin(A;) = /d; > 1forall i € N, where d; > 1 is the degree of i € A. Indeed,
when A is chosen as described in Section 2.2.3 corresponding to graph G, recall that we showed o2, (A) = 1, where
1)1 is the largest eigenvalue of the Laplacian €2 corresponding to G. It is shown in (Grone & Merris, 1994) that when G is
connected, one has ¢, > max;en d; + 1 > 1. Hence, opax(A) > v/max;eard; +1 > 1. Moreover, for A chosen as
described in Section 2.2.3 corresponding to graph G, again recall that o, (A4;) = V/d; foralli € N.

To keep notation simple, without loss of generality, we assume that v =0 for all i« € N. Hence, ~(x) > 0 for all
x € R™V. Let x* be a minimizer of (6). By Lipschitz continuity of V~;, we have for all i € N/

IVy(@i)ll2 < Ly llzi = 27l + [ Vi (@7) lo- (16)

We prove the theorem using induction. We show that, for an appropriately chosen bound R, [|[x(*) — x*|| < R implies
that [|[x*+1) — x*||; < R, for all k > 1. Fix k > 1. First, suppose that x(**1) satisfies (9)(a), i.e. P*+1) (x(k+1)) <
P+ (x*) 4+ o#+1) | By dividing both sides by A(**+1) it follows from Assumption 1, Ax* = b, and f*+1(.) > 0 that

(k+1) AHD k1) (12 alktD) 17
— < 5(x* (o )
T2 < p(x7) +7(x7) + —5 | H2+7()\(k+1))2 (17)

Next, suppose x*T1) satisfies (9)(b). It follows from convexity of P*+1) and Cauchy-Schwarz inequality that
PAD) (x(k+1)) < pltl) (x*) 4 (D) || x(B+1) — x*||5. Again, dividing both sides by A1), we get

— | (k+1) — (K — (¥ A(k-‘rl) (k+1)12 §(k+1) *
7l < ple) +3(x%) + S5 104V + S = x> (18)
ombining the bounds for both cases, an , and using triangular inequality, we have
Combining the b ds for both (17) and (18), and using triangular inequality. h
_ §(k+1) (k+1) * Pk | =[]k AR+ (k+1) 12 alk+1)
- — < _— _—
(T e ) X X'l < F7+ 7l + = — (11677 Vll2 + oy ) (19)
for all k& > 0. Note that {\(¥) oK) ¢(¥)} is chosen in DFAL such that (/\(’“>)2 = (/\(1))2 for all k£ > 1, and both f\((k)) N 0

and A®) 0 monotonically. Since oppin(A;) > 1 for all i € N, the inductive assumption [|[x*) — x*||y < R, (16), and
Lemma 3 together imply that

a® @
(AM)27 x1)

[0y < miy {max{ 2r{M } + B + [V (@2 + LWR} : (20)

To simplify bounds further, choose oY) = ()\(1)7’)2, and {1 = 2AW7F for AU < o2 (A)/L, where L
max;en{L~, }. Let B := max;en B; and G := max{||Vy;(z])]]2 : © € N'}. Together with (19), (20) and oyax(A) >
this choice of parameters implies that

17

T _ &) 7 A __ _\? =2
z (k"rl) _ * < F* = * L TUmaX( ) B G LR o
2Hx x| < + 7x*|2 + 5 7\/ﬁ +B+G+ + N

Deﬁne Bl = % (F* + 7_'||X*||2), 62 = FUI]MX(A)/W+B+G /33

T , By = f’ and 84 := 75. Then we have that x4 —
2
x*l2 < By + A {(52 + 53R) + 54]-
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Note that we are free to choose any A(Y) > 0 satisfying \() < o2,..(A)/L. Our objective is to show that by appropriately
choosing A we can guarantee that 51 + A {(62 + ﬂgR)2 + 64} < R, which would then complete the inductive proof.
This is indeed true if the above quadratic inequality in R, has a solution, or equivalently if the discriminant

A= (2A1 By — 1) — AV BIAD (83 + B4) + B1]

is non-negative. Note that A is continuous in A and limya)_,g A = 1. Thus, for all sufficiently small AL > 0, we

have A > 0. Hence, we can set R = HA;;?# for some A(Y) > 0 such that A > 0, and this will imply that

[x*+1) — x*|ly < R whenever [|x*) —x*|, < Rforall k > 1.

The induction will be complete if we can show that ||x(*) — x*||; < R. Note that in DFAL we set (') = 0. Hence, for
k = 0, (19) implies that [|x(") — x*||, < 8 + A(Y)3,. Hence, our choice of R guarantees that ||x*) — x*|| < R. This
completes the induction.

Following the same arguments leading to (19), it can also be shown that for all £ > 0

— g(k-’_l) (k+1) * % — * )\(k+1) k+1))12
(T—)\(kﬂ) [ = x"[l2 < F* 4+ 7[x H2+T||9( l2-

Therefore, we can conclude that Hx&k) —x*|| < Rforall k > 1 holds for the same R we selected above.

Note that A is a concave quadratic of A quch that A = 1 when A®Y) = 0; hence, one of its roots is positive and the other
one is negative. Moreover, R < g—z and the bound on R is decreasing in A > 0. Hence, in order to get a smaller

v (B24B3B1)*+Ba—(B2+B381) O

23384

1
22M 332

bound on R, we will choose A(!) as the positive root of A. In particular, we set A\(1) =

4.5. Proof of Theorem 2

Proof. The proof directly follows from Theorem 3.3 in (Aybat & Iyengar, 2012). For the sake of completeness, we also
provide the proof here. Let x* denote an optimal solution to (6).

Note that (a) follows immediately from Cauchy-Schwarz and the definition of #(*+1)
[ Ax™ = bllo < [[Ax®) = b = ADGE 5 +- AE 9 Ep = A (0EFV]5 4 [16E)2) < 28X,
First, we prove the second inequality in (b). Suppose that x(*) satisfies (9)(a), which implies that F (x(k)) +
AL o
2

D2 < F(x*) + % 0|2 + 5. Now, suppose that x(¥) satisfies (9)(b). From the convexity of P(*

and Cauchy-Schwarz, it follows that P**) (x(F)) < P (x*) 4 ¢(R)||x(®) — x*||,. Hence, dividing it by A(*), we have
F(x®) + %IIH(’““)H% < F(x*) + %H@UC)H% + % Therefore, for all k& > 1, x(*) satisfies the second inequality in
(b) since it also satisfies

k)12 _ (1p(k+1))2 (k) ¢(k)||x (k) — x*
Py — e < A®) (1OPUB — [9%+D]3 | max {a®, 6)x x||2}>_

2 (A(F))2
Now, in order to prove the first inequality in (b), we will exploit the primal-dual relations of the following two pairs of
problems:

(P) : mingegnn {F(x) : Ax = b}, (D) : maxgerm b0 — F*(AT0), .
(Pr) : mingegan AW F(x) + 3] Ax — bi[|3, (D) : maxperm A (670 — F*(AT0)) — L =h(0),
where by, := b+ AFOFE) 1) := |0 — 6F)||3 — ||0*)||3, and F* denotes the convex conjugate of F'. Note that problem

(Py) is nothing but the subproblem in (7). Therefore, from weak-duality between (Py,) and (Dy,), it follows that
(A®)?
2

PE(x®) = \B F(x®)) 4 1 Ax®) — by |2 > AF (pT9* — F*(AT6%)) — h(6*).

Note that from strong duality between (P) and (D), it follows that F* = F(x*) = bT6* — F*(AT6*). Therefore, dividing
the above inequality by A\(*), we obtain

- _ () i} . A(K)
Fx®) = F* > =2 (16713 - 2(67)T6®) + 6%+ 3) > -

2 (1671l + Ba)”
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4.6. Proof of Theorem 3

Proof. We assume that oay(A) > vVmax;en d; + 1, and omin(A4;) = V/d; > 1 for all i € N, where d; denotes the
degree of 7 € . As discussed in the proof of Theorem 1, this is a valid assumption for distributed optimization problem
in (4). Let 8* denote an optimal dual solution to (6). Note that from the first-order optimality conditions for (6), we have

0 € Vvi(z}) + Al 0% + 0pi(2i)|2,=ar: hence, [|A]0%(|2 < B; + G;. Therefore, [|0*[]2 < mine Uf“:’((jb)

Given 0 < A\ < 62 (A)/L, choose M), ¢ > 0 such that oV = L ()\(1)7_')2, and ¢V = IAMF. Then Lemma 3
and oax(A4) > 1 together imply that for all £ > 1

(k) < . 7jU—maLx(14)/\/]v + Bz + G’L —
16%]l2 < He“fvl{ (A = By. 1)

Hence, note that ||6* || < By.

To simplify notation, suppose that A(") = min {1, 02, (A)/L} = 1. (19) implies that for all k > 1

* 2 Tk = * 2
I =l < 2 [Pt el (554 1 )] o= B @)
Note that (22) implies that (/\(”)QB = xzB: > 3Bf + % > T > (/\0‘((11)))2, where we used the fact By >

Wo(ﬂ(ﬂr \F \F Note that the last inequality follows from our assumption on A stated at the beginning

of the proof, i.e. omax(A) > vmax;en d; + 1 and opin(A;) = d; for all i € N. Hence, Theorem 2, \() = 1, and
[16*]]2 < Bg imply that

NIJ;FAL(E) < log1 <2BQ) = log1 (2 min { TUmax(A)/\/N+ B; + G; }) — Nf’ (23)
€

- i€EN Umin(Ai)6

8N

232 F* = * i -~
:10g1< 3+ B+ 7l |2+8N>::N0_ o

1 * * 2
Ngeas(€) < togy (7 max {31072+ B B3+ 7+ 7l + I ).

€

Since oY) = - (A(l)?)z, we have Va(k) = \/%ck. Hence, Lemma 5 implies that

, 2NKL +02 (A B.VN
N < QBI\/ ()‘ J'_(:)-max( )) < 8 2 Umax(A)c_k- (25)
[0 T

Hence, (23) and (25) imply that the total number of MS-APG iterations to compute an e-feasible solution can be bounded
above:

NgFAL(E) Nf Nt
8B, vIN 8B,V N 1
E N(k) < Umax g 1 — C) Umax(A) <C) ,
k=1 k=

16BI vV N . ’T—O'Inax(A)/ V N + Bi + Gi Umax(A) U?nax(A) 1
< —— min =0 - - .
c(l — )T ieN Omin(A;)e € mingenr omin(A;) €

Similarly, (24) and (25) imply that the total number of MS-APG iterations to compute an e-optimal solution can be bounded
above:

Npear(€) N 3
ECES SB famaxw <1> =o< Timas(4) 1>. 26)

—o)T ¢ mingepn 02, (A4;) €

min (

O
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4.7. Proof of Lemma 6

Proof. Given any convex function p : R® — R and z € R", in order to simplify the notation throughout the proof,
Op(x)|z=z C R™, the subdifferential of p at Z, will be written as dp(Z). Given & € R", there exists v € OP(Z) such that
[lv]la < &, if and only if ||v*]| < &, where v* = argmin{||v||2 : v € P(Z)}. Note that P(z) = \dp(z) + V f(Z), and

K K
0p(x) = 1 [ [ 0llZg@i I + B2 [ OllZgrl2s (27)
k=1 k=1

where [ denotes the Cartesian product. Since the groups {g(k)}X_, are not overlapping with each other, the minimization
problem is separable in groups. Hence, for all k € [1, K], we have v}, = 7}y +wp ) + Vo ) f(Z) such that

(T3 W) = argmin |7y + wye) + Va, o f(2)]3

k . (28)
st o) € MO|Tgy |1, woky € ANB20|| Ty ll2-

Fix k € [1, K]. We will consider the solution to above problem in two cases. Suppose that Z,(;) = 0. Since 9||0]|; is the
unit /o -ball, and 91|0||5 is the unit £5-ball, (28) can be equivalently written as

(T3 Wogy) = argmin |7y + wy() + Va, o f(2)|13
st [mgalloe < AB1, lwgll2 < ABa.

Clearly, it follows from Euclidean projection on to ¢5-ball that

(29)

o A,
Wiy = — (W) + Vi (@) min § 1, — e [
g(k) ( g(k) a( )f( )) { Hﬂ-g(k) + vzg(k)f(x)HZ }

Hence, |7} ) + w5y + Va, o f(@)ll2 = max{0, [|77 ;) + Va,,, [(Z)]2 — AB2}. Therefore,

oy = argmin{ [Ty + Ve, f(@)ll2 2 (1T llee < ABL} = —580(Vay(,, f(2)) © min{|Vy, o, f(Z)], AB1}-

Now, suppose that Z,) # 0. This implies that 0||Zyu)ll2 = {Zgm)/||Tg(x)ll2}. Hence, when Ty # 0, we have
Wiy = AB2Zg(k)/||Zg(k)ll2, and the structure of J| - |1 implies that 77 = AB1sgn (Z;) for all j € g(k) such that
|Z;| > 0; and it follows from (28) that for all j € g(k) such that Z; = 0, we have

T = argmin{(ﬂ'j + T%f(j;)f s ml < )\ﬁl} = —sgn (%f(j)) min{

2 f@)|. A8}

4.8. Proof of Lemma 7 O

Proof. Since the groups are not overlapping with each other, the proximal problem becomes separable in groups. Let
ny = |g(k)| for all k. Thus, it suffices to show that ming . crnr {B1]|zll1 + Bollzg ll2 + 55 1%gk) — Zg(r)lI3} has a
closed form solution as shown in the statement for some fixed k. By the definition of dual norm, we have

. 1 B )
%f)lgll%"k Billzge I + Bzllzgu 2 + %ng(k) — Zy)ll2, (30)
= 1min max ulz » +  max uT . _’_le o — F k||2
Tg(k) ER™F lus oo <B1 1%g(k) |z l2< B2 2:g(k) on g(k) g(k) 12>
1
. T B )
= ma min (u; + us) ' x e 7 , .
o i (- uz) e + 5 l1Eew) — Tow 2 31)
lluzll2<B2
= max (ur+u) Ty — EHM + uslf3. (32)
llrlloo <1 g 2
luzl2<B2

Let (uj, ub) be the optimal solution of (32). Since xg ) is the optimal solution to (30), it follows from (31) that

by = Toer) — (U] +u3). (33)
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Note that (32) can be equivalently written as min{||uy + uz — $Z,0) |3 ¢ [Ju1]leo < B, [|uz]l2 < B2}. Minimizing over

uo, we have
* 1— . ﬁQ
us(uy) = <x k —u1> min{ —— 1. (34)
£ 13290 — wall2

1 B2
Uy — —Tgy | maxq 1l — ———,0
t [ur = §Zg()ll2

Clearly, uj = argmin, _<g, [[(uv1 — %ig(k))ﬂg = sgn(Ty(x)) min {%|a’:g(k)|,,81}. The final result follows from com-
bining (33) and (34). ]

Hence, we have

1
= argmin max{||u; — fwg(k)Hz — Ba, 0}.
9 lu1]loo <B1

_ .
u] = argmin
llualloo <Ba

4.9. Improved rate for asynchronous DFAL

Let R denote a discrete random variable uniformly distributed over the set A", Let [Uy, Us, ..., Uy] denote a partition
of the nN-dimensional identity matrix where U; € R™™*" 4§ = 1,..., N. In the rest, given h € R"", we denote
hig) = URU; h. Consider the composite convex optimization problem
ol
"= min O(y Z pilyi) + £y (35)

where p; : R" — R is a closed convex function for all 7 € A/ such that prox, o, can be computed efficiently for all ¢ > 0
andi € NV, and f : R"Y — R s a differentiable convex function such that for some {L; };ens C R4, f satisfies

Elf(y + hi))] < f(y) + ]1V<< Zthu) (36)
zEN

for all y,h € R™V. Fercoq & Richtarik (2013) proposed the accelerated proximal coordinate descent algorithm ARBCD
(see Figure 6) to solve (35). They showed that for a given a > 0, the iterate sequence {z*), u¥)} computed by ARBCD

satisfies . ) .
(f-‘,—l) (‘e-‘rl) _H* o
E (I)<<Nt(£)> u +z ) P*| < a, v£22N”a7 (37)
where
€= min (1= %) (@ (4) = 27) + 5 3 Ll i3 (38)
y*ey* N 2 7 7 )

iEN

and Y* denotes the set of optimal solutions.

Algorithm ARBCD (z(%)

100, t9«1, w0, VieN
2: while ¢ > 0 do
3:  disasample of R

¢ ¢ Q)
27 proxngn, (40~ 4090t (k) w0 +40) )
ugul) (L’) +N2t(‘> t(e) ( (e+1) _ Zzge))
©

»

20wl

pe+1) 114 eNE)?

5
6 LD L, © )
; 2N

: end while

Figure 6. Accelerated Randomized Proximal Block Coordinate Descent (ARBCD) algorithm

In the following result, we establish that the bound (36) can be exploited for designing an accelerated version of asyn-
chronous DFAL.
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Lemma 8. Fix o > 0, and p € (0,1). Let {z,(f),uk )}eez+, k =1,..., K, denote the iterate sequence corresponding
to K : log(l/p) independent calls to ARBCD(y ). Define y}, := (#)2 u,(CTH) + Z§€T+1) fork =1,..., K, and

Nt(T)
T:=2N . Then

P <k_m1nK<I>(yk) o < OL> >1-p

Proof. Since the sequence {y }1_; is i.i.d., and each yy, satisfies E[®(yj) — ®*] < &, Markov’s inequality implies that
P(®(yx) — ®* > o) < E[®(y)) — ®*]/a < 1 for 1 < k < K. Therefore, we have

P(k min_®(y,) - ¢° Sa) [ P@ -0 a) < (;)K —1p

=1,..., Pt
O

From Lemma 8 it follows that we can compute y,, such that P (®(y,) — ®* < ) > 1 — p in at most 2N/ 2< log(%)

ARBCD iterations. This new oracle can be used to construct an asynchronous version of DFAL algorithm with O(1/e)
complexity.

Theorem 4. Fix ¢ > 0 and p € (0, 1). Consider a asynchronous variant of DFAL where (9)(a) in Figure 1 is replaced by

P (p(k) (x®) — Pt (xH)) < a(k)) > (1-p) ™, (39)

where N (€) = log1 <Q> is defined in Corollary 1. Then {xEN(E))}iEN, satisfies

€

=P <| ZF ( (N(e) ) —F*| <e, and (H]l)aX {||x(N N _ ;N(E))Hg} < e) >1—p,
ieN ’

and O (% log (11;)) ARBCD iterations are required to compute {xEN(E))}ieN.

Proof. Consider the k-th DFAL subproblem min P*)(x) := AX®) 3. - p;(z;) + f¥)(x), where f(*) is defined in (8).

Let ﬂgk) = )\(k)L% + d; for all i € N. Then it can be easily shown that f(*) satisfies (36) with constants {Egk)}i@v for
all 1 < k < N(e). Hence, ARBCD algorithm can be used to solve min P(*)(x) with the iteration complexity given in
Lemma 8. Consider the random event

N(e)

(k)
A=) {P<‘“><x<’“>>—P<’“>< W) <a® or 3¢ € 0, PP (0o st max g™ 2 < Ef}. (40)
k=1

Clearly, for all random sequences {x k)} e (e ) satisfying random event A, Corollary 1 implies that | Yien Fi ( (N(E))>

F*| < e and max; ||2} < ¢. Hence, we have

N(e)
P(e H (P9 (x9) = PO (x) <alh) =1 -p

In the rest, we bound the total number of ARBCD iterations required by asynchronous variant of DFAL to compute
1 1
x(N(€) Note that (1 — p)¥@ is a concave function for p € (0,1), and we have (1 —p)¥@ < 1 — %

Lemma 8 and the discussion after Lemma 8 together imply that the number of ARBCD iterations, N *), to compute x(*)
satisfying either (39) or (9)(b) is bounded above for 1 < k < N(e) as follows

(k) > (k)
N® <on 2C log N(e) = 2N | log e + loglog1 ¢ \/ﬁ, (41)
a®) D » ¢\ e a®)

Therefore,
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2 *1

7 ()
with €)= P8 (x570) = P (x) + Ficp £ ol = 2lD1
Convexity of {p; };enr, and Lemma 2 imply that

LY g
PUED) = PO ) < (AP0 4 7B lD), x50 = x4 37 2ol — 2,
ieN
where s() € OAK) p(x)| 1), and p(x) = 3. pi(;). Note that optimality conditions imply that —V f(*) =My e
XM p(x)|, __ . Assumption 1 implies that ||V, f(*) x")la < A®B; and |58, < A B, for all i € N. Hence,

L7(:k)+l'l7(:k,)

for some C' > 0, we have C*) < D ien < 5

+ 2\ B, ||1’,Ek_1) — xi’?”% < CB? for all k > 1. Consequently,

we can bound the total number of ARBCD iterations to compute x(N (<) as follows:
N(e) ~ A N(e)
2 1
E N®) <oNB, 20 log [ = | +loglog1 ¢ E "
«0) D e\ e
k=1 k=1
~ _ ~ N gk ()Y Ay N(O) ar(k) _
Since N(e) = log1(C/e),and ), "7 ¢™* = ~<5—— = C'e” ' /(1 — c). Hence, we can conclude that ), " N®) =

0 (2 (105 (1) + logloz (1))



