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4. Supplementary File

4.1. Proof of Lemma 1

Proof. Let x ∈ R
nN and gi ∈ ∂ρi(xi) for all i ∈ N . From convexity of ρi and Cauchy-Schwarz, it follows that

ρi(xi) ≤ ρ(x̄i) + ‖gi‖2‖xi − x̄i‖2 for all i ∈ N . Hence, we have

λρ̄(x) + f(x) ≤ λρ(x̄) + f(x̄) +
∑

i∈N

(

λBi‖xi − x̄i‖2 +∇xi
f(x̄)T(xi − x̄i) +

Li

2
‖xi − x̄i‖22

)

.

Minimizing on both sides and using the separability of the right side, we have minx∈RnN λρ̄(x) + f(x) ≤ λρ̄(x̄) +
f(x̄) +

∑

i∈N minxi∈Rn hi(xi), where hi(xi) := ∇xi
f(x̄)T(xi − x̄i) + λBi‖xi − x̄i‖2 + Li

2 ‖xi − x̄i‖22. Let x̄∗i :=
argminxi∈Rn hi(xi). Then the first-order optimality conditions imply that 0 ∈ ∇xi

f(x̄) + Li(x̄
∗
i − x̄i) + λBi ∂‖xi −

x̄i‖2
∣

∣

∣

xi=x̄∗i

for all i ∈ N .

Let I := {i ∈ N : ‖∇xi
f(x̄)‖2 ≤ λBi}. For each i ∈ N , there are two possibilities.

Case 1: Suppose that i ∈ I, i.e., ‖∇xi
f(x̄)‖2 ≤ λBi. Since minxi∈Rn hi(xi) has a unique solution, and −∇xi

f(x̄) ∈
λBi ∂‖xi − x̄i‖2

∣

∣

∣

xi=x̄i

when ‖∇xi
f(x̄)‖2 ≤ λBi, it follows that x̄∗i = x̄i if and only if ‖∇xi

f(x̄)‖2 ≤ λBi. Hence,

hi(x̄
∗
i ) = 0.

Case 2: Suppose that i ∈ Ic := N \ I, i.e., ‖∇xi
f(x̄)‖2 > λBi. In this case, x̄∗i 6= x̄i. From the first-order optimality

condition, we have ∇xi
f(x̄) + Li(x̄

∗
i − x̄i) + λBi

x̄∗i−x̄i

‖x̄∗i−x̄i‖2 = 0. Let si :=
x̄∗i−x̄i

‖x̄∗i−x̄i‖2 and ti := ‖x̄∗i − x̄i‖2, then

si =
−∇xi

f(x̄)

Liti+λBi
. Since ‖si‖2 = 1, it follows that ti =

‖∇xi
f(x̄)‖2−λBi

Li
> 0, and si =

−∇xi
f(x̄)

‖∇xi
f(x̄)‖2 . Hence, x̄∗i =

x̄i − ‖∇xi
f(x̄)‖2−λBi

Li

∇xi
f(x̄)

‖∇xi
f(x̄)‖2 , and hi(x̄

∗
i ) = −

(‖∇xi
f(x̄)‖2−λBi)

2

2Li
.

From the α-optimality of x̄, it follows that

∑

i∈I

(‖∇xi
f(x̄)‖2 − λBi)

2

2Li
= −

∑

i∈I
hi(x̄

∗
i ) ≤ λρ̄(x̄) + f(x̄)− min

x∈RnN
λρ̄(x) + f(x) ≤ α,

which implies that ‖∇xi
f(x̄)‖2 ≤

√
2Liα + λBi for all i ∈ I. Moreover, ‖∇xi

f(x̄)‖2 ≤ λBi for all i ∈ Ic. Hence, the

result follows from these two inequalities.

4.2. Proof of Lemma 2

Proof. For all i ∈ N , since ∇γi is Lipschitz continuous with constant Lγi
, for any x, x̄ ∈ R

nN , we have γi(xi) ≤
γi(x̄i) +∇γi(x̄i)T(xi − x̄i) + Lγi

2 ‖xi − x̄i‖22. Then, it follows that

γ̄(x) ≤
N
∑

i=1

γi(x̄i) +∇γi(x̄i)T(xi − x̄i) +
Lγi

2
‖xi − x̄i‖22

≤ γ̄(x̄) +∇γ̄(x̄)T(x− x̄) +

N
∑

i=1

Lγi

2
‖xi − x̄i‖22. (15)

Let h(k)(x) = 1
2‖Ax − b − λ(k)θ(k)‖22. It follows that ∇h(k) is Lipschitz continuous with constant σ2

max(A). Since

f (k) = λ(k)γ̄ + h(k), the result follows from (15).

4.3. Proof of Lemma 3

Proof. Fix k ≥ 1. Suppose that x(k) satisfies (9)(a). Then Lemma 1 implies that for all i ∈ N

‖∇xi
f (k)(x(k))‖2 = ‖λ(k)∇γi(x(k)i ) +AT

i (Ax
(k) − b− λ(k)θ(k))‖2 ≤

√

2L
(k)
i α(k) + λ(k)Bi.
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Now, suppose that x(k) satisfies (9)(b). Then triangular inequality immediately implies that ‖∇xi
f (k)(x(k))‖2 ≤

ξ(k)/
√
N + λ(k)Bi for all i ∈ N . Combining the two inequalities, and further using triangular Cauchy-Schwarz inequali-

ties, it follows for all i ∈ N that ‖Ax(k) − b− λ(k)θ(k)‖2 ≤
max

{

√

2L
(k)
i αk, ξ

(k)/
√
N

}

+λ(k)
(

Bi+‖∇γ(x
(k)
i )‖2

)

σmin(Ai)
. Hence, we

conclude by diving the above inequality by λ(k) and using the definition of θ(k+1).

4.4. Proof of Theorem 1

Proof. Let A = [A1, A2, . . . , AN ] ∈ R
m×nN such that Ai ∈ R

m×n for all i ∈ N . Throughout the proof we assume that

σmax(A) ≥
√
maxi∈N di + 1, and σmin(Ai) =

√
di ≥ 1 for all i ∈ N , where di ≥ 1 is the degree of i ∈ N . Indeed,

when A is chosen as described in Section 2.2.3 corresponding to graph G, recall that we showed σ2
max(A) = ψ1, where

ψ1 is the largest eigenvalue of the Laplacian Ω corresponding to G. It is shown in (Grone & Merris, 1994) that when G is

connected, one has ψ1 ≥ maxi∈N di + 1 > 1. Hence, σmax(A) ≥
√
maxi∈N di + 1 > 1. Moreover, for A chosen as

described in Section 2.2.3 corresponding to graph G, again recall that σmin(Ai) =
√
di for all i ∈ N .

To keep notation simple, without loss of generality, we assume that γi = 0 for all i ∈ N . Hence, γ̄(x) ≥ 0 for all

x ∈ R
nN . Let x∗ be a minimizer of (6). By Lipschitz continuity of ∇γi, we have for all i ∈ N

‖∇γ(xi)‖2 ≤ Lγi
‖xi − x∗i ‖2 + ‖∇γi(x∗i )‖2. (16)

We prove the theorem using induction. We show that, for an appropriately chosen bound R, ‖x(k) − x∗‖2 ≤ R implies

that ‖x(k+1) − x∗‖2 ≤ R, for all k ≥ 1. Fix k ≥ 1. First, suppose that x(k+1) satisfies (9)(a), i.e. P (k+1)(x(k+1)) ≤
P (k+1)(x∗) + α(k+1). By dividing both sides by λ(k+1), it follows from Assumption 1, Ax∗ = b, and f (k+1)(·) ≥ 0 that

τ̄‖x(k+1)‖2 ≤ ρ̄(x∗) + γ̄(x∗) +
λ(k+1)

2

(

‖θ(k+1)‖22 +
α(k+1)

(

λ(k+1)
)2

)

. (17)

Next, suppose x(k+1) satisfies (9)(b). It follows from convexity of P (k+1) and Cauchy-Schwarz inequality that

P (k+1)(x(k+1)) ≤ P (k+1)(x∗) + ξ(k+1)‖x(k+1) − x∗‖2. Again, dividing both sides by λ(k+1), we get

τ̄‖x(k+1)‖2 ≤ ρ̄(x∗) + γ̄(x∗) +
λ(k+1)

2
‖θ(k+1)‖22 +

ξ(k+1)

λ(k+1)
‖x(k+1) − x∗‖2. (18)

Combining the bounds for both cases, (17) and (18), and using triangular inequality, we have

(

τ̄ − ξ(k+1)

λ(k+1)

)

‖x(k+1) − x∗‖2 ≤ F̄ ∗ + τ̄‖x∗‖2 +
λ(k+1)

2

(

‖θ(k+1)‖22 +
α(k+1)

(

λ(k+1)
)2

)

, (19)

for all k ≥ 0. Note that {λ(k), α(k), ξ(k)} is chosen in DFAL such that α(k)

(λ(k))2
= α(1)

(λ(1))2
for all k > 1, and both ξ(k)

λ(k) ց 0

and λ(k) ց 0 monotonically. Since σmin(Ai) ≥ 1 for all i ∈ N , the inductive assumption ‖x(k) − x∗‖2 ≤ R, (16), and

Lemma 3 together imply that

‖θ(k+1)‖2 ≤ min
i∈N

{

max

{

√

2L
(1)
i

α(1)

(λ(1))2
,
ξ(1)

λ(1)

}

+Bi + ‖∇γi(x∗i )‖2 + Lγi
R

}

. (20)

To simplify bounds further, choose α(1) = 1
4N

(

λ(1)τ̄
)2

, and ξ(1) = 1
2λ

(1)τ̄ for λ(1) ≤ σ2
max(A)/L̄, where L̄ =

maxi∈N {Lγi
}. Let B̄ := maxi∈N Bi and Ḡ := max{‖∇γi(x∗i )‖2 : i ∈ N}. Together with (19), (20) and σmax(A) ≥ 1,

this choice of parameters implies that

τ̄

2
‖x(k+1) − x∗‖2 ≤ F̄ ∗ + τ̄‖x∗‖2 +

λ(1)

2

[

(

τ̄σmax(A)√
N

+ B̄ + Ḡ+ L̄R

)2

+
τ̄2

4N

]

.

Define β1 := 2
τ̄

(

F̄ ∗ + τ̄‖x∗‖2
)

, β2 := τ̄σmax(A)/
√
N+B̄+Ḡ√

τ̄
, β3 := L̄√

τ̄
, and β4 := τ̄

4N . Then we have that ‖x(k+1) −

x∗‖2 ≤ β1 + λ(1)
[

(

β2 + β3R
)2

+ β4

]

.
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Note that we are free to choose any λ(1) > 0 satisfying λ(1) ≤ σ2
max(A)/L̄. Our objective is to show that by appropriately

choosing λ(1), we can guarantee that β1+λ
(1)

[

(

β2 + β3R
)2

+ β4

]

≤ R, which would then complete the inductive proof.

This is indeed true if the above quadratic inequality in R, has a solution, or equivalently if the discriminant

∆ = (2λ(1)β2β3 − 1)2 − 4λ(1)β2
3

[

λ(1)(β2
2 + β4) + β1

]

is non-negative. Note that ∆ is continuous in λ(1), and limλ(1)→0 ∆ = 1. Thus, for all sufficiently small λ(1) > 0, we

have ∆ ≥ 0. Hence, we can set R = 1−2λ(1)β2β3−
√
∆

2λ(1)β3
2 for some λ(1) > 0 such that ∆ ≥ 0, and this will imply that

‖x(k+1) − x∗‖2 ≤ R whenever ‖x(k) − x∗‖2 ≤ R for all k ≥ 1.

The induction will be complete if we can show that ‖x(1) − x∗‖2 ≤ R. Note that in DFAL we set θ(1) = 0. Hence, for

k = 0, (19) implies that ‖x(1) − x∗‖2 ≤ β1 + λ(1)β4. Hence, our choice of R guarantees that ‖x(1) − x∗‖2 ≤ R. This

completes the induction.

Following the same arguments leading to (19), it can also be shown that for all k ≥ 0

(

τ̄ − ξ(k+1)

λ(k+1)

)

‖x(k+1)
∗ − x∗‖2 ≤ F̄ ∗ + τ̄‖x∗‖2 +

λ(k+1)

2
‖θ(k+1)‖22.

Therefore, we can conclude that ‖x(k)
∗ − x∗‖ ≤ R for all k ≥ 1 holds for the same R we selected above.

Note that ∆ is a concave quadratic of λ(1) such that ∆ = 1 when λ(1) = 0; hence, one of its roots is positive and the other

one is negative. Moreover,R ≤ 1
2λ(1)β3

2− β2

β3
and the bound onR is decreasing in λ(1) > 0. Hence, in order to get a smaller

bound on R, we will choose λ(1) as the positive root of ∆. In particular, we set λ(1) =

√
(β2+β3β1)

2+β4−(β2+β3β1)

2β3β4
.

4.5. Proof of Theorem 2

Proof. The proof directly follows from Theorem 3.3 in (Aybat & Iyengar, 2012). For the sake of completeness, we also

provide the proof here. Let x∗ denote an optimal solution to (6).

Note that (a) follows immediately from Cauchy-Schwarz and the definition of θ(k+1).

‖Ax(k) − b‖2 ≤ ‖Ax(k) − b− λ(k)θ(k)‖2 + λ(k)‖θ(k)‖2 = λ(k)(‖θ(k+1)‖2 + ‖θ(k)‖2) ≤ 2Bθλ
(k).

First, we prove the second inequality in (b). Suppose that x(k) satisfies (9)(a), which implies that F̄ (x(k)) +
λ(k)

2 ‖θ(k+1)‖22 ≤ F̄ (x∗) + λ(k)

2 ‖θ(k)‖22 + α(k)

λ(k) . Now, suppose that x(k) satisfies (9)(b). From the convexity of P (k)

and Cauchy-Schwarz, it follows that P (k)(x(k)) ≤ P (k)(x∗) + ξ(k)‖x(k) − x∗‖2. Hence, dividing it by λ(k), we have

F̄ (x(k)) + λ(k)

2 ‖θ(k+1)‖22 ≤ F̄ (x∗) + λ(k)

2 ‖θ(k)‖22 +
ξ(k)

λ(k) . Therefore, for all k ≥ 1, x(k) satisfies the second inequality in

(b) since it also satisfies

F̄ (x(k))− F̄ ∗ ≤ λ(k)

(

‖θ(k)‖22 − ‖θ(k+1)‖22
2

+
max

{

α(k), ξ(k)‖x(k) − x∗‖2
}

(λ(k))2

)

.

Now, in order to prove the first inequality in (b), we will exploit the primal-dual relations of the following two pairs of

problems:

(P) : minx∈RnN {F̄ (x) : Ax = b}, (D) : maxθ∈Rm bTθ − F̄ ∗(ATθ),

(Pk) : minx∈RnN λ(k)F̄ (x) + 1
2‖Ax− bk‖22, (Dk) : maxθ∈Rm λ(k)(bTθ − F̄ ∗(ATθ))− (λ(k))2

2 h(θ),

where bk := b+ λ(k)θ(k), h(θ) := ‖θ − θ(k)‖22 − ‖θ(k)‖22, and F̄ ∗ denotes the convex conjugate of F̄ . Note that problem

(Pk) is nothing but the subproblem in (7). Therefore, from weak-duality between (Pk) and (Dk), it follows that

P (k)(x(k)) = λ(k)F̄ (x(k)) + 1
2‖Ax(k) − bk‖22 ≥ λ(k)(bTθ∗ − F̄ ∗(ATθ∗))− (λ(k))2

2
h(θ∗).

Note that from strong duality between (P) and (D), it follows that F̄ ∗ = F̄ (x∗) = bTθ∗− F̄ ∗(ATθ∗). Therefore, dividing

the above inequality by λ(k), we obtain

F̄ (x(k))− F̄ ∗ ≥ −λ
(k)

2

(

‖θ∗‖22 − 2(θ∗)Tθ(k) + ‖θ(k+1)‖22
)

≥ −λ
(k)

2
(‖θ∗‖2 +Bθ)

2
.
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4.6. Proof of Theorem 3

Proof. We assume that σmax(A) ≥
√
maxi∈N di + 1, and σmin(Ai) =

√
di ≥ 1 for all i ∈ N , where di denotes the

degree of i ∈ N . As discussed in the proof of Theorem 1, this is a valid assumption for distributed optimization problem

in (4). Let θ∗ denote an optimal dual solution to (6). Note that from the first-order optimality conditions for (6), we have

0 ∈ ∇γi(x∗i ) +AT

i θ
∗ + ∂ρi(xi)|xi=x∗i

; hence, ‖AT

i θ
∗‖2 ≤ Bi +Gi. Therefore, ‖θ∗‖2 ≤ mini∈N

Bi+Gi

σmin(Ai)
.

Given 0 < λ(1) ≤ σ2
max(A)/L̄, choose α(1), ξ(1) > 0 such that α(1) = 1

4N

(

λ(1)τ̄
)2

, and ξ(1) = 1
2λ

(1)τ̄ . Then Lemma 3

and σmax(A) ≥ 1 together imply that for all k ≥ 1

‖θ(k)‖2 ≤ min
i∈N

{

τ̄σmax(A)/
√
N +Bi +Gi

σmin(Ai)

}

:= Bθ. (21)

Hence, note that ‖θ∗‖2 ≤ Bθ.

To simplify notation, suppose that λ(1) = min
{

1, σ2
max(A)/L̄

}

= 1. (19) implies that for all k ≥ 1

‖x(k) − x∗‖2 ≤
2

τ̄

[

F̄ ∗ + τ̄‖x∗‖2 + 1
2

(

B2
θ +

τ̄2

4N

)]

:= Bx. (22)

Note that (22) implies that ξ(1)

(λ(1))2
Bx = 1

λ(1)
τ̄
2Bx ≥ 1

2B
2
θ + τ̄2

8N ≥ 5
8N τ̄

2 ≥ α(1)

(λ(1))2
, where we used the fact Bθ ≥

σmax(A)
maxi∈N {σmin(Ai)}

τ̄√
N
≥ τ̄√

N
. Note that the last inequality follows from our assumption on A stated at the beginning

of the proof, i.e. σmax(A) ≥
√
maxi∈N di + 1 and σmin(Ai) = di for all i ∈ N . Hence, Theorem 2, λ(1) = 1, and

‖θ∗‖2 ≤ Bθ imply that

Nf
DFAL(ǫ) ≤ log 1

c

(

2Bθ

ǫ

)

= log 1
c

(

2min
i∈N

{

τ̄σmax(A)/
√
N +Bi +Gi

σmin(Ai)ǫ

})

:= N̄f , (23)

No
DFAL(ǫ) ≤ log 1

c

(

1

ǫ
max

{

1
2 (‖θ∗‖2 +Bθ)

2
, B2

θ + F̄ ∗ + τ̄‖x∗‖2 +
τ̄2

8N

})

,

= log 1
c

(

2B2
θ + F̄ ∗ + τ̄‖x∗‖2 + τ̄2

8N

ǫ

)

:= N̄o. (24)

Since α(1) = 1
4N

(

λ(1)τ̄
)2

, we have
√
α(k) = τ̄√

4N
ck. Hence, Lemma 5 implies that

N (k) ≤ 2Bx

√

2(λ(k)L̄+ σ2
max(A))

α(k)
≤ 8Bx

√
N

τ̄
σmax(A)c

−k. (25)

Hence, (23) and (25) imply that the total number of MS-APG iterations to compute an ǫ-feasible solution can be bounded

above:

Nf

DFAL
(ǫ)

∑

k=1

N (k) ≤ 8Bx

√
N

τ̄
σmax(A)

N̄f

∑

k=1

c−k ≤ 8Bx

√
N

c(1− c)τ̄ σmax(A)

(

1

c

)N̄f

,

≤ 16Bx

√
N

c(1− c)τ̄ min
i∈N

{

τ̄σmax(A)/
√
N +Bi +Gi

σmin(Ai)ǫ

}

σmax(A)

ǫ
= O

(

σ2
max(A)

mini∈N σmin(Ai)

1

ǫ

)

.

Similarly, (24) and (25) imply that the total number of MS-APG iterations to compute an ǫ-optimal solution can be bounded

above:

No
DFAL(ǫ)
∑

k=1

N (k) ≤ 8Bx

√
N

c(1− c)τ̄ σmax(A)

(

1

c

)N̄0

= O
(

σ3
max(A)

mini∈N σ2
min(Ai)

1

ǫ

)

. (26)
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4.7. Proof of Lemma 6

Proof. Given any convex function ρ : R
n → R and x̄ ∈ R

n, in order to simplify the notation throughout the proof,

∂ρ(x)|x=x̄ ⊂ R
n, the subdifferential of ρ at x̄, will be written as ∂ρ(x̄). Given x̄ ∈ R

n, there exists ν ∈ ∂P (x̄) such that

‖ν‖2 ≤ ξ, if and only if ‖ν∗‖ ≤ ξ, where ν∗ = argmin{‖ν‖2 : ν ∈ ∂P (x̄)}. Note that ∂P (x̄) = λ∂ρ(x̄) +∇f(x̄), and

∂ρ(x̄) = β1

K
∏

k=1

∂‖x̄g(k)‖1 + β2

K
∏

k=1

∂‖x̄g(k)‖2, (27)

where
∏

denotes the Cartesian product. Since the groups {g(k)}Kk=1 are not overlapping with each other, the minimization

problem is separable in groups. Hence, for all k ∈ [1,K], we have ν∗g(k) = π∗g(k) + ω∗g(k) +∇xg(k)
f(x̄) such that

(π∗g(k), ω
∗
g(k)) = argmin ‖πg(k) + ωg(k) +∇xg(k)

f(x̄)‖22
s.t. πg(k) ∈ λβ1∂‖x̄g(k)‖1, ωg(k) ∈ λβ2∂‖x̄g(k)‖2.

(28)

Fix k ∈ [1,K]. We will consider the solution to above problem in two cases. Suppose that x̄g(k) = 0. Since ∂‖0‖1 is the

unit ℓ∞-ball, and ∂‖0‖2 is the unit ℓ2-ball, (28) can be equivalently written as

(π∗g(k), ω
∗
g(k)) = argmin ‖πg(k) + ωg(k) +∇xg(k)

f(x̄)‖22
s.t. ‖πg(k)‖∞ ≤ λβ1, ‖ωg(k)‖2 ≤ λβ2.

(29)

Clearly, it follows from Euclidean projection on to ℓ2-ball that

ω∗g(k) = −(π∗g(k) +∇xg(k)
f(x̄))min

{

1,
λβ2

‖π∗g(k) +∇xg(k)
f(x̄)‖2

}

.

Hence, ‖π∗g(k) + ω∗g(k) +∇xg(k)
f(x̄)‖2 = max{0, ‖π∗g(k) +∇xg(k)

f(x̄)‖2 − λβ2}. Therefore,

π∗g(k) = argmin{‖πg(k) +∇xg(k)
f(x̄)‖2 : ‖πg(k)‖∞ ≤ λβ1} = − sgn(∇xg(k)

f(x̄))⊙min{|∇xg(k)
f(x̄)|, λβ1}.

Now, suppose that x̄g(k) 6= 0. This implies that ∂‖x̄g(k)‖2 = {x̄g(k)/‖x̄g(k)‖2}. Hence, when x̄g(k) 6= 0, we have

ω∗g(k) = λβ2x̄g(k)/‖x̄g(k)‖2, and the structure of ∂‖ · ‖1 implies that π∗j = λβ1 sgn (x̄j) for all j ∈ g(k) such that

|x̄j | > 0; and it follows from (28) that for all j ∈ g(k) such that x̄j = 0, we have

π∗j = argmin

{

(

πj +
∂

∂xj
f(x̄)

)2

: |πj | ≤ λβ1

}

= − sgn
(

∂
∂xj

f(x̄)
)

min
{∣

∣

∣

∂
∂xj

f(x̄)
∣

∣

∣
, λβ1

}

.

4.8. Proof of Lemma 7

Proof. Since the groups are not overlapping with each other, the proximal problem becomes separable in groups. Let

nk := |g(k)| for all k. Thus, it suffices to show that minxg(k)∈Rnk {β1‖x‖1 + β2‖xg(k)‖2 + 1
2t‖xg(k) − x̄g(k)‖22} has a

closed form solution as shown in the statement for some fixed k. By the definition of dual norm, we have

min
xg(k)∈Rnk

β1‖xg(k)‖1 + β2‖xg(k)‖2 +
1

2t
‖xg(k) − x̄g(k)‖22, (30)

= min
xg(k)∈Rnk

max
‖u1‖∞≤β1

uT1xg(k) + max
‖u2‖2≤β2

uT2xg(k) +
1

2t
‖xg(k) − x̄g(k)‖22,

= max
‖u1‖∞≤β1

‖u2‖2≤β2

min
x∈Rn

(u1 + u2)
Txg(k) +

1

2t
‖xg(k) − x̄g(k)‖22, (31)

= max
‖u1‖∞≤β1

‖u2‖2≤β2

(u1 + u2)
Tx̄g(k) −

t

2
‖u1 + u2‖22. (32)

Let (u∗1, u
∗
2) be the optimal solution of (32). Since xpg(k) is the optimal solution to (30), it follows from (31) that

xpg(k) = x̄g(k) − t(u∗1 + u∗2). (33)
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Note that (32) can be equivalently written as min{‖u1 + u2 − 1
t x̄g(k)‖22 : ‖u1‖∞ ≤ β1, ‖u2‖2 ≤ β2}. Minimizing over

u2, we have

u∗2(u1) =

(

1

t
x̄g(k) − u1

)

min

{

β2

‖ 1t x̄g(k) − u1‖2
, 1

}

. (34)

Hence, we have

u∗1 = argmin
‖u1‖∞≤β1

∥

∥

∥

∥

∥

(

u1 −
1

t
x̄g(k)

)

max

{

1− β2

‖u1 − 1
t x̄g(k)‖2

, 0

}∥

∥

∥

∥

∥

2

= argmin
‖u1‖∞≤β1

max{‖u1 −
1

t
x̄g(k)‖2 − β2, 0}.

Clearly, u∗1 = argmin‖u1‖∞≤β1
‖(u1 − 1

t x̄g(k))‖2 = sgn(x̄g(k))min
{

1
t |x̄g(k)|, β1

}

. The final result follows from com-

bining (33) and (34).

4.9. Improved rate for asynchronous DFAL

Let R denote a discrete random variable uniformly distributed over the set N . Let [U1, U2, . . . , UN ] denote a partition

of the nN -dimensional identity matrix where Ui ∈ R
nN×n, i = 1, . . . , N . In the rest, given h ∈ R

nN , we denote

h[R] := URU⊤Rh. Consider the composite convex optimization problem

Φ∗ := min
y∈RnN

Φ(y) :=

N
∑

i=1

ρi(yi) + f(y), (35)

where ρi : R
n → R is a closed convex function for all i ∈ N such that proxtρi

can be computed efficiently for all t > 0

and i ∈ N , and f : RnN → R is a differentiable convex function such that for some {Li}i∈N ⊂ R++, f satisfies

E[f(y + h[R])] ≤ f(y) +
1

N

(

〈∇f(y),h〉+ 1

2

∑

i∈N
Li‖hi‖22

)

(36)

for all y,h ∈ R
nN . Fercoq & Richtárik (2013) proposed the accelerated proximal coordinate descent algorithm ARBCD

(see Figure 6) to solve (35). They showed that for a given α > 0, the iterate sequence {z(ℓ),u(ℓ)} computed by ARBCD

satisfies

E

[

Φ

(

(

1

Nt(ℓ)

)2

u(ℓ+1) + z(ℓ+1)

)

− Φ∗
]

≤ α, ∀ℓ ≥ 2N

√

C

α
, (37)

where

C := min
y∗∈Y∗

(1− 1
N )
(

Φ
(

z(0)
)

− Φ∗
)

+ 1
2

∑

i∈N
Li‖z(0)i − y∗i ‖22, (38)

and Y∗ denotes the set of optimal solutions.

Algorithm ARBCD (z(0))

1: ℓ← 0, t(0) ← 1, u
(1)
i ← 0, ∀i ∈ N

2: while ℓ ≥ 0 do
3: i is a sample ofR
4: z

(ℓ+1)
i ← proxt(ℓ)ρi/Li

(

z
(ℓ)
i − t(ℓ)

Li
∇yif

(

(

1

Nt(ℓ)

)2

u(ℓ) + z(ℓ)
))

5: u
(ℓ+1)
i ← u

(ℓ)
i +N2t(ℓ)(1− t(ℓ))

(

z
(ℓ+1)
i − z

(ℓ)
i

)

6: z
(ℓ+1)
−i ← z

(ℓ)
−i , u

(ℓ+1)
−i ← u

(ℓ)
−i

7: t(ℓ+1) ← 1+
√

1+(2Nt(ℓ))2

2N
8: end while

Figure 6. Accelerated Randomized Proximal Block Coordinate Descent (ARBCD) algorithm

In the following result, we establish that the bound (36) can be exploited for designing an accelerated version of asyn-

chronous DFAL.
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Lemma 8. Fix α > 0, and p ∈ (0, 1). Let {z(ℓ)k ,u
(ℓ)
k }ℓ∈Z+

, k = 1, . . . ,K, denote the iterate sequence corresponding

to K := log(1/p) independent calls to ARBCD(y(0)). Define yk :=
(

1
Nt(T )

)2
u
(T+1)
k + z

(T+1)
k for k = 1, . . . ,K, and

T := 2N
√

2C
α . Then

P

(

min
k=1,...,K

Φ(yk)− Φ∗ ≤ α

)

≥ 1− p.

Proof. Since the sequence {yk}Kk=1 is i.i.d., and each yk satisfies E[Φ(yk) − Φ∗] ≤ α
2 , Markov’s inequality implies that

P(Φ(yk)− Φ∗ > α) ≤ E[Φ(yk)− Φ∗]/α ≤ 1
2 for 1 ≤ k ≤ K. Therefore, we have

P

(

min
k=1,...,K

Φ(yk)− Φ∗ ≤ α

)

= 1−
K
∏

k=1

P(Φ(yk)− Φ∗ > α) ≤
(

1

2

)K

= 1− p.

From Lemma 8 it follows that we can compute yα such that P (Φ(yα)− Φ∗ ≤ α) ≥ 1 − p in at most 2N
√

2C
α log( 1p )

ARBCD iterations. This new oracle can be used to construct an asynchronous version of DFAL algorithm with O(1/ǫ)
complexity.

Theorem 4. Fix ǫ > 0 and p ∈ (0, 1). Consider a asynchronous variant of DFAL where (9)(a) in Figure 1 is replaced by

P

(

P (k)
(

x(k)
)

− P (k)
(

x
(k)
∗
)

≤ α(k)
)

≥
(

1− p
)

1
N(ǫ) , (39)

where N(ǫ) = log 1
c

(

C̄
ǫ

)

is defined in Corollary 1. Then {x(N(ǫ))
i }i∈N , satisfies

P(ǫ) := P

(

∣

∣

∑

i∈N
Fi

(

x
(N(ǫ))
i

)

− F ∗
∣

∣ ≤ ǫ, and max
(i,j)∈E

{

‖x(N(ǫ))
i − x(N(ǫ))

j ‖2
}

≤ ǫ

)

≥ 1− p,

and O
(

1
ǫ log

(

1
p

))

ARBCD iterations are required to compute {x(N(ǫ))
i }i∈N .

Proof. Consider the k-th DFAL subproblem minP (k)(x) := λ(k)
∑

i∈N ρi(xi) + f (k)(x), where f (k) is defined in (8).

Let L̃
(k)
i := λ(k)Lγi

+ di for all i ∈ N . Then it can be easily shown that f (k) satisfies (36) with constants {L̃(k)
i }i∈N for

all 1 ≤ k ≤ N(ǫ). Hence, ARBCD algorithm can be used to solve minP (k)(x) with the iteration complexity given in

Lemma 8. Consider the random event

∆ :=

N(ǫ)
⋂

k=1

{

P (k)(x(k))− P (k)(x
(k)
∗ ) ≤ α(k) or ∃g(k)i ∈ ∂xi

P (k)(x)|x=x(k) s.t. max
i∈N

‖g(k)i ‖2 ≤ ξ(k)

√
N

}

. (40)

Clearly, for all random sequences {x(k)}N(ǫ)
k=1 satisfying random event ∆, Corollary 1 implies that

∣

∣

∑

i∈N Fi

(

x
(N(ǫ))
i

)

−
F ∗
∣

∣ ≤ ǫ and max(i,j)∈E
{

‖x(N(ǫ))
i − x(N(ǫ))

j ‖2
}

≤ ǫ. Hence, we have

P(ǫ) ≥ P(∆) ≥
N(ǫ)
∏

k=1

P

(

P (k)
(

x(k)
)

− P (k)
(

x
(k)
∗
)

≤ α(k)
)

≥ 1− p.

In the rest, we bound the total number of ARBCD iterations required by asynchronous variant of DFAL to compute

x(N(ǫ)). Note that (1 − p)
1

N(ǫ) is a concave function for p ∈ (0, 1), and we have (1 − p)
1

N(ǫ) ≤ 1 − p
N(ǫ) . Therefore,

Lemma 8 and the discussion after Lemma 8 together imply that the number of ARBCD iterations, N (k), to compute x(k)

satisfying either (39) or (9)(b) is bounded above for 1 ≤ k ≤ N(ǫ) as follows

N (k) ≤ 2N

√

2C(k)

α(k)
log

(

N(ǫ)

p

)

= 2N

(

log

(

1

p

)

+ log log 1
c

(

C̄

ǫ

))

√

2C(k)

α(k)
, (41)
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with C(k) = P (k)
(

x(k−1)
)

− P (k)
(

x
(k)
∗
)

+
∑

i∈N
L̃

(k)
i

2 ‖x(k−1)
i − x(k)∗i ‖22.

Convexity of {ρi}i∈N , and Lemma 2 imply that

P (k)(x(k−1))− P (k)(x
(k)
∗ ) ≤

〈

λ(k)s(k) +∇f (k)(x(k)
∗ ), x(k−1) − x

(k)
∗
〉

+
∑

i∈N

L
(k)
i

2
‖x(k−1)

i − x(k)∗i ‖22,

where s(k) ∈ ∂λ(k)ρ̄(x)|x=x(k−1) , and ρ̄(x) =
∑

i∈N ρi(xi). Note that optimality conditions imply that −∇f (k)(x(k)
∗ ) ∈

∂λ(k)ρ̄(x)|
x=x

(k)
∗

. Assumption 1 implies that ‖∇xi
f (k)(x

(k)
∗ )‖2 ≤ λ(k)Bi and ‖s(k)i ‖2 ≤ λ(k)Bi for all i ∈ N . Hence,

for some C̃ > 0, we have C(k) ≤∑i∈N

(

L
(k)
i +L̃

(k)
i

2 + 2λ(k)Bi

)

‖x(k−1)
i − x(k)∗i ‖22 ≤ C̃B2

x for all k ≥ 1. Consequently,

we can bound the total number of ARBCD iterations to compute x(N(ǫ)) as follows:

N(ǫ)
∑

k=1

N (k) ≤ 2NBx

√

2C̃

α(0)

(

log

(

1

p

)

+ log log 1
c

(

C̄

ǫ

))N(ǫ)
∑

k=1

c−k.

Since N(ǫ) = log 1
c
(C̄/ǫ), and

∑N(ǫ)
k=1 c

−k =
( 1

c )
N(ǫ)−1

1−c = C̄ǫ−1/(1 − c). Hence, we can conclude that
∑N(ǫ)

k=1 N
(k) =

O
(

1
ǫ

(

log
(

1
p

)

+ log log
(

1
ǫ

)

))


