Community Detection Using Time-Dependent Personalized PageRank Supplementary Material

6. Appendix: Pseudocode

```
1: Input: Graph G, sparse seed vector \mathbf{s} \in \mathbb{R}^{|V|}, \alpha, \gamma and \epsilon.
 3: Choose N, as explained in subsection 3.3.
 4: Compute \Xi_1^+ and u as defined in subsection 3.2.3.
 5:
 6: violating \leftarrow empty\_queue
 8: # Initialize non-zero functions (i.e., indexes with non-zero seed value)
 9: for each u s.t. s_u \neq 0: \mathbf{y}_u \leftarrow s_u \mathbf{1}_{N+1}, \mathbf{r}_i \leftarrow -\alpha s_u \mathbf{1}_{N+1}
11: # Initialize neighbors of seeds that are not seeds
12: for u \ s.t. \ s_u \neq 0 \ do
13:
          for each v \in G.neighbors(u) s.t. s_v = 0: \mathbf{y}_v \leftarrow \mathbf{0}_{N+1}, \mathbf{r}_v \leftarrow \mathbf{0}_{N+1}
14: end for
15:
16: # Update residual based on seeds
17: for u \ s.t. \ (\mathbf{s})_u \neq 0 \ \mathbf{do}
          for each v \in G.neighbors(u): \mathbf{r}_v \leftarrow \mathbf{r}_v + \alpha \mathbf{y}_u / G.degree(u)
20: for each initialized u s.t. \|\mathbf{r}_u\|_{\infty} \ge \frac{(1-\alpha) \cdot G.degree(u) \cdot \epsilon}{(1-\exp((\alpha-1)\gamma))(1+\frac{2}{\pi}\log N)}: violating.push(u)
21:
22: # Main loop
23: while violating is not empty do
          u \leftarrow violating.pop()
25:
          \mathbf{d} \leftarrow \mathbf{\Xi}_1^+ \mathbf{r}_u
          \mathbf{y}_u \leftarrow \mathbf{y}_u + \mathbf{d}
26:
          \mathbf{r}_u \leftarrow (\mathbf{u}^\mathsf{T} \mathbf{d}) \mathbf{u}
27:
          for v \in G.neighbors(u) do
28:
              if \mathbf{y}_v and \mathbf{r}_v have not been initialized yet: \mathbf{y}_v \leftarrow \mathbf{0}_{N+1}, \mathbf{r}_v \leftarrow \mathbf{0}_{N+1}
29:
              \mathbf{r}_v \leftarrow \mathbf{r}_v + \alpha \mathbf{d}/G.degree(u)
30:
              unless v is already in violating: if \|\mathbf{r}_v\|_{\infty} \geq \frac{(1-\alpha) \cdot G.degree(v) \cdot \epsilon}{(1-\exp((\alpha-1)\gamma))(1+\frac{2}{\pi}\log N)}: violating.push(v)
31:
32:
          end for
33: end while
35: return the first coordinate of y_u for u's that have been initialized and for which the value \neq 0.
```

7. Appendix: Proofs

7.1. Proof of Proposition 1

Let $\mathbf{e}(\cdot) \equiv \mathbf{x}(\cdot) - \mathbf{y}(\cdot)$. $\mathbf{e}(\cdot)$ is the solution to the following initial value problem:

$$\mathbf{e}'(t) = -(I - \alpha P)\mathbf{e}(t) + \mathbf{r}(t), \ \mathbf{e}(0) = 0, \ t \in [0, \gamma].$$

It follows that (Botchev et al., 2013)

$$\mathbf{e}(t) = \int_0^t \exp(-(t-s)(\mathbf{I} - \alpha \mathbf{P}))\mathbf{r}(s)ds$$
$$= \int_0^t \exp(s-t)\exp((t-s)\alpha \mathbf{P})\mathbf{r}(s)ds.$$

(The last inequality follows from the fact that $\exp(t\mathbf{A}) \exp(t\mathbf{B}) = \exp(t(\mathbf{A} + \mathbf{B})) \iff \mathbf{AB} = \mathbf{BA}$.) For any ω , we have

$$\mathbf{D}^{-1} \exp(\omega \mathbf{P}) = \mathbf{D}^{-1} \exp(\omega \mathbf{A} \mathbf{D}^{-1})$$

$$= \mathbf{D}^{-1} \sum_{k=0}^{\infty} \frac{\omega^k}{k!} (\mathbf{A} \mathbf{D}^{-1})^k$$

$$= \left(\sum_{k=0}^{\infty} \frac{\omega^k}{k!} (\mathbf{D}^{-1} \mathbf{A})^k \right) \mathbf{D}^{-1}$$

$$= \exp(\omega \mathbf{P}^{\mathsf{T}}) \mathbf{D}^{-1}.$$

It follows that

$$\mathbf{D}^{-1}\mathbf{e}(t) = \int_0^t \exp(s-t)\mathbf{D}^{-1}\exp((t-s)\alpha\mathbf{P})\mathbf{r}(s)ds$$
$$= \int_0^t \exp(s-t)\exp((t-s)\alpha\mathbf{P}^{\mathsf{T}})\mathbf{D}^{-1}\mathbf{r}(s)ds.$$

Recalling that P is row-stochastic, we can now bound

$$\|\mathbf{D}^{-1}\mathbf{e}(t)\|_{\infty} \leq \int_{0}^{t} \exp(s-t) \cdot \|\exp((t-s)\alpha\mathbf{P}^{\mathsf{T}})\mathbf{D}^{-1}\mathbf{r}(s)\|_{\infty} ds$$

$$\leq \int_{0}^{t} \exp(s-t) \cdot \|\exp((t-s)\alpha\mathbf{P}^{\mathsf{T}})\|_{\infty} \cdot \|\mathbf{D}^{-1}\mathbf{r}(s)\|_{\infty} ds$$

$$= \int_{0}^{t} \exp((1-\alpha)(s-t))\|\mathbf{D}^{-1}\mathbf{r}(s)\|_{\infty} ds$$

The last equality is because **P** is row-stochastic: for $\omega \geq 0$ we have

$$\|\exp(\omega \mathbf{P}^{\mathsf{T}})\|_{\infty} = \|\sum_{k=0}^{\infty} \frac{\omega^{k}}{k!} (\mathbf{P}^{\mathsf{T}})^{k}\|_{\infty}$$
$$= \sum_{k=0}^{\infty} \frac{\omega^{k}}{k!} \|(\mathbf{P}^{\mathsf{T}})^{k}\|_{\infty}$$
$$= \sum_{k=0}^{\infty} \frac{\omega^{k}}{k!}$$
$$= \exp(\omega).$$

The second equality is due to the fact that P^{T} has only positive values, and the third is because P is row-stochastic.

Clearly if

$$\frac{1 - \exp((\alpha - 1)\gamma)}{1 - \alpha} \|d_i^{-1} r_i(\cdot)\|_{\infty} < \epsilon$$

for all i then condition (3) holds for all $t \in [0, \gamma]$. This is equivalent to having

$$||r_i(\cdot)||_{\infty} < \frac{(1-\alpha)d_i\epsilon}{1-\exp((\alpha-1)\gamma)}$$

for all i.

7.2. Proof of Proposition 2

Let \mathbb{S}_N^{-1} be the inverse operator of \mathbb{S}_N on $C([0,\gamma])$, the set of continuous functions on $[0,\gamma]$. That is, \mathbb{S}_N^{-1} maps a vector in \mathbb{R}^{N+1} to the unique interpolating polynomial. In particular, $\mathbb{S}_N^{-1}[\mathbb{S}_N[p(\cdot)]] = p(\cdot)$. Let Π_N be the mapping of a continuous function $[0,\gamma]$ to \mathbb{P}_N by sampling at t_0,\ldots,t_N and interpolating, that is $\Pi_N[f(\cdot)] \equiv \mathbb{S}_N^{-1}[\mathbb{S}_N[f(\cdot)]]$. Let

$$\Lambda_N \equiv \sup_{f(\cdot) \in C([0,\gamma])} \frac{\|\Pi_N[f(\cdot)]\|_{\infty}}{\|f(\cdot)\|_{\infty}}.$$

 Λ_N is the *Lebesgue constant* associated with t_0,\ldots,t_N , and it is well known that $\Lambda_N \leq 1 + \frac{2}{\pi} \log N$. Now let $f(\cdot)$ be a piece-wise linear interpolation of $p(t_0),\ldots,p(t_N)$. Since $\mathbb{S}_N[f(\cdot)] = \mathbb{S}_N[p(\cdot)]$ it follows that $\Pi_N[f(\cdot)] = \Pi_N[p(\cdot)] = p(\cdot)$, so

$$||p(\cdot)||_{\infty} = ||\Pi_N[f(\cdot)]||_{\infty} \le \Lambda_N ||f(\cdot)||_{\infty} \le (1 + \frac{2}{\pi} \log N) ||\mathbb{S}_N[p(\cdot)]||_{\infty}$$

7.3. Proof of Lemma 3

We have

$$\|(\mathbf{\Xi} + \mathbf{I}_{N+1})\mathbf{1}_{N+1}\|_{\infty} \le \|(\mathbf{\Xi} + \mathbf{I}_{N+1})\mathbf{1}_{N+1}\|_{2} = \min_{\mathbf{x}} \|\mathbf{\Xi}_{1}\mathbf{x} - \mathbf{1}_{N+1}\|_{2},$$

so it suffices to show there exists a vector $\mathbf{y} \in \mathbb{R}^{N+1}$ such that

$$\|(\mathbf{\Xi} + \mathbf{I}_{N+1})\mathbf{y} - \mathbf{1}_{N+1}\|_2$$
,

under the constraint that $y_{N+1} = 0$.

We use the following expansion of $\exp(\cdot)$ on $[0, \gamma]$ in the basis of the Chebyshev polynomials (Abramowitz & Stegun, 1964):

$$\exp(-t) = a_0 + \sum_{i=1}^{\infty} a_i T_i \left(\frac{2t - \gamma}{\gamma}\right)$$

$$a_0 = \exp(-\gamma/2)I_0(-\gamma/2)$$
 $a_i = 2\exp(-\gamma/2)I_i(-\gamma/2), k \ge 1$

where $T_0(\cdot), T_1(\cdot), \ldots$ are the Chebyshev polynomials of the first kind, and $I_0(\cdot), I_1(\cdot), \ldots$ are the modified Bessel functions of the first kind.

Let

$$p(t) = 1 - a_0 - \sum_{i=1}^{N} a_i T_i \left(\frac{2t - \gamma}{\gamma}\right) + c$$

where c is a constant selected so that p(0) = 0. We now set $\mathbf{y} = \mathbb{S}_N[p(\cdot)]$. Note that $y_{N+1} = 0$, as required.

 $p(\cdot)$ is a polynomial of degree N, so $\mathbb{S}_N[p'(\cdot)] = \Xi \mathbb{S}_N[p(\cdot)]$. Therefore,

$$\|(\mathbf{\Xi} + \mathbf{I}_N)\mathbf{y} - \mathbf{1}_N\|_2 \le \sqrt{N} \|(\mathbf{\Xi} + \mathbf{I}_N)\mathbf{y} - \mathbf{1}_N\|_{\infty}$$

$$< \sqrt{N} \|p(\cdot) + p'(\cdot) - 1\|_{\infty}$$

For $t \in [0, \gamma]$

$$|p(t) + p'(t) - 1| = |p(t) - 1 - \exp(-t) + p'(t) + \exp(-t)|$$

$$\leq |p(t) - 1 - \exp(-t)| + |p'(t) + \exp(-t)|$$

$$= \left| -\sum_{i=N+1}^{\infty} a_i T_i \left(\frac{2t - \gamma}{\gamma} \right) + c \right| + |p'(t) + \exp(-t)|$$

$$\leq \left| \sum_{i=N+1}^{\infty} a_i T_i \left(\frac{2t - \gamma}{\gamma} \right) \right| + |c| + |p'(t) + \exp(-t)|$$

$$\leq \sum_{i=N+1}^{\infty} |a_i| + |c| + |p'(t) + \exp(-t)|$$

where the last inequality is due to the fact that $||T_i(\cdot)||_{\infty} = 1$ for all i.

Since $\exp(0) = 1$ we have

$$1 = a_0 + \sum_{i=1}^{\infty} a_i T_i(-1)$$

which implies

$$-c = p(0) - c$$

$$= 1 - a_0 - \sum_{i=1}^{N} a_i T_i(0)$$

$$= \sum_{i=N+1}^{\infty} a_i T_i(0)$$

which leads to the bound

$$|c| \le \sum_{i=N+1}^{\infty} |a_i| .$$

Using the fact that $T_i'(t) = iU_{i-1}(t)$, where $U_0(\cdot), U_1(\cdot), \ldots$ are the Chebyshev polynomials of the second kind, we find that

$$p'(t) = \frac{2}{\gamma} \sum_{i=1}^{N} i a_i U_{i-1} \left(\frac{2t - \gamma}{\gamma} \right).$$

Since $(\exp(-t))' = -\exp(-t)$ we have

$$\exp(-t) = -\frac{2}{\gamma} \sum_{i=1}^{\infty} i a_i U_{i-1} \left(\frac{2t - \gamma}{\gamma} \right).$$

Combining the last two equalities we find

$$|p'(t) + \exp(-t)| = \left| \frac{2}{\gamma} \sum_{i=N+1}^{\infty} i a_i U_{i-1} \left(\frac{2t - \gamma}{\gamma} \right) \right|$$

$$\leq \frac{2}{\gamma} \sum_{i=N+1}^{\infty} i^2 |a_i|$$

where the last inequality is due to the fact that $||U_i(\cdot)||_{\infty} = i + 1$ for all i.

We now find that

$$|p(t) + p'(t) - 1| \leq \sum_{i=N+1}^{\infty} (2 + \frac{2}{\gamma}i^{2}) |a_{i}|$$

$$= 4 \sum_{i=N+1}^{\infty} \left| (1 + \frac{1}{\gamma}i^{2}) \exp(-\gamma/2) I_{i}(-\gamma/2) \right|$$

$$= 4 \exp(-\gamma/2) \sum_{i=N+1}^{\infty} (1 + \frac{1}{\gamma}i^{2}) I_{i}(\gamma/2),$$

where last equality is due to the fact that for every integer i, $|I_i(x)| = I_i(|x|)$.

The following two inequalities are known (Paris, 1984; Laforgia, 1991):

$$\frac{I_{\nu}(x)}{I_{\nu}(y)} \le \left(\frac{x}{y}\right)^{\nu}, \quad \nu > -\frac{1}{2}, \ 0 < x < y$$

$$I_{\nu+1}(x) \le I_{\nu}(x), \quad \nu > \frac{1}{2}.$$

This now leads to

$$|p(t) + p'(t) - 1| \le 4 \exp(-\gamma/2) I_{N+1}(\gamma) \sum_{i=N+1}^{\infty} (1 + \frac{1}{\gamma}i^2) 2^{-i}.$$

Provided $\gamma \geq 1$ and $i \geq 11$ we have $(1+i^2/\gamma)2^{-i} \leq (4/5)^{-i}$, so

$$|p(t) + p'(t) - 1| \le 4 \exp(-\gamma/2) I_{N+1}(\gamma) \sum_{i=N+1}^{\infty} (4/5)^{-i} = 20 \exp(-\gamma/2) I_{N+1}(\gamma) (4/5)^{N+1}.$$