Stay on path: PCA along graph paths

7. Proof of Lemma [2.2] - Local Packing Set

Towards the proof of Lemma [2.2] we develop a modified
version of the Varshamov-Gilbert Lemma adapted to our
specific model: the set of characteristic vectors of the S-T
paths of a (p, k, d)-layer graph G.

Let 0y (x,y) denote the Hamming distance between two

points x,y € {0,1}?:

on(xy) = itz #yi}l.

Lemma 7.4. Consider a (p, k, d)-layer graph G on p ver-
tices and the collection P(G) of S-T paths in G. Let

Q2 {xe{0,1}”: supp(x) € P(Q)},

i.e., the set of characteristic vectors of all S-T paths in G.
For every § € (0,1), there exists a set, Q¢ C Q such that

5H(XaY) >2(17€)k7 VX,yEQE,X#y, (29)

and
log || > log 222 + (£ -k — 1) -logd — k- H(E), (30)

where H () is the binary entropy function.

Proof. Consider a labeling 1, ..., p of the p vertices in G,
such that variable w; is associated with vertex i. Each point
w € Qs the characteristic vector of a set in P(G); nonzero
entries of w correspond to vertices along an S-T path in G.
With a slight abuse of notation, we refer to w as a path
in G. Due to the structure of the (p, k, d)-layer graph G, all
points in 2 have exactly k& + 2 nonzero entries, ie.,
0 (w,0) =k +2, Yw € Q.

Each vertex in w lies in a distinct layer of G. In turn, for
any pair of points w,w’ € €,

Splw,w)=2(k—|{i: wi=w, =1} -2). (31

Note that the Hamming distance between the two points is
a linear function of the number of their common nonzero
entries, while it can take only even values with a maximum
value of 2k.

Without loss of generality, let .S and 1" corresponding to
vertices 1 and p, respectively. Then, the above imply that

Yw € Q.

Wi =wp =1,

Consider a fixed point @ € €, and let B(@w,r) denote the
Hamming ball of radius r centered at @, i.e.,

B@,r) £ {we{0,1}": dy(@,w) <r}.

The intersection B(w, ) N2 corresponds to S-T paths in G
that have at least k — 7/2 additional vertices in common
with & besides vertices 1 and p that are common to all paths
in :

B(@,r)NQ
={we:dyg(®,w)<r}
={weQ:|{i: ®=w =1} >k—-5+2},

where the last equality is due to (3I)). In fact, due to the
structure of G, the set B(w, ) N € corresponds to the S-T°
paths that meet @ in at least k — 7/2 intermediate layers.
Taking into account that [y (v)| = [Low(v)| = d, for all
vertices v in V(G) (except those in the first and last layer),

sennei<( ") et (1)

2 2

Now, consider a maximal set Q¢ C €2 satisfying 29),i.e.,a
set that cannot be augmented by any other point in €2. The
union of balls B(w,2(1 —§) - (k—1)) over all w € Q¢
covers €. To verify that, note that if there exists w’ € Q\2 ¢
such that 0y (w,w’) > 2(1 —¢) - (k — 1), Yw € Q, then
Qe U{w'} satisfies (29) contradicting the maximality of Q.
Based on the above,

Q< Y IBw,2(1-€)-k)NnQY

WENe

< Z (k—(lk—g)k) 'd(lig)'k
XEQE

< N (&) at-or
xeﬂg

<[ - ok-H(&) . q(1=8&)k
Taking into account that

p—2

91 = P(@)] = 2

k—1
A
we conclude that

p ; 2 SdF < €] - ok-H (&) .d(l—f)'k’

from which the desired result follows. ]

Lemma (Local Packing) Consider a (p, k,d)-layer
graph G on p vertices with k > 4 and logd > 4 - H(3/4).
For any € € (0, 1), there exists a set X. C X (G) such that

/V2 < |lxi —xjlla < V2-¢,

forall x;,x; € X, x; # x;, and

p—2

1
log |Xe| > log +Z~klogd.
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Proof. Without loss of generality, consider a labeling
1,...,p of the p vertices in G, such that .S and T corre-
spond to vertices 1 and p, respectively. Let

Q2 {xe{0,1}": supp(x) € P(G)},

where P(G) is the collection of S-T' paths in G. By
Lemma and for £ = 3/4, there exists a set Q¢ C € such
that

5H(wi,wj) > 'k‘, (32)

M| —

Vw;,wj € Q¢, w; # wj, and,
log [Q¢| > log 252 + (§ -k — 1) logd — k- H()
zlog%Jr%-k-logdth(%)
zlog%ﬁ-i-k'logd (33)

where the second and third inequalites hold under the as-
sumptions of the lemma; k > 4 and logd > 4 - H(3/4).

Consider the bijective mapping 1) : ¢ — RP defined as

—e? € —e?
‘We show that the set

Xe £ {w(w) :

has the desired properties. First, to verify that X, is a subset
of X(G), note that Vw € Q¢ C Q,

supp(t(w)) = supp(w) € P(G), 34

wEQS}.

and

1 — €2 9 p—1l
welg=2- 552+ % Y wi=

Second, for all pairs of points x;,x; € X,

€2 €2
Ixi = %3 = dm(wi,wj) - - <2k —=2-¢
i 7k k
The inequality follows from the fact that 6 ;7 (w, 0) = k + 2
wi =land w, =1, Vw € (¢, and in turn
(5H(wi,wj) < 2-k.
Similarly, for all pairs x;,x; € X, x; # X,
€2 1 €2 €2
[xi —x;ll2 = 0p (wi,wj) - w23k =

where the inequality is due to (32). Finally, the lower bound
on the cardinality of X, follows immediately from (33)) and
the fact that | X,| = |Q¢|, which completes the proof.  [J

8. Details in proof of Lemmal]

We want to show that if

/. loc 2=2 + k . 1o0d
e :min{L 0+ p) logTFm+glo .
n

62

for an appropriate choice of C’ > 0, then the following two
conditions (Eq. (T3)) are satisfied:

2€2 32 1 1
(1+8)log|Xc| ~ 4

and log |X.| > 4log 2.

For the second inequality, recall that by Lemma[2.2]

p—2

log|Xe| > log —

1
+Z~klogd > 0. 35)

Under the assumptions of Thm. [Tjon the parameters k and d
(note that p — 2 > k - d by the structure of G),

k
+ —-logd>4-H(3/1) > 4log2,

log |Xe| > log 1

p—2
k
which is the desired result.

For the first inequality, we consider two cases:

* First, we consider the case where €2 = 1, i.e.,

¢’ (14 8) logP2+%.logd
B2 n .

=1 <
Equivalently,

262B2
1+5)

¢ In the second case,

—2
<2.C". (1ogpk+4-1ogd>. (36)

6220'-(1+5)_1og%+§-1ogd
B2 n

which implies that

b

. 26252
(1+58)

—2.0"- (logp;2+]i-logd>. 37)

Combining (36) or (37), with (33)), we obtain

26232 1
n- <2.C <
(1+p)log|X| — B

=

for C' < 1/s.

We conclude that for e chosen as in (I2)), the conditions

in (T3) hold.
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9. Other and
Assumption 1. There exist i.i.d. random vectors sup ||Z7,T Xsz <K, (39)
Z1,...,2Zy € RP, such that Ez; = 0 and Eziz;r =1, xSyt

where i € RP and K > 0 is a constant depending on the
distribution of z;s.
y=p+X"z (38)



