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7. Proof of Lemma 2.2 – Local Packing Set
Towards the proof of Lemma 2.2, we develop a modified
version of the Varshamov-Gilbert Lemma adapted to our
specific model: the set of characteristic vectors of the S-T
paths of a (p, k, d)-layer graph G.

Let δH(x,y) denote the Hamming distance between two
points x,y ∈ {0, 1}p:

δH(x,y) , |{i : xi 6= yi}| .

Lemma 7.4. Consider a (p, k, d)-layer graph G on p ver-
tices and the collection P(G) of S-T paths in G. Let

Ω ,
{
x ∈ {0, 1}p : supp(x) ∈ P(G)

}
,

i.e., the set of characteristic vectors of all S-T paths in G.
For every ξ ∈ (0, 1), there exists a set, Ωξ ⊂ Ω such that

δH(x,y) > 2(1− ξ) · k, ∀x,y ∈ Ωξ,x 6= y, (29)

and

log |Ωξ| ≥ log p−2
k + (ξ · k − 1) · log d− k ·H(ξ), (30)

where H(·) is the binary entropy function.

Proof. Consider a labeling 1, . . . , p of the p vertices in G,
such that variable ωi is associated with vertex i. Each point
ω ∈ Ω is the characteristic vector of a set inP(G); nonzero
entries of ω correspond to vertices along an S-T path in G.
With a slight abuse of notation, we refer to ω as a path
in G. Due to the structure of the (p, k, d)-layer graph G, all
points in Ω have exactly k + 2 nonzero entries, i.e.,

δH(ω,0) = k + 2, ∀ω ∈ Ω.

Each vertex in ω lies in a distinct layer of G. In turn, for
any pair of points ω,ω′ ∈ Ω,

δH(ω,ω′) = 2 ·
(
k − |{i : ωi = ω′i = 1}| − 2

)
. (31)

Note that the Hamming distance between the two points is
a linear function of the number of their common nonzero
entries, while it can take only even values with a maximum
value of 2k.

Without loss of generality, let S and T corresponding to
vertices 1 and p, respectively. Then, the above imply that

ω1 = ωp = 1, ∀ω ∈ Ω.

Consider a fixed point ω̂ ∈ Ω, and let B(ω̂, r) denote the
Hamming ball of radius r centered at ω̂, i.e.,

B(ω̂, r) ,
{
ω ∈ {0, 1}p : δH(ω̂,ω) ≤ r

}
.

The intersection B(ω̂, r)∩Ω corresponds to S-T paths inG
that have at least k − r/2 additional vertices in common
with ω̂ besides vertices 1 and p that are common to all paths
in Ω:

B(ω̂, r) ∩ Ω

= {ω ∈ Ω : δH(ω̂,ω) ≤ r}
=
{
ω ∈ Ω : |{i : ω̂i = ωi = 1}| ≥ k − r

2 + 2
}
,

where the last equality is due to (31). In fact, due to the
structure of G, the set B(ω̂, r) ∩ Ω corresponds to the S-T
paths that meet ω̂ in at least k − r/2 intermediate layers.
Taking into account that |Γin(v)| = |Γout(v)| = d, for all
vertices v in V (G) (except those in the first and last layer),

|B(ω̂, r) ∩ Ω| ≤
(

k

k − r
2

)
· dk−(k− r2 ) =

(
k

k − r
2

)
· d

r
2 .

Now, consider a maximal set Ωξ ⊂ Ω satisfying (29), i.e., a
set that cannot be augmented by any other point in Ω. The
union of balls B(ω, 2(1− ξ) · (k − 1)) over all ω ∈ Ωξ
covers Ω. To verify that, note that if there existsω′ ∈ Ω\Ωξ
such that δH(ω,ω′) > 2(1− ξ) · (k − 1), ∀ω ∈ Ωξ, then
Ωξ∪{ω′} satisfies (29) contradicting the maximality of Ωξ.
Based on the above,

|Ω| ≤
∑
ω∈Ωξ

|B(ω, 2(1− ξ) · k) ∩ Ω|

≤
∑
x∈Ωξ

(
k

k−(1−ξ)k
)
· d(1−ξ)·k

≤
∑
x∈Ωξ

(
k
ξk

)
· d(1−ξ)·k

≤ |Ωξ| · 2k·H(ξ) · d(1−ξ)·k.

Taking into account that

|Ω| = |P(G)| = p− 2

k
· dk−1,

we conclude that

p− 2

k
· dk−1 ≤ |Ωξ| · 2k·H(ξ) · d(1−ξ)·k,

from which the desired result follows.

Lemma 2.2. (Local Packing) Consider a (p, k, d)-layer
graph G on p vertices with k ≥ 4 and log d ≥ 4 ·H(3/4).
For any ε ∈ (0, 1], there exists a set Xε ⊂ X (G) such that

ε/
√

2 < ‖xi − xj‖2 ≤
√

2 · ε,

for all xi,xj ∈ Xε, xi 6= xj , and

log |Xε| ≥ log
p− 2

k
+

1

4
· k log d.
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Proof. Without loss of generality, consider a labeling
1, . . . , p of the p vertices in G, such that S and T corre-
spond to vertices 1 and p, respectively. Let

Ω ,
{
x ∈ {0, 1}p : supp(x) ∈ P(G)

}
,

where P(G) is the collection of S-T paths in G. By
Lemma 7.4, and for ξ = 3/4, there exists a set Ωξ ⊆ Ω such
that

δH(ωi,ωj) >
1

2
· k, (32)

∀ωi,ωj ∈ Ωξ, ωi 6= ωj , and,

log |Ωξ| ≥ log p−2
k +

(
3
4 · k − 1

)
log d− k ·H

(
3
4

)
≥ log p−2

k + 2
4 · k · log d− k ·H

(
3
4

)
≥ log p−2

k + 1
4 · k · log d (33)

where the second and third inequalites hold under the as-
sumptions of the lemma; k ≥ 4 and log d ≥ 4 ·H(3/4).

Consider the bijective mapping ψ : Ωξ → Rp defined as

ψ(ω) =

[√
(1−ε2)

2 · ω1,
ε√
k
· ω2:p−1,

√
(1−ε2)

2 · ωp
]
.

We show that the set

Xε , {ψ(ω) : ω ∈ Ωξ} .

has the desired properties. First, to verify thatXε is a subset
of X (G), note that ∀ω ∈ Ωξ ⊂ Ω,

supp(ψ(ω)) = supp(ω) ∈ P(G), (34)

and

‖ψ(ω)‖22 = 2 · (1− ε2)

2
+
ε2

k
·
p−1∑
i=2

ωi = 1.

Second, for all pairs of points xi,xj ∈ Xε,

‖xi − xj‖22 = δH(ωi,ωj) ·
ε2

k
≤ 2 · k · ε

2

k
= 2 · ε2.

The inequality follows from the fact that δH(ω,0) = k+ 2
ω1 = 1 and ωp = 1, ∀ω ∈ Ωξ, and in turn

δH(ωi,ωj) ≤ 2 · k.

Similarly, for all pairs xi,xj ∈ Xε, xi 6= xj ,

‖xi − xj‖2 = δH(ωi,ωj) ·
ε2

k
≥ 1

2
· k · ε

2

k
=
ε2

2
,

where the inequality is due to (32). Finally, the lower bound
on the cardinality of Xε follows immediately from (33) and
the fact that |Xε| = |Ωξ|, which completes the proof.

8. Details in proof of Lemma 1
We want to show that if

ε2 = min

{
1,

C ′ · (1 + β)

β2
·

log p−2
k + k

4 · log d

n

}
,

for an appropriate choice ofC ′ > 0, then the following two
conditions (Eq. (13)) are satisfied:

n · 2ε2β2

(1 + β)

1

log |Xε|
≤ 1

4
and log |Xε| ≥ 4 log 2.

For the second inequality, recall that by Lemma 2.2,

log |Xε| ≥ log
p− 2

k
+

1

4
· k log d > 0. (35)

Under the assumptions of Thm. 1 on the parameters k and d
(note that p− 2 ≥ k · d by the structure of G),

log |Xε| ≥ log
p− 2

k
+
k

4
· log d ≥ 4 ·H(3/4) ≥ 4 log 2,

which is the desired result.

For the first inequality, we consider two cases:

• First, we consider the case where ε2 = 1, i.e.,

ε2 = 1 ≤ C ′ · (1 + β)

β2
·

log p−2
k + k

4 · log d

n
.

Equivalently,

n · 2ε2β2

(1 + β)
≤ 2 · C ′ ·

(
log

p− 2

k
+
k

4
· log d

)
. (36)

• In the second case,

ε2 =
C ′ · (1 + β)

β2
·

log p−2
k + k

4 · log d

n
,

which implies that

n · 2ε2β2

(1 + β)
= 2 · C ′ ·

(
log

p− 2

k
+
k

4
· log d

)
. (37)

Combining (36) or (37), with (35), we obtain

n · 2ε2β2

(1 + β)

1

log |Xε|
≤ 2 · C ′ ≤ 1

4

for C ′ ≤ 1/8.

We conclude that for ε chosen as in (12), the conditions
in (13) hold.
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9. Other
Assumption 1. There exist i.i.d. random vectors
z1, . . . , zn ∈ Rp, such that Ezi = 0 and Eziz

>
i = Ip,

y = µ+ Σ
1/2zi (38)

and

sup
x∈Sp−1

2

‖z>i x‖ψ2
≤ K, (39)

where µ ∈ Rp and K > 0 is a constant depending on the
distribution of zis.


