Large-Scale Markov Decision Problems with KL. Control Cost and its Application to Crowdsourcing

A. Average Losses

Lemma 4 in Appendix C motivates the following optimization problem:

m}}n vT(Lh —h), (17)

where v is a distribution over the state space. If hisan e-optimal solution, then
v (Lh—h) <v"(Lh—h) +e.

Thus, by Lemma 4 in Appendix C,
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Thus, for any X and A,
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Thus,
Aoy = Amy < [0 = pimg ||, [ER =R =32|| _+ILh—h= A1), +ILh—h= AL,

Unfortunately, the optimization objective (17) is not convex.

B. Proofs of Section 2

Before proving Theorem 1, we prove a useful lemma.

Lemma 3. Let J : X — R be a function. We have that

T, (1) = Twa) = 30 PA(T) Y2 (LT~ J)(e)
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Proof. We have that
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=q(x) = Y Py(x,a)J(x') —log Z(x) . (18)
x'eXx
By definition and (18),
Jp,(z) = q(x) + > Py(w,2')(Jp,(2") — J(2')) —log Z(z) .
r'eXxX
Thus,

Jp,(x) = J(@) = q@) + Y Ps(z,2')(Jp,(a') = J(2')) — log Z(z) — J (x)
r’'eX

= (LJ = J)(@)+ Y Py(x,2")(Jp,(a) — J(2)) .
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Let f(z) = Jp,(x) — J(x) and g(v) = (LJ — J)(z) so that f(x) = g(z) + >, c» Pr(x,2’) f(2'). Because there are no
loops and there exists an absorbing state such that (LJ — J)(z) = 0, we obtain the desired result:

Tp,(w1) = J(z1) = Y Py(T) Y (LT = J)(=) .

TeT zeT
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Proof of Theorem 1. Because @ € W, by the positivity assumption below (7) we have that Jz(x) <

x. Thus,
(LJg)(x) logZPo (2,2 )e~ o (@)
r) + Z Py(z, ") (7 log @*Ja(w'))
<Q- logz )

Thus, for any z,
max{Jg(), (LJg)(z)} < Q —logg .

By the fact that @ is an e-optimal solution, for any w € W, we have
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Thus,
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where we used (9) and (19). Thus, by the choice of H and Lemma 3,
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Thus,
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—log g for any state
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Input: Starting state 21, number of rounds [V, a decreasing sequence of step sizes
(n:), a positive v over states, estimate of optimal average cost b.
Let 11,y be the Euclidean projection onto WW.
Initialize w; = 0.
fort:=1,2,...,Ndo
Sample state x ~ v/||v||1.
Compute subgradient estimate r; defined by (20).
Update Wi41 = HW (wt — ntrt).
end for
wr = A w.
Return policy Py, . defined in Section 3.

Figure 3. The Stochastic Subgradient Method for Average Cost Markov Decision Processes

C. Algorithm and Proofs of Section 3

The stochastic subgradient algorithm for average cost MDPs is presented in Figure 3, where the stochastic subgradient of
¢(w) for a randomly sampled state x takes the following form,

r(w) = ||v]1sign (e_b\I/(x, Jw — e~ 1) Py (z, :)\Ilw) (e_b\I/(a:, ) — e 1@ py(a, )\IJ> . (20)

Before proving Theorem 2, we prove a useful lemma.

Lemma 4. Let h : X — R be a bounded function and assume that the Markov chain induced by the greedy policy Py, is
irreducible and aperiodic. Then, we have that

A, = i, (Lh— ) |
where pp, is the stationary distribution with respect to Pj,.
Proof. The proof argument uses ideas from the proof of Theorem 8.4.1 in Puterman (1994). Let f(x) = (Lh)(x) — h(z).

We have that
th = th(i, Ph) + P}?h - Phh = .P},[(Z7 Ph) + Ph(Ph — I)h .

By repeating this argument, we get that P} f = P7((., Py) + P (P, — I)h. Summing over s = 1. .. ¢, we obtain
t t

S Bif=> Pil(:,Py)+ (P —I)h.

s=1 s=1
Averaging and taking the limit, we obtain

1 1« 1
Pef = Jim — Z;P}ff = Jim — Z;P,fz(:,Ph) + lim ;(P,ﬁ —Dh=Ap,1,

where we used Ap1 = P>°/(:, P) and boundedness of Pp°h. Thus, Ap, = p}, f. O

Proof of Theorem 2. For a differential value function h, let V. = e~". We know that Lh = ¢ — log Z and Z(z) =
S Po(z,2")e M) =3 Py(x,2")V(2'). Then

e th _emh=b = gmatlogZ _ o=h=b _ cmapy _ oY

Let @ be an e-optimal solution, then for any w € W, we have,

vl e Py U — e_b\lf@’ <ol ‘e_qPo‘l/w — e "w| +e.
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Recall that hi = — log Uw. Let ug = max(Lhg, hg + b) and 1, = min(Lh,,, hy, + ). By (9),
wn T 1 T
(e w@v) |Lh@—h@—b|§(e “’@v) |Lhy — hy — b + €.

By Lemma 4, we have
Ap,. —b<pp, |Lhg —hg —b|,

which further implies that,
_ _ T
b+ Ap,_ + (e ©v—pp, ) [Lhg —hg —b| < (e7"* ©v) |Lhy — hy — b + €.
This gives the performance bound in the theorem,

A, = Ap,, < |b=Ap,, |+ (e ©v—pp, )hLhs —ha — bl
+ H (Lh‘w - hw - b) Hl,(e*l’w(Dv) + e




