
Spectral Regularization for Max-Margin Sequence Tagging

Ariadna Quattoni1 AQUATTONI@LSI.UPC.EDU
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Abstract
We frame max-margin learning of latent variable
structured prediction models as a convex opti-
mization problem, making use of scoring func-
tions computed by input-output observable oper-
ator models. This learning problem can be ex-
pressed as an optimization problem involving a
low-rank Hankel matrix that represents the input-
output operator model. The direct outcome of
our work is a new spectral regularization method
for max-margin structured prediction. Our exper-
iments confirm that our proposed regularization
framework leads to an effective way of control-
ling the capacity of structured prediction models.

1. Introduction
Many important problems in machine learning can be
framed as structured prediction tasks where the goal is to
learn functions that map structured inputs to structured out-
puts such as sequences or trees. This work focuses on se-
quence tagging problems, where both inputs and outputs
are sequences of equal length. This is an important task
with applications in many domains where sequential data
appears naturally, including speech and natural language
processing. We note that although our contributions are de-
scribed in a sequence tagging framework, ideas in this work
can be generalized to other structured prediction settings.

A standard approach to structured prediction is based on
discriminative factorized linear models (Lafferty et al.,
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2001; Taskar et al., 2004), a direct generalization of lin-
ear multiclass prediction to the setting of structured input-
output pairs. The key idea is to break structures into parts
and describe the relation between inputs and outputs us-
ing a feature representation of each factor. The final scor-
ing function for an input-output pair measures the compat-
ibility of an output y with an input x. In factorized linear
models the scoring function is assumed to be linear in the
features that describe part-factored (x, y) pairs.

For sequence prediction, factors are usually associated with
pairs of input-output sub-sequences, and the feature vec-
tor of a complete sequence is obtained by adding the fea-
tures of individual factors. With this approach, sequence
prediction reduces to a linear multiclass problem with an
exponential number of outputs. Prediction in this case re-
quires solving an inference problem over the space of pos-
sible outputs. Unlike with more complex models, in fac-
torized linear models this inference problem can be effi-
ciently solved. In addition, for appropriate loss functions,
training these models can be formalized as a convex opti-
mization problem (e.g., see Taskar et al., 2004). In prac-
tice, the caveat with these simple linear models is that in
order to achieve good generalization performance, feature
functions providing a good representation of the relevant
input-output patterns for each problem domain need to be
manually specified.

To address the limitations of factorized linear models,
researchers have proposed to introduce latent variables
and make the scoring function depend on those (Quattoni
et al., 2004; Zhu et al., 2009; Wang & Mori, 2009; Yu
& Joachims, 2009; Girshick et al., 2011; Schwing et al.,
2012). As their name indicates, these variables are not

1The first two authors contributed equally.
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observed at train or test time and their values need to be
induced by the learning algorithm. The main idea is that
models with latent variables have more freedom in explain-
ing the relation between inputs and outputs, and can of-
ten identify the relevant patterns in a given domain. How-
ever, this increased expressivity comes at a price: the learn-
ing problem becomes non-convex, and exact prediction in
some of these models becomes intractable. In addition, as
the number of parameters increases, choosing appropriate
regularization strategies becomes essential to avoid overfit-
ting.

Two popular approaches to structured prediction with la-
tent variables are based on linear and log-linear models.
The latent SVM algorithm (Yu & Joachims, 2009) trains a
linear model with latent variables by minimizing a regular-
ized structured hinge loss under the assumption that pre-
dictions are scored by maximizing over all possible assign-
ments to the latent variables. Log-linear factorized models
can be trained using a conditional logistic loss (Quattoni
et al., 2004), or max-margin approaches (Wang & Mori,
2009). Scoring in these models can be done by maxi-
mizing over all possible latent assignments, like with lin-
ear models. However, when the loss function has a prob-
abilistic interpretation (e.g. the conditional logistic loss),
log-linear models can be normalized by a partition func-
tion to induce a conditional distribution over output struc-
tures given an input structure and an assignment to the la-
tent variables. A natural score in those cases is to consider
the probability obtained by marginalizing over all possible
latent assignments. Unfortunately, finding the output struc-
ture that maximizes these marginalized scores is usually an
intractable inference problem. Alternative approaches con-
sider piecewise inference, where each factor of the output
structure is predicted independently by marginalizing over
all other factors (Quattoni et al., 2004). Overall, more pow-
erful methods require solving more complex learning and
prediction problems, and in most cases there is no clear
match between the loss used at training and the inference
rule used at prediction time.

In this paper we propose a model for sequence tagging
with latent variables based on observable operator mod-
els (OOM) (Jaeger, 2000). These models, which include
HMMs as a special case, provide a powerful modeling
mechanism for scoring input-output sequences. Scoring
functions computed by OOM naturally marginalize over
the set of latent variables. This implies that finding maxi-
mum score taggings involves an intractable inference prob-
lem. To make the inference problem tractable we consider
a piecewise loss function similar to segmented minimum
Bayes-risk decoders used in speech recognition (Goel et al.,
2004). We use this inference to define a loss function that
explicitly considers the marginalized scores that will be
used at prediction time, thus coupling the scores used for

prediction and learning. Then, by leveraging recent tech-
niques in spectral learning of HMM and related models
(Hsu et al., 2009; Bailly et al., 2009; Balle et al., 2011;
Boots et al., 2011) and Hankel matrix completion (Balle &
Mohri, 2012; Bailly et al., 2013b;a), we give an efficient
algorithm for learning OOM for sequence tagging with this
loss function. Our algorithm combines a nuclear norm reg-
ularized optimization with a spectral technique for recov-
ering OOM from Hankel matrices. This provides a learn-
ing algorithm without local minima, which, in contrast with
other spectral algorithms, tries to agnostically fit a model to
the data without making any explicit assumption about the
distribution that generated it.

We report experiments where the proposed method is used
to solve a word-to-phoneme transcription task. We show
that spectral regularization is an effective way to control
the capacity of the model, and that it outperforms standard
`2 regularization. Furthermore, our method achieves accu-
racies similar to a feature-based Conditional Random Field
for smaller training sets, and improves for larger training
sets, without the need to design any features for the factors.

1.1. Notation

Bold letters are used to denote vectors v ∈ Rd and matrices
M ∈ Rd1×d2 . Given a matrix M we write ‖M‖∗ for its
trace/nuclear norm, which is the sum of its singular values.
We use M+ to denote the Moore–Penrose pseudo-inverse
of M. Columns and rows of a matrix will sometimes be
indexed by ordered sets I and J . In this case we write
M ∈ RI×J to denote a matrix of size |I| × |J | with rows
indexed by I and columns indexed by J .

Let X be a finite set. We use the standard notation X ? to
denote the set of all finite sequences with elements in X .
The empty sequence is denoted by ε. Given a sequence
x = x1 · · ·xT ∈ X T of length T and indices 1 ≤ s ≤ t ≤
T we use xs:t to denote the subsequence xs · · ·xt. Given
two sequences u, v ∈ X ? we write w = u ·v = uv for their
concatenation; u and v are said to be a prefixes and suffixes
of w respectively. Given two sets of sequences P,S ⊆ X ?
we write P ·S for the set obtained by taking every sequence
of the form uv with u ∈ P and v ∈ S.

2. Sequence Tagging with IO-OOM
2.1. Learning Setting

Let X be a set of input symbols and Y a set of output sym-
bols. Our goal is to learn a model for sequence tagging that
given an input sequence of T symbols x ∈ X T produces an
output sequence y ∈ YT . In this setting, a model is given
by a scoring function F : (X ×Y)? → R assigning a score
F (x, y) to each pair of input and output strings. Given an
input sequence x ∈ X T the model predicts an output se-
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quence y ∈ YT by maximizing the score function:

ŷ(x) = argmax
y∈YT

F (x, y) . (1)

The learning problem is specified via a class of possible
scoring functions F and a set of labeled training examples
S = {(xi, yi)}mi=1.

A widely used scoring function is the class of factorized
linear models (e.g., see Lafferty et al., 2001; Collins, 2002;
Taskar et al., 2004). Assuming that some factor size k and
a feature function φ that maps factors to a vector repre-
sentation are provided, the scoring function for sequence
tagging is defined as:

F (x, y) =

T∑
t=k+1

w · φ(x, yt−k:t) (2)

To measure the accuracy of tagging we are given a task
loss function ` : (Y × Y)? → R that measures the differ-
ence `(y, y′) between two output sequences y, y′ ∈ YT .
For sequence tagging problems, a common choice for ` is
the Hamming distance that counts the number of symbols
where y and y′ differ. This can be regarded as the analog
of the zero-one loss for the sequence prediction task.

Minimizing the Hamming loss on the training data is com-
putationally intractable for most F of interest. The standard
approach in these cases resorts to minimizing a surrogate
loss L upper bounding the task loss. The learning problem
is then:

argmin
F∈F

m∑
i=1

L(xi, yi;F ) + τR(F ) (3)

where R(F ) is a regularization term that controls the ca-
pacity of the hypothesis F , and τ > 0 is a regularization
parameter. A common choice for L is the structured hinge
loss (Taskar et al., 2004):

Lhinge(x, y;F ) = max
z

[F (x, z)− F (x, y) + `(y, z)] .

2.2. Taggers with Latent Variables

The linearity of F may be too restrictive in some settings.
One mechanism for going beyond linearity is to introduce
latent variables. We briefly review two such approaches
below.

The main assumption behind latent variable predictors is
the existence of a set of latent variables H, each providing
a possible explanation for the relation between an input x
and an output y. Given one possible explanation h ∈ H,
these models compute a vector of features: φ(x, y, h) ∈
RD describing the interactions between x, y, and h. As in

the linear methods, a weight vector w is used to define a
score on x, y, h:

S(x, y, h) =

T∑
t=k+1

w · φ(x, yt−k:k, ht−k:k) .

Given a score function S(x, y, h) there are two natural
ways of obtaining a prediction.

Maximizing over h: Yu & Joachims (2009) suggested to
obtain a prediction by maximizing over h and then over y.
Namely, first define: F (x, y) = maxh S(x, y, h), and then
predict via: ŷ(x) = argmaxy F (x, y), The loss of this
predictor can be approximately minimized by using an ap-
propriate variant of the structured hinge loss. This problem
is known as latent SVM and has shown impressive results
in several applications, most notably machine vision (Gir-
shick et al., 2011). One major caveat is that the loss in this
case is no longer convex, and a concave-convex alternating
minimization procedure is used to find local minima.

Summing Over h: An alternative inference procedure for
y is to consider the conditional distribution on y given by:

p(y, h|x) ∝ exp (S(x, y, h)) .

Marginalizing this over h yields a score function F (x, y)
(ignoring normalizing factors):

F (x, y) =
∑
h

exp (S(x, y, h)) .

At this point there are two ways of predicting y. Either
to further marginalize F (x, y) to obtain F (x, yi) and take
argmaxyi F (x, yi). This is what is done in latent CRFs
(Quattoni et al., 2004). An alternative, more consistent
with the structured prediction methodology is to maximize
F (x, y) over y. However, as we argue later, this is a com-
putationally hard task even for simple HMM like models.

We note that it is also possible to consider intermedi-
ate models that interpolate smoothly between the max
and sum inference criteria with soft-max type functions
(Schwing et al., 2012).

Training of latent variable models always turns out to be
non-convex because of the non-linear structure of the pre-
diction. The goal of this work is to construct structured
predictors that are as powerful as latent variable ones, but
have convex training procedures, and tractable prediction
functions. To achieve this, we turn to the powerful fam-
ily of predictors corresponding to input-output observable
operator models.

2.3. Input-Output Observable Operator Models

We will now define input-output observable operator mod-
els, which are a family of scoring functions F (x, y) which
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generalize the latent variable models above. An IO-OOM
with input X and output Y is a tuple A = 〈α,β, {Aa,b}〉,
where α,β ∈ Rn and Aa,b ∈ Rn×n for each a ∈ X and
b ∈ Y . The dimension n is called the number of states of
the model. Vectors α and β are respectively the initial and
final weights of the model. The matrices Aa,b are known
as the observable operators of the model.

The IO-OOM can be used to define a score for each x, y, h
combination as follows:

S(x, y, h) = α(h0)

(
T∏
t=1

Axt,yt(ht−1, ht)

)
β(hT ) .

A score F (x, y) is then naturally defined by summation
over h, and is given by the compact algebraic expression:

F (x, y) =
∑
h

S(x, y, h) = α>Ax1,y1 · · ·AxT ,yTβ .

Prediction of y can now be done as before by maximizing
F (x, y) over y.

We shall write FA to denote the scoring function computed
by A. IO-OOM are a powerful formalism stemming from
stochastic process models in control theory (Jaeger, 1998;
2000), with tight relations to weighted automata and trans-
ducers (Droste et al., 2009), and predictive state represen-
tations (Littman et al., 2001).

To link the F (x, y) of IO-OOM to that of latent variable
models in Section 2.2, note that if the φ(x, y, h) used in
the latter uses the scope xi, yi, ht, ht−1 then it is exactly
captured by an IO-OOM. This is just a different way of
saying that IO-OOM can compute the same functions as
HMM. In fact it is well known that the class of functions
computed by IO-OOM is a superset of those computed by
HMMs (Jaeger, 2000).

From now on we will take IO-OOM with arbitrary coeffi-
cients as our class of hypothesis scoring functions. In the
next section we show how to predict using these models,
and in the sequel we focus on learning them from data.

2.4. Piecewise Prediction for IO-OOM

The first challenge to using IO-OOM is that of performing
prediction, i.e. maximizing F (x, y) in (2.3). It turns out
that this is an NP hard task (Lyngsø & Pedersen, 2002) so
that approximations are required.

A common approach to approximate the most likely output
of IO-OOM is to use a piecewise version of F for scoring
k-grams of y independently and then obtain an output that
maximizes the sum of those scores using a dynamic pro-
gramming algorithm (Goel et al., 2004). More formally,
suppose we are given a scoring function F , an order k ≥ 1,
and sequences x, y of length T ≥ k. Then one can consider

the following approximate inference rule

ŷk(x) = argmax
y

T∑
t=k+1

F (xt−k:t, yt−k:t)

= argmax
y

Fk(x, y) . (4)

The above only considers dependencies between input and
output k-gram, and their additive effect. A more general
version of this can be obtained by looking at l-grams for all
l ≤ k:

ŷ[k](x) = argmax
y

k∑
l=1

T∑
t=l+1

F (xt−l:t, yt−l:t)

= argmax
y

F[k](x, y) .

Using these piecewise approximations of F we can de-
fine tractable relaxations of the structured hinge loss
for IO-OOM. In particular, we define the Viterbi-hinge
losses given by Lk(x, y;F ) = Lhinge(x, y;Fk) and
L[k](x, y;F ) = Lhinge(x, y;F[k]). For sequences of length
T these loss functions can be computed in time O(T |Y|k)
using Viterbi’s algorithm.2

Now that we have a loss that we can evaluate for the class
of IO-OOM, we can ask what is a natural regularizer for
this class. In this case, an obvious choice is the number of
states of an IO-OOM, which we denote by |A|. Using F to
denote the class of all scoring functions computed by IO-
OOM, we would now like to learn a sequence tagger of the
form FA by solving the optimization problem

argmin
A∈F

m∑
i=1

L(xi, yi;FA) + τ |A| , (5)

with L = Lk or L = L[k] for some given order k.

In general this turns out to be a hard problem because even
if L can be efficiently evaluated for small values of k, when
k ≥ 2 the dependence of L(x, y;FA) on the parameters of
A is non-convex. In particular, assuming a fixed number of
states for A, we see that the expression for L(x, y;FA) in-
volves terms of the form α>Axt,yt · · ·Axt+l,yt+l

β, which
are polynomials of degree l + 3 in the parameters of A =
〈α,β, {Aa,b}〉, and are non-convex in A. Our agenda for
the following sections is to obtain an approximate solu-
tion for this problem by relaxing the objective function and
splitting the learning procedure into two tractable subprob-
lems.

2We assume here that the cost of evaluating F is constant.
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3. A Spectral Algorithm for Learning
Max-Margin IO-OOM

To address the non-convexity of (5) we first observe that
the loss is convex in the actual values of FA.3 This means
that if we represent the optimization variable as a list of
values on (X ×Y)≤k given by some function F instead of
an IO-OOM A, the optimization problem becomes convex.
However, this poses three key challenges:

• The values of F should correspond to valid IO-OOM.

• The regularizer |A| should correspond to the rank of
the IO-OOM described by F .

• Given an F that corresponds to an IO-OOM, how can
one recover the matrices A that define it?

In what follows, we show that all these difficulties can be
addressed, and that optimizing with respect to the values of
FA instead of the parameters of A yields an optimization
problem over a set of Hankel matrices. Then, by leveraging
recent techniques on spectral learning of OOM via Hankel
matrix completion, we can recover an IO-OOM from the
solution of this optimization problem with a simple SVD
computation.

3.1. IO-OOM and Hankel Matrices

To explain our approach we first introduce the concept of
Hankel matrices of F . These matrices provide an algebraic
formalism to study the problem of recovering an IO-OOM
from evaluations of its scoring function F : (X×Y)? → R.

LetP,S ⊆ (X×Y)? be sets of input-output sequences. We
call the pairs (u,w) ∈ P prefixes and the pairs (v, z) ∈ S
suffixes. A Hankel matrix H ∈ RP×S for F over the basis
(P,S) is obtained by taking the entries of H to be

H((u,w), (v, z)) = F (uv,wz) . (6)

A well-known theorem (Schützenberger, 1961; Carlyle &
Paz, 1971; Fliess, 1974) states that a function F : (X ×
Y)? → R can be realized by an IO-OOM with n states
if and only if, for very possible basis the corresponding
Hankel matrix H of F has rank at most n. A construc-
tive version of this theorem lies at the very heart of recent
spectral algorithms for learning HMM (Hsu et al., 2009),
weighted automata (Bailly et al., 2009; Balle & Mohri,
2012), weighted transducers (Balle et al., 2011), and other
families of recursively defined functions over sequences
with discrete observations (Siddiqi et al., 2010; Boots et al.,
2011).

When applied to IO-OOM, the spectral algorithm works as
follows. Let us assume that F can be realized by a minimal

3Specifically, it is piecewise linear in those.

IO-OOM with n states and that we are given a basis (P,S)
such that the corresponding Hankel matrix of F , which we
denote by Hε,ε, has rank n. Suppose we are also given, for
each (a, b) ∈ X×Y , the Hankel matrix Ha,b ∈ RP×S with
entries Ha,b((u,w), (v, z)) = F (uav,wbz), and vectors
hP ∈ RP and hS ∈ RS with entries given by hP(u,w) =
F (u,w) and hS(v, z) = F (v, z). Then the following pro-
cedure recovers an IO-OOMA = 〈α,β, {Aa,b}〉 such that
FA = F : first, take the reduced SVD of Hε,ε = UΣV>;
and then, build A by taking Aa,b = (Hε,εV)+Ha,bV,
α> = h>PV, and β = (Hε,εV)+hS .

A fundamental property of this spectral algorithm is its ro-
bustness to noise. In particular, when the entries in these
Hankel matrices are noisy estimates of values computed by
an IO-OOM, the algorithm will produce a model which is
close to the true model in terms of `1 distance. The paradig-
matic example of this approach is the algorithm for learning
HMM of (Hsu et al., 2009), where the noisy Hankel matri-
ces come from empirical estimates of observation proba-
bilities. A different approach, which is the one we pursue
here, is to obtain an approximate Hankel matrix by solving
a matrix completion problem with a loss function defined
in terms of the task loss (Balle & Mohri, 2012; Bailly et al.,
2013b;a). The next section shows how to apply this method
to max-margin learning of IO-OOM.

3.2. Max-Margin Completion of Hankel Matrices

The discussion in the previous section implies that the set
of F values for an IO-OOM of rank n is equivalent to the
set of Hankel matrices of rank n. Thus, the optimization of
(5) can be equivalently performed on Hankel matrices with
rank regularization. We next elaborate on this problem, and
address the difficulty of optimizing the rank.

To obtain a Hankel matrix completion problem from (5) we
proceed as follows. First we parameterize an IO-OOM via
its corresponding Hankel matrix H(P,S) (over some fixed
basis (P,S)) instead of the original A matrices representa-
tion. Next we change the regularizer: instead of the number
of states of an IO-OOM, the Hankel/IO-OOM equivalence
theorem says that we can take the rank of the Hankel matrix
as a regularizer that directly controls the number of states of
the learned IO-OOM. This yields the following optimiza-
tion problem

argmin
H∈H(P,S)

m∑
i=1

L(xi, yi; H) + τ rank(H) , (7)

which by the relation between IO-OOM and Hankel matri-
ces is almost equivalent to (5), with the only difference that
now the search is conducted over the class of all IO-OOM
that can be recovered from Hankel matrices in H(P,S).

The choice of a right basis (P,S) is essential if we want
to be able to use information from all training examples,
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and also guarantee that we can recover an IO-OOM from
the learned Hankel matrix. When using loss L[k], the first
point requires that we have ∪kl=1 gramsl(S) ⊆ P·S, where
gramsl(S) is the set of all input-output l-grams observed in
the training sample S. Similarly, for L = Lk we need a ba-
sis such that gramsk(S) ⊆ P · S . To recover operators
for F using the spectral method, we will retrieve the Hε,ε,
Ha,b, hP′ and hS′ defined in Section 3.1 as sub-blocks of
the learned Hankel matrix; note that these sub-blocks will
correspond to a basis (P ′,S ′) smaller than the (P,S) used
in (7) (see (Balle & Mohri, 2012) for further details). One
way to guarantee that H contains the right sub-blocks is
by choosing an initial basis (P ′,S ′) with (ε, ε) ∈ P ′ ∩ S ′,
and then take P = P ′ · (X ′ × Y ′) and S = S ′, where
X ′ = X ∪ {ε} and Y ′ = Y ∪ {ε}. Note that (6) implies
that entries in Hankel matrices corresponding to pairs of
prefixes and suffixes that yield the same input-output se-
quence must have the same value. Taking a larger basis
implies that more constraints will need to be satisfied in
the matrix search space considered by the completion algo-
rithm. Therefore, a good strategy to keep the optimization
as simple as possible is to choose the minimal basis satis-
fying the constraints outlined above.

The last step needed to obtain a convex optimization is to
relax the regularization term in (7), replacing it with the nu-
clear norm of the Hankel matrix. This last step is a usual
approach in matrix completion problems, and can be justi-
fied by observing that because the nuclear norm of a matrix
is precisely the `1 norm of its singular values, minimiz-
ing the nuclear norm yields (approximately) low rank ma-
trices in the same way that `1 regularization yields sparse
vectors (Candès & Recht, 2009). Therefore, assuming the
basis (P,S) is given, we can put together the ingredients
described so far to get the following optimization problem
over a space of Hankel matrices:

ĤS ∈ argmin
H∈H(P,S)

m∑
i=1

L(xi, yi; H) + τ‖H‖∗ . (8)

One last observation is that in the case L = Lk, it is pos-
sible to choose the basis in a way that the space of Hankel
matrices in (8) contains no equality constraints. This can
be interesting if we are willing to give up on the ability to
recover an IO-OOM from the learned matrix, and use the
values in ĤS for predicting using the inference rule (4).
From an algorithmic point of view, this can be interpreted
as taking a trade-off between memory and time for predict-
ing with the learned model. Obtaining the IO-OOM op-
erators from ĤS yields a high rate of compression, at the
price of needing several matrix multiplications every time
a score needs to be computed. On the other hand, one can
store the whole matrix ĤS and treat it as cached scores for
each possible input-output k-gram.

4. Optimization Details
In this section we describe the details of an optimization
algorithm for solving problem 8. For simplicity we focus
on the setting L = Lk with a basis (P,S) where the Han-
kel matrices in H(P,S) contain no equality constraints. It
is easy to extend the algorithm for basis with equality con-
straints by adding an extra projection step.

Recall that our goal is to minimize the following function:

g(H) =

m∑
i=1

Lk(xi, yi; H) + τ‖H‖∗ ,

To simplify notation we denote the overall loss by LS(H)
so that g(H) = LS(H) + τ‖H‖∗.

Since both the loss and the trace norm are convex it turns
out that g(H) is convex, albeit non differentiable. In recent
years, many algorithms have been proposed for optimizing
trace norm regularized problems (e.g., see Jaggi & Sulovsk,
2010; Shalev-Shwartz et al., 2011; Ji & Ye, 2009). Some
of these methods only apply to smooth losses and are thus
not applicable here.4 Furthermore, some of these require
solving optimization problems that are costly in our setting
(e.g., backward fitting as in Shalev-Shwartz et al., 2011).

Here we use a simple optimization scheme known as For-
ward Backward Splitting, or FOBOS (Duchi & Singer,
2009). FOBOS is similar to proximal gradient, with the
exception that it linearizes the loss part of g(H) (and not
the regularizer). It corresponds to the following repeated
updates on Ht. First, take a step in the direction of the
subgradient of the loss (ignoring the trace norm):

Ht+0.5 = Ht − ηt
∂LS(Ht)

∂H

where ηt = c√
t

is a step size and ∂LS(Ht)
∂H is a sub gradient

of the loss at Ht. This is easily evaluated for the hinge loss
we consider, and involves finding the argmax of the hinge
loss. In the second step, find an H that is close to Ht+0.5

but with a trace norm penalty:

Ht+1 = argmin
H

‖Ht+0.5 −H‖22 + ηtτ‖H‖∗ .

This step can be solved via SVD thresholding (see Cai
et al., 2010) as follows. Use SVD to write Ht+1 as
Ht+1 = UΣV> with Σ a diagonal matrix and U,V
orthogonal matrices. Denote by σi the ith element on
the diagonal of Σ. Define a new matrix Σ̄ with diago-
nal elements σ̄i = max [σi − ηtτ, 0]. The update is then:
Ht+1 = UΣ̄V>. Each update requires calculating an

4Note however that it is possible to smooth the loss using
standard methods (Nesterov, 2005) and then use algorithms for
smooth objectives.
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Algorithm 1 FOBOS minimization of LS(H) + τ‖H‖∗.
Initialize H0 = 0
while t < MaxIter do

Set Gt to a subgradient of LS(H) at Ht.
Set ηt = c√

t
.

Set Ht+0.5 = Ht − ηtGt.
Calculate the SVD of Ht+0.5 as Ht+0.5 = UΣV>.
Define a diagonal matrix Σ̄ such that σ̄i =
max [σi − ηtτ, 0].
Set Ht+1 = UΣ̄V>.

end while

SVD of H. For the problem sizes we considered this was
fairly fast to compute. It can be further sped up by using the
fact that only leading singular vectors are required and us-
ing methods that only calculate these. Furthermore Ht+0.5

is typically a low rank plus sparse matrix, which can be
used for further speedups.

It can be shown (Duchi & Singer, 2009) that FOBOS con-
verges to the global optimum of g(H) at a rate of O(ε−2).
Although rates of O(ε−1) are possible via accelerated gra-
dient (Ji & Ye, 2009), we find it is sufficient for the appli-
cations we consider.

5. Experimental Results
In this section we present experimental results on a text-
to-phonemes task. We compare the max-margin sequence
tagging method with spectral regularization to several al-
ternative methods.

We used the “Nettalk” dataset (a.k.a. the Connection-
ist Bench), available from the UCI repository (Sejnowski
& Rosenberg, 1987). The data consists of 20,008 En-
glish words (formed with 26 letters) paired with a phonetic
representation (using 51 phoneme symbols). For exam-
ple, apple is paired with @p-L- and hippopotamus
with hIp-xpatxmxs. Input-output sequence pairs in the
data have one-to-one monotonic alignments (using a spe-
cial symbol “-” to represent many-to-one letter to phoneme
associations, as shown in the examples), which results in
paired sequences of equal length. We consider the task
of predicting the phoneme sequence given an input word.
We use Hamming accuracy to compare the performance of
different methods. We randomly divided the dataset into
15,000 training sequences, 1,034 development sequences
and 3,974 test sequences. We created 6 training sets of in-
creasing size to obtain a learning curve.

We trained several types of sequence tagging models that
exploit trigram factorizations, and for all of them we used
the Viterbi algorithm as inference routine5. We compare

5The number of output trigrams is a constant of all sequence

the following models:

• IO-OOM with Spectral Max-Margin: To set the
basis of the Hankel matrix, we use all observed bi-
symbols for prefixes and for suffixes. In this config-
uration the matrix ĤS we obtain has values for all
input-output trigrams, and we can directly use it to tag
sequences. The parameters of the method are the reg-
ularization constant τ , an initial learning rate c and the
number of iterations.

• IO-OOM with Unregularized Max-Margin: This
method drops the spectral regularizer. It is equivalent
to setting τ = 0.

• IO-OOM with L2 Max-Margin: This method re-
places the spectral regularizer with a standard `2
penalty on the coefficients of the Hankel matrix; that
is, the trace norm regularizer ‖H‖∗ is replaced with a
Frobenius norm regularizer ‖H‖F .

• Spectral IO-HMM: The standard spectral method for
HMM applied to joint sequences (Hsu et al., 2009),
which estimates Hankel matrices directly from empir-
ical counts on the training sample. We also tried the
spectral method for conditional IO models by (Balle
et al., 2011) but we obtained development accuracies
significantly lower than other methods, around 70%.

• Latent SVM: The latent SVM by (Yu & Joachims,
2009), which follows a Max-Max approach and at-
tempts to solve a non-convex problem. We used their
implementation adapted to sequence tagging, using
the same features as an IO-OOM seen as a log-linear
model. We could only find configurations that ob-
tained very moderate training accuracies, at the level
of 60%.

• CRF and Averaged Perceptron: A standard feature-
based trigram Conditional Random Field tagger
(CRF), that represents input-output trigrams using
sub-pattern features. We used the code by (Collins
et al., 2008), which implements structured prediction
learning algorithms and tagging models that obtain
state-of-the-art accuracies in part-of-speech tagging.
As features, it exploits each bi-symbol with various
combinations of the input context, and with various
combinations of the the output context in the trigram.

taggers, and considering all possible output trigrams for this data
(i.e. 513) is impractical. Instead of pairing each input symbol
with each output symbol, for each training set we restricted to the
set of bi-symbols observed in the training data. For the largest
training set, input symbols are paired with 2 to 18 output sym-
bols. This dramatically reduces the number of possible trigrams,
and has very low impact in prediction accuracy. This strategy is
common in tagging tasks such as part-of-speech tagging.
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Figure 1. Learning curve for various methods. We plot test accu-
racy with respect to size of the training set.
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Figure 2. Regularization path for Spectral and L2 regularization,
using a training set of 2,000 samples. We plot development accu-
racy with respect to values of the regularization constant τ . The
range of relevant τ values of each model has been normalized.

For parameter estimation we tried the log-linear loss
(i.e. CRF), structured max-margin loss, and averaged
Perceptron. All methods performed similarly.

We trained all models on training sets of different sizes,
trying a wide range of regularization constants when ap-
plicable. We used accuracy on development sequences to
pick the best configuration. Figure 1 plots test accuracies
for each method. We can see that spectral regularization
largely improves over the unregularized model: in the first
points of the curve the spectral approach requires half of
the training samples to get to the same accuracy as the un-
regularized one. Comparing regularizers, the spectral one
shows a better curve than the `2, especially in the first part
of the curve. We attribute this to the ability of the regu-
larizer to factor input-output trigrams using a hidden rep-
resentation. As the number of samples increases, the non-
factored representation of trigrams is effective and the two
regularizers perform similarly. Figure 2 presents the regu-
larization path for the spectral and `2 regularizers for 2,000
training samples. At their best configurations in develop-
ment, the Spectral improves 2.2 points over the unregular-

ized model, while the `2 improves 1.1 points.

We can observe that in the first part of the curve the spec-
tral regularization performs very similarly to feature-based
models trained with Perceptron or CRF. This suggests that
the factorization obtains a representation that is as effective
as manually-specified sub-pattern features. As the number
of examples increases, the full trigram parameters become
useful and the spectral regularizer leverages them, while
the feature-based models stop improving. In all, the spec-
tral regularization technique seems to perform the best in
any of the empirical scenarios.

6. Conclusion
The central contribution of this paper is to derive a con-
vex formulation for max-margin structured prediction with
latent variables and max-sum prediction rules. The main
outcome of our work is a new regularization approach,
inspired by spectral techniques, which is specifically de-
signed for structured prediction tasks. This means that, in-
stead of designing the features of a factorized linear model,
we can consider rich function spaces and implicitly induce
features via proper regularization. Our experiments con-
firm that the proposed regularization framework leads to an
effective way of controlling the capacity of structured pre-
diction models.

Spectral methods for latent variable models require a single
SVD calculation and are non-iterative in nature. While this
is an attractive feature, it is justified only in the case where
data is indeed generated from the assumed latent variable
model (e.g., in Hsu et al., 2009, it is assumed that data is
generated from an HMM). In our formalism no such as-
sumptions are made. The latent variable construct is only
a mechanism for generating a prediction function. Thus
the Hankel matrix we consider does not correspond to ob-
served statistics of some assumed model but rather corre-
sponds to unknown parameters of a prediction function.
Our work suggests that core ideas behind spectral learning
can have wide applicability to structured prediction. Our
results can be generalized to other loss functions as long as
they have surrogate piecewise approximations.
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