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Abstract

Recovering a large low-rank matrix from highly
corrupted, incomplete or sparse outlier over-
whelmed observations is the crux of various in-
triguing statistical problems. We explore the
power of “greedy bilateral (GreB)” paradigm in
reducing both time and sample complexities for
solving these problems. GreB models a low-
rank variable as a bilateral factorization, and up-
dates the left and right factors in a mutually adap-
tive and greedy incremental manner. We de-
tail how to model and solve low-rank approx-
imation, matrix completion and robust PCA in
GreB’s paradigm. On their MATLAB implemen-
tations, approximating a noisy 104 × 104 matrix
of rank 500 with SVD accuracy takes 6s; Movie-
Lens10M matrix of size 69878 × 10677 can be
completed in 10s from 30% of 107 ratings with
RMSE 0.86 on the rest 70%; the low-rank back-
ground and sparse moving outliers in a 120×160
video of 500 frames are accurately separated in
1s. This brings 30 to 100 times acceleration in
solving these popular statistical problems.

1 Introduction

Explosion of information introduces dramatic increasing
data collected from Internet and digital sensors. These
data are usually featured by their high-dimension, huge
volume, serious incompleteness, dominating noise and
complicated structure, which bring intriguing new chal-
lenges to compressive acquisition, signal processing and
machine learning. Because traditional methods are lim-
ited by their time/sample complexities, storage and de-
noising capability. This fact has driven the recent ex-
ploitation of data intrinsic redundancy and structures. For
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a single signal or individual instance, the redundancy is
usually exhibited by its sparsity, i.e., it is nonzero only
on a small set of entries. Compressed sensing (Donoho,
2006)(Candès and Tao, 2006) recovers a signal from its
highly compressed measurements, via solving a undeter-
mined linear system, by leveraging the sparsity. For mul-
tiple instances, or more specifically a matrix, the redun-
dancy is often identified by its low-rank structure, i.e., all
the instances lie in a subspace spanned by a small number
of bases. Low-rank structure can be analogized to sparsity
due to its sparse spectrum. Equivalently saying, the matrix
X can be written as the sum of a few rank-1 matrices such
that X =

∑r
i=1 UiVi, wherein Ui is a column vector and

Vi is a row vector.

Low-rank structure arises in a wide range of fundamen-
tal problems. In this paper, we mainly focus on three
representatives catching substantial interests in several im-
portant applications: low-rank approximation (Halko et al.,
2009), matrix completion (Candès and Recht, 2008) and
robust PCA (Candès et al., 2009). In this paper, the low-
rank matrix variable in these problems is modeled in a bi-
lateral factorization form UV for the purpose of developing
SVD-free algorithms.

We describe and analyze a general scheme called “greedy
bilateral (GreB)” paradigm for solving the mainstream low-
rank matrix recovery problems. GreB starts from U and V
respectively containing a very few (e.g., one) columns and
rows, and optimizes them alternately. Their updates are
based on observation that the object value is determined by
the product UV rather than individual U or V . Thus we can
choose a different pair (U, V ) producing the same UV but
computed faster than the one derived by alternating least
squares like in IRLS-M (Fornasier et al., 2011) and ALS
(Zachariah et al., 2012). In GreB, the updates of U and
V can be viewed as mutually adaptive update of the left
and right sketches of the low-rank matrix. Such updates
are repeated until the object convergence, then a few more
columns (or rows) are concatenated to the obtained U (or
V ), and the alternating updates are restarted on a higher
rank. Here, the added columns (or rows) are selected in
a greedy manner. Specifically, they are composed of the
rank-1 column (or row) directions on which the object de-
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creases fastest. GreB incrementally increases the rank until
when UV is adequately consistent with the observations.

GreB’s greedy strategy avoids the failures brought by pos-
sible biased rank estimation. Moreover, greedy selecting
optimization directions from 1 to r is faster than updat-
ing r directions in all iterates like in LMaFit (Wen et al.,
2012) and (Zhou and Tao, 2011). In addition, the lower
rank solution before each rank increment is invoked as the
“warm start” of the next higher rank optimization and thus
speed up convergence. Furthermore, its mutually adaptive
updates of U and V yields a simple yet efficient SVD-free
implementation. Under GreB paradigm, the overall time
complexity of matrix completion isO(max{∥Ω∥0r2, (m+
n)r3}) (Ω-sampling set, m× n-matrix size, r-rank), while
the overall complexities of low-rank approximation and
noisy robust PCA areO(mnr2). An improvement on sam-
ple complexity can also be justified in our experiments.

2 Background and Problem Formulation

2.1 Low-rank Approximation

Real world data matrix is hardly to be exactly low-rank.
However, approximating it by a low-rank one presents a
good trade-off between accuracy and time/space costs, es-
pecially when its singular values decay fast. The low-
rank approximation (Ye, 2005) can replace the origi-
nal matrix in least square regression and matrix prod-
uct, and also provides a low-dimensional representation
which can boosts the classification and clustering perfor-
mance. Although the low-rank approximation is prov-
ably optimal when constructed from SVD, the expen-
sive time cost makes SVD prohibitive to large matrix.
Thus many faster Monte Carlo algorithms (Drineas et al.,
2006)(Clarkson and Woodruff, 2009)(Nguyen et al., 2009)
have been proposed at the cost of producing sufficiently
small error to SVD with high probability. Typically, they
build the low-rank approximation from random selected
columns or rows (Boutsidis et al., 2009), or linear projec-
tions (which are called “sketch”) on certain random ma-
trix (Halko et al., 2009). Some of them compute bilateral
sketches (Fazel et al., 2008)(Zhou and Tao, 2012a) for both
column space and row space in building the approximation.
In this case, the matrix X is approximated as X = USV ,
wherein U = XA1 and V = AT

2 X are right and left
sketches, A1 and A2 are random matrices.

In this paper, we omit S and consider optimizing U and V :

min
U,V
∥X − UV ∥2F

s.t. rank(U) = rank(V ) ≤ r.
(1)

2.2 Matrix Completion

Data is usually obtained with many missing val-
ues. The goal of matrix completion (Candès and Recht,

2008)(Candès and Tao, 2009) is to recover the whole data
matrix X from partial noisy entries or undersampled linear
measurementsA(X) (A is the sampling operator) by lever-
aging the connections between different instances. Such
connections can be well captured by low-rank structure.
Matrix completion has broad applications in various real
problems of considerable importance, such as collabora-
tive filtering in recommendation system, link prediction
for social network, quantum state tomography and traf-
fic distance completion. The matrix completion problem
was firstly written as a rank minimization that is NP-hard
both to solve and approximate. Thus trace norm (ℓ1 norm
of singular values) as the convex surrogate of rank has
been minimized in many popular approaches (Cai et al.,
2010)(Ji and Ye, 2009). For a matrix X ∈ Rm×n of
rank-r with SVD decomposition X = BΣD, the ob-
tained global solution is provable to exactly recover X from
O(nr log6 n) uniformly sampled noisy entries if it fulfills
incoherence property (PB · denotes the orthogonal projec-
tion onto B and ei is standard basis)

max
1≤i≤m

∥PBei∥2 ≤ µ0r/m, max
1≤i≤n

∥PDei∥2 ≤ µ0r/n,

(2)
entries are upper bounded as maxi,j |Xij | ≤ µ1

√
r/
√
mn,

andA obeys matrix restricted isometry property (RIP) with
constant δ

(1− δ)∥X∥2F ≤ ∥A(X)∥2F ≤ (1 + δ)∥X∥2F . (3)

Another norm receiving much attention for encour-
aging low-rank solution is max-norm ∥X∥max =
inf{∥U∥2,∞∥V T ∥2,∞ : X = UV } (Srebro et al.,
2005)(Lee et al., 2010) (∥ · ∥2,∞ is the maximum ℓ2 row
norm of a matrix), whose theoretical recovery bound is es-
tablished based on Rademacher complexity of its unit ball
(Foygel and Srebro, 2011). The max-norm can be defined
as the global solution to an non-convex optimization on left
and right factors U and V .

Both trace norm minimization and max-norm minimiza-
tion can be formulated as semidefinite programming (SDP)
which has standard solvers. Various accelerated optimiza-
tion methodologies (Ma et al., 2011)(Lee et al., 2010) also
have been applied to them for practical purpose. How-
ever, most of them rely on costly computation of full SVD
in each iterate, and thus do not scale well to large-scale
problems. This fact induces a revisit of rank minimiza-
tion/constraint based formulations. Forward greedy selec-
tion methods including ADMiRA (Lee and Bresler, 2010)
and GECO (Shalev-Shwartz et al., 2011) are developed for
rank minimization. GECO adopts an interesting greedy
strategy: it increments the rank by 1 and adds the opti-
mal rank-1 direction into the optimization per iterate. In-
cremental OptSpace (Keshavan and Oh, 2009) also has a
similar scheme. We inherit a similar spirit but solve dif-
ferent optimization models in GreB. Error minimization
with rank constraint is also considered in SVP (Jain et al.,
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2010). Some of them like OptSpace and GECO model the
low-rank variable as factorization USV and optimize over
(U, V ) pair and S. Unfortunately, truncated SVD or large
matrix multiplication is still required in these approaches.
In addition, the update of S is to solve a large-scale overde-
termined linear system and thus time consuming in prac-
tice. Furthermore, the rank is fixed within some algorithms,
so in this case the recovery accuracy strongly relies on
the quality of rank estimation. Online/stochastic gradient
method (Balzano et al., 2010) and aggregated (divide-and-
conquer) method (Mackey et al., 2011) have also been con-
sidered for pursuing approximated recovery. Since GreB
can be straightforwardly transferred to or invoked as a sub-
routine by them to take their advantages, they will not be
included in later comparison.

In this paper, we optimize the bilateral factorization form
X = UV of low-rank matrix X and address a rank con-
strained optimization:

minU,V,S ∥M − UV − S∥2F
s.t. rank(U) = rank(V ) ≤ r, PΩS = 0,

(4)

where PΩ· denotes the projection of a matrix on an element
subset Ω ⊂ [m]× [n]

PΩX =

{
Xij , (i, j) ∈ Ω
0, (i, j) ∈ ΩC (5)

and M consists of the observed entries and defined as M =
PΩX .

2.3 Robust PCA

For data with sparse outliers or partially contaminated by
noise of overwhelming magnitude, sheer low-rank assump-
tion cannot fully capture its complex structure. A more
general assumption X = L + S is applied in this case
(Chandrasekaran et al., 2009), i.e., the data matrix X can
be decomposed as the sum of a low-rank matrix L and a
sparse matrix S. L explains the components that lie in a
subspace and smoothly change across different instances,
while S contains the spiky anomalies that are rarely shared
by different instances. This model is called “robust PCA”
(Candès et al., 2009) due to its robustness to sparse noise S
when recovering principle components of L from X , and
can be applied to video surveillance, graphical mode selec-
tion, image alignment, multi-label learning (Zhou and Tao,
2012b), etc.

PCP (Candès et al., 2009) recovers L and S from X by
minimizing sum of the trace norm of L and the ℓ1 norm
of S. It can be proved that the solution to this convex relax-
ation is the exact recovery if X = L+ S indeed exists and
L and S are sufficiently incoherent (Chandrasekaran et al.,
2009)(Candès et al., 2009). That is, L obeys the incoher-
ence property in (2) and thus is not sparse, while S has
nonzero entries uniformly selected at random and thus is

not low-rank. Popular optimization algorithms such as aug-
mented Lagrangian multiplier, accelerated proximal gra-
dient method and accelerated projected gradient method
(Chen et al., 2010) have been applied. But full SVD as a
costly subroutine is required to be repeatedly invoked in
any of them.

Despite the strong theoretical guarantee of robust PCA, the
exact decomposition X = L + S does not always ex-
ist for real data matrix X . Thus a more adaptive model
X = L+S+G is preferred, where L+S approximates X
and G is the dense noise. Such noisy robust PCA becomes
the central interests of many recent works including stable
PCP (Zhou et al., 2010), GoDec (Zhou and Tao, 2011) and
DRMF (Xiong et al., 2010). Direct rank constraint for L
and cardinality constraint for S have been employed in or-
der to replace the full SVD with truncated SVD or faster
low-rank approximation. They also face the rank estima-
tion problem when determining the rank constraint r.

In this paper, we formulate the noisy robust PCA by replac-
ing L with its bilateral factorization L = UV and regular-
izing the ℓ1 norm of S’s entries:

minU,V,S ∥X − UV − S∥2F + λ∥vec(S)∥1
s.t. rank(U) = rank(V ) ≤ r.

(6)

The ℓ1 regularization induces soft-thresholding in updating
S, which is faster than sorting caused by cardinality con-
straint in GoDec and DRMF.

3 Greedy Bilateral (GreB) Paradigm

In this section, we sequentially detail how to solve low-
rank approximation, matrix completion and noisy robust
PCA in GreB’s paradigm. The resulting three algorithms
are named as “greedy bilateral sketch (GreBske)”, “greedy
bilateral completion (GreBcom)” and “greedy bilateral
smoothing (GreBsmo)” respectively according to their nor-
mal usages in practical applications. We summarize all the
three algorithms in GreB’s paradigm given in Algorithm 1.

3.1 Greedy Bilateral Sketch

Alternately optimizing U and V in (1) immediately yields
the following updating rules, note subscript in ·k denotes
the variable in the kth iterate and (·)† stands for the Moore-
Penrose pseudo-inverse:{

Uk = XV T
k−1

(
Vk−1V

T
k−1

)†
,

Vk =
(
UT
k Uk

)†
UT
k X.

(7)

It can be observed that the object value in (1) is merely de-
termined by the matrix product UV rather than individual
U or V , and different (U, V ) pair can produce the same
UV . It is then of interest to find a pair of (U, V ) that have
the same product as (Uk, Vk) in (7) but can be computed in
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Algorithm 1: Greedy Bilateral (GreB) Paradigm
Input: Object function f ; rank step size ∆r; power K;

tolerance τ ; observations of data matrix X
Output: low-rank matrix UV (and sparse S)
Initialize V ∈ Rr0×n (and S);
while residual error ≤ τ do

for k ← 1 to K do
Greedy Bilateral Sketch: sequentially compute (9);
Greedy Bilateral Completion: sequentially
compute (13);
Greedy Bilateral Smoothing: sequentially
compute (17);

end
Calculate the top ∆r right singular vectors v (or
∆r-dimensional random projections) of ∂f/∂V
(given in (10), (14) and (18) for different problems);
Set V := [V ; v];

end

less time than Uk and Vk. For this purpose, we investigate
the product UkVk

UkVk = Uk

(
UT
k Uk

)†
UT
k X = PUk

X. (8)

This implies that the product UkVk equals to the orthogonal
projection of X onto the column space of Uk. According
to (7), the column space of Uk can be represented by ar-
bitrary orthonormal basis for the columns of XV T

k−1. For
example, we can compute it as Q via fast QR decomposi-
tion XV T

k−1 = QR. In this case, the product UkVk can
be equivalently computed as UkVk = PQX = QQTX .
Therefore, Uk and Vk in (7) can be replaced by Q and QTX
respectively, while the product UkVk and the corresponding
object value are kept the same. This gives a faster updating
procedure {

Uk = Q,QR
(
XV T

k−1

)
= QR,

Vk = QTX.
(9)

This alternating update can be viewed as mutually adaptive
optimization of right sketch XV T and left sketch QTX for
X , where the right projection matrix V T is the former left
sketch, and the left projection matrix Q is the orthonormal
basis of the former right sketch. This mutually adaptive op-
timization of left and right factors will appear in GreBcom
and GreBsmo as well.

Since the right and left sketches respectively describe the
column and row spaces, which largely decide the approx-
imation precision, we can temporarily ignore the QR de-
composition in order to see how the column/row space is
tracked within this scheme. Specifically, we start from a
random matrix V and repeat Uk = XVk−1, Vk = UT

k X
for K times, the resulting VK = V (XTX)K are exactly
the randomized SVD under power scheme (Roweis, 1998)

given in (Halko et al., 2009). The K-order matrix expo-
nential accelerates the decaying of singular values and thus
improves the approximation precision. Similar theoretical
analysis as (Halko et al., 2009) supports that (7) achieves
the same accuracy as power scheme randomized SVD.

Different from power scheme whose speed would be
quickly limited with the increasing of power K, GreBske
invokes the updates in (7) with a greedy incremental rank
r for both U and V . In particular, GreBske starts from a
V ∈ Rn×r0 with a small integer r0, iterates (7) for K times,
and then augment the rank of V to r1 = r0+∆r by adding
∆r extra rows to V , where ∆r is the rank step size. In
GreB, the ∆r rows are selected greedily as the top ∆r row
basis on which the object decreases fastest. Accordingly,
they maximizes the magnitude of the partial derivative of
the object w.r.t. UV , which is

∂∥X − UV ∥2F
∂UV

= X − UV. (10)

Hence the ∆r rows are the top ∆r right singular vectors
of the fat matrix UT (X − UV ), which can be quickly ob-
tained by a small SVD or its faster approximation like ran-
dom projections ATUT (X−UV ), wherein A is a ri×∆r
random matrix. The rank r stops augmenting when reach-
ing certain error tolerance.

In GreBske, the top ri row basis are successfully obtained
when optimizing V of ri + ∆r rows. The essential task
of the updates is to optimize the added ∆r rows, while the
first ri rows take part in the update merely for keep the
incoherence between rows. So it converges faster than si-
multaneously optimizing the whole r rows. In addition,
the newly added ∆r rows are initialized as the fastest de-
creasing directions, so its distance to the optimal solution
is shortened. The computation in GreBske is dominated by
the two matrix multiplications that take 2mnri flops. It can
be further speeded up if designing sparse updates of U and
V , which will be studied in future works.

3.2 Greedy Bilateral Completion

Following a similar methodology as GreBske, alternately
optimizing U , V and S in (4) immediately yields the fol-
lowing updating rules:

Uk = (M − Sk−1)V
T
k−1

(
Vk−1V

T
k−1

)†
,

Vk =
(
UT
k Uk

)†
UT
k (M − Sk−1) ,

Sk = PC
Ω (M − UkVk) ,

(11)

Note the the object value in (4) is solely determined by the
matrix product UV and S rather than individual U or V ,
we use the same trick of replacing the (U, V ) pair with a
faster computed one as we did in GreBske. This yields Uk = Q,QR

(
(M − Sk−1)V

T
k−1

)
= QR,

Vk = QT (M − Sk−1) ,
Sk = −PC

Ω (UkVk) .
(12)
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Since M − Sk−1 = M − PΩ(Uk−1Vk−1) + Uk−1Vk−1,
define the residual E = M − PΩ(Uk−1Vk−1), the above
procedure (12) can be further accelerated as Uk = Q,QR

(
Ek−1V

T
k−1 + Uk−1

(
Vk−1V

T
k−1

))
= QR,

Vk = QTEk−1 +
(
QTUk−1

)
Vk−1,

Ek = M − PΩ (UkVk) .
(13)

It is not hard to verify that computation of the above proce-
dure requires 3|Ω|0ri +(3m+2n)r2i flops for U ∈ Rm×ri

and V ∈ Rri×n.

Similar to GreBske, GreBcom adopts a greedy strategy in-
crementally changing ri to ri + ∆r by concatenating new
rows to V after executing K times of updates in (13). The
number of iterating (13) can also be determined by the con-
vergence of object, which implies a successful tracking of
the first ri basis within the row space of low-rank matrix
X . The greedy selection of the ∆r new rows is based on
the partial derivative of the object w.r.t. UV

∂∥M − UV − S∥2F
∂UV

= M − UV − S = E. (14)

The ∆r new rows are chosen as the ∆r right singular vec-
tors of UTE associated with the ∆r largest singular val-
ues, which can be approximated by the random projec-
tions ATUTE wherein A is a ri × ∆r random matrix
(Halko et al., 2009). This greedy selection enables the ob-
ject decreasing fastest along the newly added ∆r basis in
the next round of updates (13). GreBcom starts from a
small r0 and increases the rank until reaching certain tol-
erance for the residual, when the final rank r of X is de-
termined automatically. As well as GreBske, such greedy
incremental scheme brings evident improvement in speed.

We report the phase diagram of GreBcom in Figure 3.2.
The white region denotes where GreBcom can successfully
recover the incomplete low-rank matrix with probability of
1, while the black region is where the algorithm fails. It
can be seen that GreBcom exhibits evident phase transi-
tion property, which is a significant phenomenon verified in
many matrix completion algorithms. Compared to the pub-
lished phase transition plots of them, GreBcom possesses a
larger region for successful recovery on the ρ-r plane.

3.3 Greedy Bilateral Smoothing

Alternately optimizing U , V and S in (6) immediately
yields the following updating rules:

Uk = (X − Sk−1)V
T
k−1

(
Vk−1V

T
k−1

)†
,

Vk =
(
UT
k Uk

)†
UT
k (X − Sk−1) ,

Sk = Sλ (X − UkVk) ,

(15)

where Sλ is an element-wise soft thresholding operator
with threshold λ such that

SλX = {sgn (Xij)max (|Xij | − λ, 0) : (i, j) ∈ [m]× [n]} .
(16)
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Figure 1: Phase diagram for GreBcom on 1000 × 1000
matrices. On the 20 × 20 grid of sampling ratio-rank/n
plane, 10 trials are performed for each (ρ, r) pair. A matrix
is said to be successfully recovered if rel. err.≤ 10−3. The
phase diagram shows the successful recovery rate for each
(ρ, r) pair.

The same trick of replacing the (U, V ) pair with a faster
computed one is applied and produce Uk = Q,QR

(
(X − Sk−1)V

T
k−1

)
= QR,

Vk = QT (X − Sk−1) ,
Sk = Sλ (X − UkVk) ,

(17)

The above procedure can be performed in 3mnri + mr2i
flops for U ∈ Rm×ri and V ∈ Rri×n.

In GreBsmo, (17) is iterated as a subroutine of GreB’s
greedy incremental paradigm. In particular, the updates in
(17) are iterated for K times or until the object converging,
then ∆r rows are added into V as the new directions for de-
creasing the object value. In order to achieve the fastest de-
creasing directions, we greedily select the added ∆r rows
as the top ∆r right singular vectors of the partial derivative

∂∥X − UV − S∥2F
∂V

= X − UV − S. (18)

We also allow to approximate row space of the singular
vectors via random projections (Halko et al., 2009). The
selected ∆r rows maximize the magnitude of the above
partial derivative and thus lead to the most rapid decreasing
of the object value, a.k.a., the decomposition error. GreB-
smo repeatedly increases the rank until a sufficiently small
decomposition error is achieved. So the rank of the low-
rank component is adaptively estimated in GreBsmo and
does not relies on initial estimation.

We report the phase diagram of GreBsmo in Figure 3.3
from results on randomly generated matrix that is the sum
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of a low-rank part and a sparse part. The low-rank part is
generated as the product of two Gaussian matrices and the
sparse part has a Bernoulli model generated support set on
which ±1 values are randomly assigned. The phase transi-
tion phenomenon is in consistency with existing low-rank
and sparse decomposition algorithms. It also shows that
GreBsmo is able to gain accurate separation of L even if
its rank is close to 0.4n, given the sparse part has an ade-
quately sparse support set. This is competitive to published
result (Candès et al., 2009). Interestingly, the phase tran-
sition curve has a regular shape and implies a theoretical
analysis to its behavior is highly possible in future studies.

rank/n

ρ

GreBsmo(500x500)

 

 

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Phase diagram for GreBsmo on 500× 500 matri-
ces. Low-rank component is generated as L = UV , where
entries of U and V are sampled from N (0, 1/n). Entries
of sparse component S are sampled as 1 or −1 with prob-
ability ρ/2 and 0 with probability 1 − ρ. On the 30 × 30
grid of sparsity-rank/n plane, 20 trials are performed for
each (ρ, r) pair. L is said to be successfully recovered if its
rel. err.≤ 10−2. The phase diagram shows the successful
recovery rate for each (ρ, r) pair.

4 Analysis

It is not direct to analyze the theoretical guarantee of GreB
due to its combination of alternating minimization and
greedy forward selection. Hence, we consider analyzing
its convergence behavior by leveraging the results from
GECO (Shalev-Shwartz et al., 2011) analysis. This is rea-
sonable because they share the same objective function
yet different optimization variables. In particular, the risk
function in GECO is R(A) = R(A(λ)) = f(λ), where
A =

∑
i λiUiVi. It can be seen that the variable A in

GECO is able to be written as A = UV without any loss of
generality. Therefore, for the same selection of R(A), we

can compare the objective value of GECO and GreB at ar-
bitrary step of their algorithm. This results in the following
theorem.

Theorem 1. Assume R(A) is a β-smooth function accord-
ing to GECO (Shalev-Shwartz et al., 2011) and ϵ > 0,
and F (U, V ) = R(UV ) is the objective function of GreB.
Given a rank constraint r to A and a tolerance parameter
τ ∈ [ 0, 1 ). Let A∗ = U∗V ∗ is the solution of GreB. Then
for all matrices A = UV with

∥UV ∥2tr ≤
ϵ(r + 1)(1− τ)2

2β
(19)

we have F (U∗, V ∗) ≤ F (U, V ) + ϵ.

Proof. According to Lemma 3 in GECO
(Shalev-Shwartz et al., 2011), let ϵi = f(λ(i)) − f(λ̄),
where λ(i) is the value of λ at the beginning of iteration i
and λ̄ fulfills f(λ) > f(λ̄), we have

f(λ(i))−min
η

f(λ(i) + ηeu,v) ≥ ϵ2i (1− τ)2

2β∥A∥2tr
. (20)

At the end of iteration i, the objective value of GreB equals
R(UV ), while GECO optimizes λ over the support of
span(U) × span(V ) (i.e., optimizes S when fixing U and
V ). We use the same notation ·(i) to denote the variable in
iteration i. This yields

F (U (i), V (i)) = R(U (i)V (i)) ≥
min
S

R(U (i)SV (i)) = f(λ(i)). (21)

At the beginning of iteration i + 1, both GECO and GreB
computes the direction (u, v) along which the object de-
clines fastest. However, GECO adds both u and v to the
ranges of U and V , while GreB only adds v to V and then
optimizes U when fixing V . Because the range of U in
GreB is optimized rather than previously fixed, we have

F (U (i+1), V (i+1)) = min
U

F (U, [V (i+1); v]) ≤
min
η

f(λ(i) + ηeu,v).
(22)

Plug (21) and (22) into (20), we gain a similar result:

F (U, V )−min
U

F (U, [V ; v]) ≥ ϵ2i (1− τ)2

2β∥A∥2tr
. (23)

Following the analysis after Lemma 3 in GECO
(Shalev-Shwartz et al., 2011), we can immediately obtain
the results of the theorem.

The theorem states that GreB solution is at least close to
optimum as GECO. Note when sparse S is alternatively
optimized with UV in GreB scheme, such as GreBcom, the
theorem can still holds. This is because after optimizing S
in each iteration of GreBcom, we have PΩC (S+UV ) = 0,
which enforces the objective function ∥M − UV − S∥2F
degenerates to that of GECO, which is ∥PΩ(M − UV )∥2F .
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Table 1: Relative error and time cost of OptSpace, SVP, ADMiRA and GreBcom in matrix completion tasks of different
matrix size and rank. Notations: m(n)-square matrix size, r-rank, ρ-sampling ratio |Ω|0/mn, rel. err.-relative error,
time-CPU seconds, “-”-does not apply due to speed or divergence.

m(n) r ρ
OptSpace SVP ADMiRA GreBcom

rel. err. time rel. err. time rel. err. time rel. err. time

5000
10 0.01 2.29× 10−2 304 8.51× 10−1 86 5.13× 10−1 77 2.01× 10−2 0.73
50 0.04 3.41× 10−2 1582 6.95× 10−1 1362 5.36× 10−1 358 3.06× 10−2 16
100 0.08 5.64× 10−2 3944 7.01× 10−1 24519 4.84× 10−1 36266 2.38× 10−3 116

10000
10 0.01 1.34× 10−2 516 4.54× 10−1 1322 1.22× 10−1 442 1.55× 10−3 2.17
50 0.04 1.19× 10−2 2192 2.35× 10−1 5961 2.58× 10−2 186591 1.40× 10−3 49
100 0.08 2.64× 10−3 15910 - - 9.66× 10−2 755082 1.20× 10−3 153

20000 10 0.006 7.06× 10−2 1928 - - 3.04× 10−1 181 1.20× 10−3 4.06
50 0.025 7.66× 10−3 11397 - - 4.33× 10−2 346651 1.20× 10−3 113

30000 10 0.006 8.29× 10−2 6121 2.43× 10−1 2235 4.19× 10−1 71 1.20× 10−3 18

Table 2: RMSEtest/CPU seconds of OptSpace, SVP and GreBcom in matrix completion tasks on recommendation system
data with different training set ratio (for MovieLens) or different number of test ratings per user (for Jester), “-”-does not
apply due to speed or divergence. Size and rank information (m/n/r) of datasets: 100k(943/1682/3), 1M(6040/3952/10),
10M(69878/10677/10), J1(24983/100/10), J2(23500/100/10), J3(24938/100/10).

OptSpace SVP GreBcom
Movie 10% 30% 50% 10% 30% 50% 10% 30% 50%
100k 3.13/334s 2.82/394s 1.02/117s 1.23/5.01s 1.06/2.19s 0.97/2.35s 1.01/0.04s 0.98/0.04s 0.97/0.04s
1M 1.35/2241s 0.93/2550s 0.89/3383s 1.12/38s 0.98/41s 0.92/32s 0.96/1.15s 0.90/1.22s 0.89/1.89s
10M 0.92/9021s - - 0.96/588s 0.87/464s 0.84/694s 0.88/9.61s 0.86/10.13s 0.82/25.65s
Jester 2 5 10 2 5 10 2 5 10
J1 4.10/756s 4.10/732s 4.13/669s 5.31/41.26s 5.09/40.12s 4.24/32.54s 4.01/7.29s 4.06/7.88s 4.08/6.28s
J2 4.14/1058s 4.14/640s 4.16/840s 4.24/320s 4.23/22.14s 4.31/66.74s 4.12/10.23s 4.18/8.80s 4.09/10.06s
J3 4.57/340s 4.64/261s 4.51/99.31s 7.75/14.71s 7.28/13.27s 6.13/6.85s 4.91/3.15s 4.43/3.02s 4.38/1.20s

5 Applications

In this section, we show how to use the above three algo-
rithms developed from GreB to solve low-rank approxima-
tion, matrix completion and robust PCA by justifying their
performance on both artificial generated and real datasets.
For simplicity, we fix the times of rank increment in GreB
as 5, which implies ∆r = max{1, ⌊rank/5⌋}. All the ex-
periments are performed on MATLAB.

5.1 Low-rank Approximation

The approximation accuracy and time cost of GreBske is
evaluated on the task of approximating a randomly gener-
ated 104 × 104 matrix X , with thorough comparison to the
results obtained by Lanczos algorithm for SVD and ran-
domized SVD (Halko et al., 2009), which are two popular
approximation algorithms of SVD. Each entry of the ma-
trix is sampled from an i.i.d. standard Gaussian distribu-
tion N (0, 1). We uniformly select 20 values from 1 to 500
as the rank parameters. Then the associated 20 low-rank
approximations are computed by the three different algo-
rithms. Randomized SVD and GreBske of different power
parameters are tested. We show the approximation error
∥X̂ −X∥F /∥X∥F and CPU seconds for each approxima-

tion X̂ in the two right plots of Figure 5.1. It can been
verified that Lanczos method achieves the smallest error
yet along with expensive computations, while randomized
SVD has the fastest speed yet largest error. GreBske has
error very close to that of Lanczos method, but its compu-
tational time is comparable with that of randomized SVD.
Thus it provides a good trade-off between speed and accu-
racy, which is highly preferred in real applications.

5.2 Matrix Completion

The performance of GreBcom in matrix completion tasks
are evaluated and compared with other approaches on both
artificial generated data and real data from movie (Movie-
Lens) and joke (Jester) recommendation systems.

Numerical results on artificial data. We generate low-
rank matrix X ∈ Rn×n by X = UV + Z, wherein
U ∈ Rn×r and V ∈ Rr×n are random matrices whose
entries are sampled from i.i.d. normal distribution N (0, 1)
and each entry of noise Z is sampled from N (0, 10−10).
The observed entries are uniformly selected with probabil-
ity ρ. OptSpace, SVP, ADMiRA and GreBcom are per-
formed on large-scale matrices of n ∈ [5000, 30000] and
r ∈ [10, 100]. Their completion accuracy is measured by
relative error ∥X̂ − X∥F /∥X∥F wherein X̂ is the low-
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Figure 3: Low-rank approximation performed by Lanczos
method (L-SVD), randomized SVD (R-SVD) and GreB-
ske (G-SVD) on 104 × 104 matrix whose entries are sam-
pled from i.i.d. normal distribution, p (K in G-SVD) is the
power parameter.

X(Frame 136) L(Low-rank Background) S(Sparse Moving Objects) G(Noise)

X(Frame 12) L(Low-rank Background) S(Sparse Moving Objects) G(Noise)

X(Frame 87) L(Low-rank Background) S(Sparse Moving Objects) G(Noise)

Figure 4: Background modeling of GreBsmo on three
video sequences, top row: Hall, 144 × 176 pixels, 500
frames; middle row: ShoppingMall, 256 × 320 pixels,
253 frames; bottom row: Boostrap, 120 × 160 pixels, 500
frames.

rank recovery, while the time cost is measured by CPU sec-
onds. The results are given in Table 1. It shows that GreB-
com achieves the lowest relative error and brings substan-
tial acceleration. The time cost of GreBcom slowly aug-
mented with the increasing of matrix size, which indicates
its promising scalability for solving large-scale problems.

Collaborative filtering. We now apply different matrix
completion algorithms to real datasets MovieLens 1 and
Jester 2 respectively collected from movie and joke recom-
mendation systems. Each of the two datasets contains 3
matrices, whose rows denote users, columns denote items
and the entry values are associated ratings. Ratings in
MovieLens are integers between 1 and 5, while ratings in
Jester have values in [−10, 10]. For MovieLens, we ran-

1http://www.grouplens.org/node/73
2http://www.ieor.berkeley.edu/∼goldberg/jester-data/

domly select {10%, 30%, 50%} of the given observations
as the training set observable to the matrix completion al-
gorithms, while the rest are left for test set. For Jester,
we randomly select {2, 5, 10} ratings from each user as
test set and treat the others as training instances. The
completion accuracy is evaluated by comparing the dif-
ference between the given matrix and the completed one
on the test set. In Table 2, the difference is measured
by root mean square error (RMSE) of the test set such

that RMSEtest =
√

mean(X̂ij −Xij), (i, j) ∈ test set,
while the CPU seconds tells the required computation time.
In these experiments, GreBcom exhibits evident priority in
both completion accuracy and time cost over other meth-
ods. In addition, less observations are required in GreB-
com to reach a sufficiently small RMSE, which support the
effectiveness of GreBcom in real applications.

Table 3: Comparison of time costs in CPU seconds of PCP,
GoDec and GreBsmo in low-rank and sparse matrix de-
composition task on background modeling datasets.

PCP GoDec GreBsmo
Hall 87s 56s 1.13s
ShoppingMall 351s 266s 3.29s
Bootstrap 71s 49s 0.98s

5.3 Robust PCA

For real data, three robust PCA algorithms, i.e., inexact
augmented Lagrangian multiplier method for PCP, GoDec
and GreBsmo are applied to separate the low-rank back-
ground and sparse moving objects in 3 video sequences 3.
Pixel values of each frame in the video are vectorized as
a row vector in a matrix X , and the background model-
ing can be modeled as performing robust PCA on the ma-
trix. We show the robust PCA decomposition results of one
frame for each video sequence obtained by GreBsmo in the
left plot of Figure 5.2. The decomposition includes a low-
rank background, a sparse component containing moving
objects, and a dense noise part. The time costs for all the
three methods are listed in Table 3. It shows GreBsmo con-
siderably speed up the decomposition and performs 30-100
times faster than most existing algorithms.
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