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Abstract

We analyse convex formulations for com-
bined discrete-continuous MAP inference us-
ing the dual decomposition method. As a
consquence we can provide a more intuitive
derivation for the resulting convex relaxation
than presented in the literature. Further,
we show how to strengthen the relaxation by
reparametrizing the potentials, hence convex
relaxations for discrete-continuous inference
does not share an important feature of LP
relaxations for discrete labeling problems: in-
corporating unary potentials into higher or-
der ones affects the quality of the relaxation.
We argue that the convex model for discrete-
continuous inference is very general and can
be used as alternative for alternation-based
methods often employed for such joint infer-
ence tasks.

1 Introduction

Many problems in particular in low-level computer vi-
sion can be stated as

for each node in a random field (pixel, super-
pixel etc.) jointly determine a continuous un-
known from Rd and an associated discrete la-
bel from {1, . . . , L} under respective smooth-
ness assumptions.

Problems falling in this category include the cele-
brated Mumford-Shah model for joint image segmen-
tation and denoising [MS89, CV01], robust image
processing methods in general (where the discrete
state reflects whether data at a pixels is an inlier
or an outlier, e.g. [BR96]), layered representations
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for optical flow [WA94, SSB10] and stereo [BSA98,
KS04], dense depth computation with occlusion de-
tection [GLY95], joint estimation of depth and seman-
tic labels [LSR+10], and many others. These problems
are usually formulated as Bayesian inference tasks and
solved via energy optimization. Joint optimization
over discrete and continuous unknowns is usually very
difficult, but in many cases optimizing over either the
discrete or the continuous unknowns can be efficiently
done. Hence, authors usually propose an alternation-
based (or block-coordinate) optimization method for
such joint problems, which sometimes (but not always)
corresponds to an expectation-maximization (EM) al-
gorithm [Har58, DLR77]. A classic algorithm falling
into this category is the K-means algorithm for clus-
tering data [For65].The obvious drawback of such an
approach is its susceptibility to bad initialization lead-
ing often to very poor or even degenerate solutions.
Consequently, a method returning a good solution not
requiring or unaffected by the choice of the initial val-
ues is highly desirable. In this work we build on the
convex relaxation for discrete-continuous Markov ran-
dom fields proposed in [ZK12] to tackle joint discrete-
continuous problems particularly emerging in low-level
computer vision. In [ZK12] the motivation for the pro-
posed discrete-continuous convex model (“DC-MRF”)
is to solve MRFs with continuous label spaces and
piecewise (but not globally) convex potentials. The
utility of the DC-MRF model extends to far more gen-
eral problems as later shown in this work. We sum-
marize our contributions as follow:

1. We advocate the use of the convex DC-MRF
model to a larger spectrum of joint discrete con-
tinuous problems usually solved by alternation. In
summary, the DC-MRF model is applicable when-
ever the problem is convex after fixing the discrete
labeling.

2. We derive the DC-MRF formulation from a dual
decomposition/Langrangian relaxation perspec-
tive and demonstrate alternative decompositions
(Section 3).

3. We strengthen the DC-MRF relaxation by realiz-
ing that moving lower-order potentials to higher
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order cliques is beneficial for the relaxation. This
is in stark contrast to linear programming relax-
ations of discrete labeling problems, where poten-
tials can be reparametrized without affecting the
relaxation (Sections 4.1 and 4.2).

4. We propose to optimize the dual energy in or-
der to obtain a memory efficient minimization ap-
proach.

5. Finally, we provide a non-standard application
that uses a layered denoising and inpainting
model for depth data (Section 5).

We want to emphasize that we propose to solve a
convex relaxation of a difficult optimization/inference
problem. Thus, we can guarantee strong solutions
whenever the convex relaxation is tight (or at least
close to being tight). Other approaches often used
to solve such difficult non-convex inference problems
over continuous state spaces (besides alternating min-
imization methods) include continuation methods (e.g.
graduated non-convexity [BZ87]), sampling-based be-
lief propagation [IM09, PHMU11] and proposal-based
algorithms (e.g. fusion moves [LRRB10]).

2 Background

2.1 Notations

We consider extended real-valued functions f : Rn →
R ∪ {∞}. The domain of f , dom(f), is {x ∈ Rn :
f(x) < ∞}, and we assume that dom(f) 6= ∅. By
allowing extended functions constraints on the feasi-
ble domain and infinite function values can be inter-
changed, and we will use the notation ıC(x) to write a
constraint x ∈ C in functional form, i.e. ıC(x) = 0 iff
x ∈ C and ∞ otherwise. Equivalently, we also write
ı{x ∈ C} or ı{P (x)}, where P is some boolean predi-
cate over x.

The convex conjugate of f , denoted by f∗, is defined
as f∗(y) = supx x

T y − f(x). The biconjugate f∗∗ is
obtained by applying convex conjugation twice. It is
known that for any function f the convex conjugate
f∗ is a lower-semicontinuous (l.s.c.) convex function,
and f∗∗ = f iff f is convex and l.s.c. Otherwise f∗∗ is
the lower convex envelope of f , i.e. the supremum of
all convex functions below the epigraph of f .

For a convex function f we denote the l.s.c. extension
of its perspective (x, y) 7→ xf(y/x) to x = 0 by f�. f�
can be computed as the biconjugate of the standard
perspective.

Finally, we focus on labeling problems with at most
pairwise smoothness potentials. Thus, we assume a
graph G = (V, E) with nodes V and edges E ⊆ V × V

is given. We will frequently use the shorthand nota-
tion

∑
s∼t for

∑
(s,t)∈E , and denote the sets of (direct)

ancestor and succesor nodes of s by in(s) and out(s),
respectively. We use a compact notation to indicate
nodes and edges (using subscripts, e.g. s or st) and
states (using superscripts like i and ij). Hence, we
write e.g. xis for a pseudo-marginal instead of the more
verbose variant µs(xi).

2.2 The Convex Discrete-Continuous Model

In this section we briefly review the convex
discrete-continuous formulation for inference proposed
in [ZK12]. For families of convex functions {f is}s∈V
and {f ijst}(s,t)∈E (with i, j ∈ {1, . . . , L}) the following
objective is proposed,

Eorig
DC-MRF(x,y) =

∑
s,i

(f is)�(xis, y
i
s) (1)

+
∑
s∼t

∑
i,j

(f ijst )�(xijst, y
ij
st→s, y

ij
st→t)

subject to the following marginalization constraints

xis =
∑
j

xijst xjt =
∑
i

xijst

yis =
∑
j

yijst→s yjt =
∑
i

yijst→t (2)

and simplex constraints xs ∈ ∆L, xst ∈ ∆L2

. The
unknown vector x collects the pseudo-marginals (i.e.
xs indicates one-hot encoding of the assigned discrete
state at node s), and the unknowns y represent the

assigned continuous labels in the solution. Eorig
DC-MRF

above is stated for the very important case of at most
pairwise interactions between labels, but can be ex-
tended to higher-order potentials in a straightforward
manner. The DC-MRF model is an extension of the
standard local-polytope relaxation for discrete labeling
problems by allowing the unary and pairwise poten-
tials now to be arbitrary piecewise convex functions.1

The formulation Eq. 1 is used in [ZK12] to model
convex relaxations of non-convex continuous labeling
tasks. In particular, the data term for a continuous
labeling problem is allowed to be piecewise convex in-
stead of globally convex. The discrete state obtained
in the obtained discrete-continuous label assignment
encodes which case in the piecewise convex definition
of the unary costs is active at the minimizer.

1Note that in Eq. 1 we dropped the additional con-
straints 0 ≤ yis ≤ xis etc. explicitly stated in [ZK12], since
they are not necessary unless boundedness of the continu-
ous unknowns is requested (which then can be incorporated

into f i
s and f ij

st , respectively).
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3 Deriving Eorig
DC-MRF via Dual

Decomposition

The derivation given in [ZK12] of Eorig
DC-MRF and the

respective marginalization constraints is rather “con-
structive” by explicitly stating allowed configurations
and considering their respective convex hull. In
this section we aim for a more “analytic” deriva-
tion based on the principle of dual decomposition,
which was successfully applied for discrete inference
(e.g. [KPT11, SGJ11]). In order to simplify the nota-
tion we consider discrete-continuous labeling problems
with only pairwise potentials, i.e.

EDC-Labeling(x, z) =
∑
s∼t

∑
i,j

xijstf
ij
st (zs, zt)

subject to xijst ∈ {0, 1} and marginalization con-
straints. zs ∈ R is the continuous unknown at each
node s. Note that EDC-Labeling is difficult to solve due
to the integrality constraints on x and the generally
non-convex products appearing in the objective. Con-
sequently, even relaxing the integrality constraints to
simplex constraints on x would in general lead to a
non-convex problem. The standard approach for dual
decomposition is to introduce smaller, easy-to-solve
subproblems and enforce consistency between the re-
spective solutions. One way to apply the dual decom-
position principle for EDC-Labeling is to treat each prob-
lem on an edge (s, t) ∈ E as subproblem, and therefore
introduce local copies zst→s and zst→t of zs and zt for
each edge (s, t). By introducing multipliers µst→s and
µst→t for the consistency constraints zst→s = zs and
zst→t = zt we obtain the following Lagrangian,

LDD-I(x, z;µ) =
∑
s∼t

∑
i,j

xijstf
ij
st (zst→s, zst→t)

+
∑
s∼t

(
µst→s

(
zs − zst→s

)
+ µst→t

(
zt − zst→t

)
=
∑
s∼t

∑
i,j

xijstf
ij
st (zst→s, zst→t)− µTstzst


+
∑
s

zs

 ∑
t∈out(s)

µst→s +
∑

t∈in(s)

µts→s

 .

We also use the short-hand notation zst =
(zst→s, zst→t)

T (and similar for µst). It can be shown
(after introducing Lagrange multipliers for the consis-
tency between xs and xst, see the supplementary ma-
terial) that the induced convex primal problem reads
as

EDC-DD-I(x, y) =
∑
s,t

∑
i,j

(f ijst )�(xijst, y
ij
st→s, y

ij
st→t) (3)

subject to

xis =
∑
j

xijst xjt =
∑
i

xijst

ys =
∑
ij

yijst→s yt =
∑
ij

yijst→t (4)

and simplex constraints xs ∈ ∆L, xst ∈ ∆L2

. Note
that Eq. 4 above is almost identical to Eq. 2 with
the only difference the lack of state-specific unknowns
yis and their respective constraints. Aside from this,
EDC-DD-I is identical to Eorig

DC-MRF. Since the con-

straints are weaker in EDC-DD-I than in Eorig
DC-MRF, we

have

min
x,y

EDC-DD-I ≤ min
x,y

Eorig
DC-MRF.

Essentially, EDC-DD-I is weaker than Eorig
DC-MRF since in

the starting point for dual decomposition we had one
global continuous unknown zst per edge (s, t) agnostic
to the picked state. Thus, straightforward application
of dual decomposition does not provide the desired
result, Eq 1 together with the respective constraints.

Another approach for dual decomposition is to uti-
lize very “fine-grained” constraints, e.g. zs = zijst→s,
which are only active if the respective clique state ij
is picked for the edge (s, t), i.e. xijst = 1. The fact
that consistency constraints should be only condition-
ally active can be formulated as bilinear constraints
xijst(zs − z

ij
st→s) = 0 and xijst(zt − z

ij
st→t) = 0, respec-

tively. We do not pursue this particular decomposition
for the following two reasons: (i) the number of dual
variables would be quadratic in the number of states,
therefore losing the benefits of the compact representa-
tion using the dual program, and (ii) the induced con-
vex primal program has a large number of unknowns
and constraints (depending exponentially on the de-
gree of nodes). Consequently, we rule out this relax-
ation in the current work.

It turns out that the right dual decomposition for-
mulation to arrive at Eorig

DC-MRF is the following: we
introduce local, state-specific copies zist→s and zist→t
together with constraints zs = zist→s and zt = zist→t.
Note that e.g. the constraint zis = zist→s is only ac-
tive if label i is picked at node s (i.e. xis = 1), hence
the constraint can be written again as bilinear one,
xis(zs − zist→s) = 0, We have a similar constraint con-
necting zt and zist→t, x

i
t(zt − zist→t) = 0. Consequenly

the Lagrangian now reads as

LDD(x, z;µ) =
∑
s∼t

∑
i,j

xijstf
ij
st (zst→s, zst→t)

+
∑
s∼t

∑
i

µist→sx
i
s

(
zs − zist→s

)
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+
∑
s∼t

∑
i

µist→tx
i
t

(
zt − zist→t

)
.

It is shown in the supplementary material that this
particular choice of dual decomposition yields the con-
vex relaxation Eorig

DC-MRF stated in Eq. 1 (with all
f is ≡ 0). If f is are not identical to zero, introducing
local copies zis, z

i
st→s, and zist→t (all representing zs),

together with respective Lagrange multipliers yields
exactly to the relaxation Eorig

DC-MRF. In view of the
remarks in the subsequent Section 4.1 it is always fa-
vorable to incorporate the unary potentials into the
higher-order ones, hence we do not consider the case
f is 6≡ 0 explicitly. Consequently, we are interested in
minimizing problems of the shape

EDC-MRF(x,y) =
∑
s∼t

∑
i,j

(f ijst )�(xijst, y
ij
st→s, y

ij
st→t)

(5)

subject to the marginalization constraints as in
Eorig

DC-MRF (Eq. 1).

3.1 The Dual of EDC-MRF and its
Interpretation

By introducing Lagrange multipliers (“messages”)
pist→s, p

i
st→t, q

i
st→s, and qist→t, for the constraints on x

and y one can derive a particular dual E∗DC-MRF(p, q)
as∑
s∼t

min
i,j

{
pist→s + pjst→t − (f ijst )

∗(qist→s, q
j
st→t)

}
(6)

subject to the following “flow conservation” con-
straints, ∑

t∈out(s)

pist→s +
∑

t∈in(s)

pits→s = 0

∑
t∈out(s)

qist→s +
∑

t∈in(s)

qits→s = 0 (7)

for all s and i. The derivation is given in the sup-
plementary material. The interpretation of this dual
energy is an extension of the one for discrete inference:
the expressions pist→s+pjst→t adjust (or reparametrize)
the potentials in order to favor agreement of discrete
states between the subproblems (on edges) in terms of
x. Thus, the correcting terms pist→s + pjst→t have the
same meaning as in the dual decomposition approach
for discrete MRFs.

The additional dual variables qist→s and qjst→t modify
the slope of the potential function (i.e. add a linear
term to (f ijst )�), effectively adjusting the location of
the minimizer. Recall that (with qijst = (qist→s, q

j
st→t))

−(f ijst )
∗(qijst) = −max

z

{
(qijst)

T z − f ijst (z)
}

= min
z

{
f ijst (z)− (qijst)

T z
}
,

hence by modifying qijst the location the minimizer z
(and the respective objective value) is adjusted. Over-
all, optimizing the dual variables q leads to agreement
of the continuous unknowns y for the subproblems in
the primal energy.

As usual in relaxations for labeling problems, the dual
energy given in Eq. 6 is not unique, and different dual
programs can be obtained by enforcing additional (re-
dundant) constraints in the primal formulation. The
advantage of optimizing the dual E∗DC-MRF is the same
as for inference with discrete states: the number of un-
knowns grows only linearly with the number of states.
This comes with some cost: the number of (non-
smooth) terms in the objective (or the number of con-
straints, depending on the exact shape of the dual)
grows quadratically with the number of states.

3.2 Optimization

Despite the compactness of the dual energy Eq. 6 it
turns out that it is a rather difficult energy to optimize.
We used the following “generic” approach to optimize
the dual: by introducing an explicit Lagrange multipli-
ers νst for the normalization constraints,

∑
ij x

ij
st = 1,

and incorporating the bounds xijst ∈ [0, 1] a different
dual only using exact penalization terms can be ob-
tained,

E∗DC-MRF(p,q, r) = −
∑
s∼t

νst (8)

+
∑
s∼t

∑
i,j

[
νst + pist→s + pjst→t − (f ijst )

∗(qist→s, q
j
st→t)

]
−

subject to the flow conservation constraints Eq. 7.
Using Nesterov’s smoothing approach for non-smooth
functions [Nes05] (where we use a quadratic prox-
function), we obtain a smooth approximation of
E∗DC-MRF (still subject to linear constraints), which
can be optimized e.g. by L-BFGS or FISTA [BT09].
We quickly discarded subgradient methods, since (in
contrast to discrete MRFs) inference for joint discrete-
continuous problems cannot efficiently performed on
trees. Using only inference over edges as subproblems
leads to very poor convergence.

4 Improving the DC-MRF Relaxation

4.1 The Impact of Reparametrizations

The presentation of Eorig
DC-MRF (recall Eq. 1) follows the

usual presentation of standard relaxations for discrete
MRFs by using unary and pairwise potentials. For the
standard discrete relaxation, unary potentials can be
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freely moved to the pairwise ones without affecting the
strength of the relaxation. This fact is exactly the ba-
sis for reparametrization approaches for discrete infer-
ence i.e. the foundation for many message-passing al-
gorithms. In the following we will show that Eorig

DC-MRF

as written in Eq. 1 is weaker than necessary, and (po-
tentially) stronger relaxations can be obtained by mov-
ing unary potentials closer to the pairwise ones. Thus,
by appropriate reparametrization the strength of the
convex relaxation can be improved.

In order to analyze the impact of reparametrization
of the potentials we consider the following two ex-
pressions: first we write the unary potentials (for
t ∈ out(s) and r ∈ in(s))

U is
def
= (f is)�(xis, y

i
s) = (f is)�

∑
j

xijst,
∑
j

yijst→s


= (f is)�

∑
j

xjirs,
∑
j

yjirs→s


(where we made use of the marginalization con-
straints), and second, we introduce a reparametrized
version,

V is (λ)
def
=

∑
t:(s,t)∈E

λst
∑
j

(f is)�(xijst, y
ij
st→s)

+
∑

r:(r,s)∈E

λrs
∑
j

(f is)�(xjirs, y
ji
rs→s),

where λ is restricted to the unit simplex (of ap-
propriate dimension). We need the constraint that∑
t λst +

∑
r λrs = 1 in order to conserve the overall

cost, and λ ≥ 0 (element-wise) to preserve the convex-
ity of λst(f

i
s)� and λrs(f

i
s)�.2

We have the following fact:

Proposition 1. For all λ ∈ ∆ it holds that

U is ≤ V is (λ).

Proof. As a perspective (f is)� is positively 1-
homogeneous, i.e. (f is)�(kx, ky) = k(f is)�(x, y) for
k ≥ 0. For any convex 1-positively homogeneous func-
tion φ we have

φ

(∑
i

xi

)
pos. 1-hom.

= Nφ

(∑
i xi
N

)
Jensen
≤ N

N

∑
i

φ(xi) =
∑
i

φ(xi).

2In discrete MRFs we have f i
s are constant functions

with value θis, hence the non-negativity constraint on λ
can be dropped.

We can write U is as

U is =
∑

t:(s,t)∈E

λst (f is)�

∑
j

xijst,
∑
j

yijst→s


︸ ︷︷ ︸

=(fi
s)�(xi

s,y
i
s)

+
∑

r:(r,s)∈E

λrs (f is)�

∑
j

xjirs,
∑
j

yjirs→s


︸ ︷︷ ︸

=(fi
s)�(xi

s,y
i
s)

.

≤
∑

t:(s,t)∈E

λst
∑
j

(f is)�(xijst, y
ij
st→s)

+
∑

r:(r,s)∈E

λrs
∑
j

(f is)�(xjirs, y
ji
rs→s) = V is (λ),

after applying the above inequality.

Any reparametrization induced by λ does not change
our original objective, since U is are V is (λ) are the same
if all xijst have integral (i.e. either 0 or 1) values. Nev-
ertheless, the strength of the relaxation after dropping
the integrality constraints may depend on the choice
of λ. Since we are aiming for the tightest relaxation,
i.e. we maximize V is (λ) with respect to λ ∈ ∆, we are
only interested in the largest term:

max
λ∈∆

V is (λ) = max

{
max

t:(s,t)∈E

{∑
j

(f is)�(xijst, y
ij
st→s)

}
,

max
r:(r,s)∈E

{∑
j

(f is)�(xjirs, y
ji
rs→s)

}}
.

In order to reduce notational clutter in the following
we introduce the set of neighboring nodes

N(s)
def
= {t ∈ V : (s, t) ∈ E ∨ (t, s) ∈ E},

and replicate variables as neccessary, e.g. xijst = xijts
and yijst→s = yjits→s. Consequently, we can write more
compactly

max
λ∈∆

V is (λ) = max
t∈N(s)

∑
j

(f is)�(xijst, y
ij
st→s)


Plugging this as a replacement for the unary potentials
in Eq. 1 finally yields an improved relaxation,

Etight
DC-MRF(x,y) =

def
= Eunary(x,y)︷ ︸︸ ︷∑

s,i

max
t∈N(s)

∑
j

(f is)�(xijst, y
ij
st→s)


+
∑
s∼t

∑
i,j

(f ijst )�(xijst, y
ij
st→s, y

ij
st→t)

(9)
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subject to the normalization and marginalization con-
straints. Unfortunately, in many cases Etight

DC-MRF is
much more difficult to optimize, especially if the f is
are non-linear. In the important setting of piece-wise
linear potentials tightening the relaxation is easy to
achieve (see Section 4.2 below). In other cases we al-
ready observed significantly stronger relaxations (com-

pared to the model Eorig
DC-MRF) by evenly distributing

the unary potentials to adjacent edges. The imple-
mentation complexity for such an approach is compa-
rable to the one for the original model with node-based
unary potentials, Eorig

DC-MRF.

The lack of equivalence of reparamatrization
also means, that introducing higher-order clique
variables without associated potentials (“zero-
constraints” [Wer07, SMG+08]) will in general only
weakly strengthen the relaxation. In order to make
better use of higher-order unknowns, lower-order
potentials need to be incorporated into higher order
ones, either by using a generalization of Eq. 9 beyond
pairwise cliques, or by fixing the reparametrization
weights in advance (e.g. using a uniform weighting).

4.2 Piece-wise Linear Unary Potentials

In this section we derive Etight
DC-MRF (Eq. 9) for unary

potentials, that are piecewise linear and have bounded
domain. Assume that w.l.o.g. we want to assign one
continuous label ts ∈ [0, 1] at each node s, and the
respective linear potentials read as

Us(ts) =

Ls∑
i=1

(
ais + bists + ı[lis,ui

s](ts)
)
, (10)

where ais and bis induce the linear cost, and lis ∈ [0, 1]
and uis ∈ [0, 1] define the domain of the particular seg-
ment. Ls is the number of linear segments at node
s. W.l.og. we will assume that {[lis, uis]}i is a parti-
tion of [0, 1], i.e. the unary potentials are piece-wise
linear functions of t with domain [0, 1]. The terms

corresponding to the unaries in Etight
DC-MRF read as (and

after verifying that f�(x, y) = ax+ by + ı[lx,ux](y) for
f(t) = a+ bt+ ı[l,u](t))

Eunary(x,y) =
∑
s∈V

Ls∑
i=1

max
t∈N(s)

{ Lt∑
j=1

(
aisx

ij
st + bisy

ij
st→s

)

+

Lt∑
j=1

ı
{
yijst→s ∈ [lisx

ij
st, u

i
sx
ij
st]
}}

subject to the marginalization constraints. But for the
inner maximization problem,

Û is
def
= max
t∈N(s)

Lt∑
j=1

(
aisx

ij
st + bisy

ij
st→s + ı[lisx

ij
st,u

i
sx

ij
st]

(yijst→s)
)

(1)
≡ max
t∈N(s)

Lt∑
j=1

(
aisx

ij
st + bisy

ij
st→s

)
+

Lt∑
j=1

ı[lisx
ij
st,u

i
sx

ij
st]

(yijst→s)

(2)
= max
t∈N(s)

{
aisx

i
s + bisy

i
s

}
+

Lt∑
j=1

ı
{
yijst→s ∈ [lisx

ij
st, u

i
sx
ij
st]
}

= aisx
i
s + bisy

i
s +

Lt∑
j=1

ı
{
yijst→s ∈ [lisx

ij
st, u

i
sx
ij
st]
}
.

where (1) holds since we assume that any minimizer
has finite cost, and (2) follows from the marginaliza-
tion constraint. This means, that we only need to
add respective bounds constraints to the pairwise un-
knowns. Plugging this into Eunary we obtain

Eunary(x,y) =
∑
s∈V

Ls∑
i=1

(
aisx

i
s + bisy

i
s

)
+
∑
s,t

∑
i,j

ı
{
yijst→s ∈ [lisx

ij
st, u

i
sx
ij
st]
}

subject to the marginalization constraints. By replac-
ing

∑
s∈V

Ls∑
i=1

(
aisx

i
s + bisy

i
s + ı

{
yis ∈ [lisx

i
s, u

i
sx
i
s]
})

with Eunary we have strengthened the relaxation, since

yijst→s ∈ [lisx
ij
st, u

i
sx
ij
st] for all j implies yis ∈ [lisx

i
s, u

i
sx
i
s]

(via the marginalization constraints) but not vice
versa. Overall. for piece-wise linear unary potentials it
is very straightforward to obtain a stronger relaxation
without having a negative impact on implementation
complexity.

4.3 Numerical Illustration

Strengthening of the relaxation as described in Sec-
tion 4.1 can have a huge impact in practice. We il-
lustrate the behavior of different relaxation using a
robustified, non-convex TV-L1 energy for image de-
noising,

ETV-L1(z; f) =
∑
s

λmin{|zs − fs|, T}+
∑
s∼t
|zs − zt|

where f is the given source image and T is an inlier
threshold. λ > 0 is a weighting parameter. A straight-
forward convex relaxation would introduce two unary
potential functions (since the unary cost is defined by
two convex alternatives),

f0
s (zs) = λ|zs − fs| and f1

s (zs) = λT

and convexify

min
x,z

∑
s,i

xisf
i
s(z

i
s) +

∑
s∼t
|zs − zt| (11)
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(a) (b) (c) (d) (e)

Figure 1: The impact of reparametrization on the convex relaxation. (a) Result of the weak relaxation Eq. 12.
(b) corresponding variables x0

s indicating whether a pixel s in an inlier or an outlier. (c) Result of the relaxation
Eq. 13 and corresponding “inlier status” of pixels. Notice that (d) is largely a binary image (stronger relaxation),
and (b) contains many fractional pixels (weak relaxation). (e) Baseline result using discrete inference after
discretization of the continuous image intensity into 256 states.

(subject to xs = x0
s + x1

s, and xis ≥ 0), leading to the
convex program

min
x,y

∑
s,i

(f is)�(xis, y
i
s) +

∑
s∼t
|ys − yt| (12)

subject to the same constraints on x and ys = y0
s +y1

s .
This relaxation turns out to be extremely weak (and
therefore useless, see Fig. 1(a,b)). A significantly
stronger relaxation can be obtained by introducing
four states per node (corresponding to the number
of segments in the piece-linear unary potential zs 7→
min{|zs−fs|, T}), and to move the unary potentials to
the pairwise ones (according to Section 4.2), resulting
in a convex program of the shape

E(x,y) =
∑
s∼t

∑
i,j∈{1,...,4}

(f ijst )�(xijst, y
ij
st→s, y

ij
st→t)

(13)

subject to the standard discrete-continuous marginal-
ization constraints Eq. 2. A minimizer of this energy
is illustrated in Fig. 1(c,d), together with a baseline
solution using a fine discretization of the continuous
label space in Fig. 1(e).

5 Layered Depth Denoising

Assume we are given noisy and partially missing depth
(or disparity) observations ẑ : V → R, and we want
to denoise the map and jointly to segment the im-
age domain into layers based on the observations. We
assume that layers also extend to occluded image re-
gions, where another layer is closer to the depth sensor
(see e.g. [Wei97]). We derive the energy for a back-
ground layer (with unknown depth zb : Ω→ R+

0 ) and
a foreground layer (with depth zf : Ω → R+

0 ). The
discrete-continuous labeling problem is now

E(x, z) =
∑
s

∑
i

xisf
i
s(z

b
s, z

f
s )

+
∑
s∼t

∑
i,j

xijstf
ij(zbs, z

b
t , z

f
s , z

f
t ). (14)

Note that the continuous unknown is a 2-vector per
pixel and not just a single scalar. The discrete choice
i at each pixel s is either that background is observed
directly (i = 0, which implies that foreground depth is
not existent) or foreground occludes background (i =
1, which means that both zb and zf are defined for
this pixel). Given the quantized nature of disparities
reported by the Kinect depth sensor we model f is as
“capped” L1-penalty,

f0
s (zbs, z

f
s ) = msα

[
|zbs − ẑs| − δ

]
+

f1
s (zbs, z

f
s ) = msα

[
|zfs − ẑs| − δ

]
+

+ ı{zbs ≤ zfs },

where δ defines the quantization level. If foreground is
directly visible we enforce that the background depth
is behind the foreground. α is a weighting parameter
for data fidelity, and ms ∈ {0, 1} is a mask indicating
whether a depth value ẑs is available for pixel s. We es-
sentially assume smoothly varying depth for each layer
and utilize a homogeneous (quadratic) regularizer to
penalize spatial discontinuities. Further, we assume
smooth segmentation boundaries between foregound
and background, leading to pairwise potentials

f00(zbs, z
b
t , z

f
s , z

f
t ) =

(
zbs − zbt

)2
f01(zbs, z

b
t , z

f
s , z

f
t ) = f10(zbs, z

b
t , z

f
s , z

f
t ) =

(
zbs − zbt

)2
+β

f11(zbs, z
b
t , z

f
s , z

f
t ) =

(
zbs − zbt

)2
+
(
zfs − z

f
t

)2

.

β > 0 is the cost paid to switch between foreground
and background and corresponds to the smoothness
parameter in standard binary segmentation.

Note that f is is already piecewise linear, if one neglects
the constraint zbs ≤ zfs in f1

s . In order to strengthen
the convex relaxation, we move the unary constraints
to the pairwise potentials as indicated in Section 4.2.
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(a) (b) (c) (d)

Figure 2: (a, c) Input depth maps (black pixels indicating missing values). (b,d) “Background only” marginals
x0
s =

∑
k x

0,k
s .

Since we have 3 branches in the piecewise linear func-
tion z 7→

[
|zbs − ẑs| − δ

]
+

, we obtain 2 · 3 = 6 discrete

states per pixel s. We use a combined index (i, k) (or
(j, l)), where i (respectively j) indicates the absence
(i = 0) or presence (i = 1) of foreground. After mov-
ing the nonlinearities (constraints) from the unary po-
tentials to the pairwise terms, we obtain the following
new pairwise potentials for an edge st (dropping the

explicit arguments (zbs, z
b
t , z

f
s , z

f
t ) to f ij,klst for brevity)

f00,kl
st =

(
zbs − zbt

)2
+ ıRkl

st
(zbs, z

b
t )

f01,kl
st =

(
zbs − zbt

)2
+ β + ı{zft ≤ zbt}+ ıRkl

st
(zbs, z

f
t )

f10,kl
st =

(
zbs − zbt

)2
+ β + ı{zfs ≤ zbs}+ ıRkl

st
(zfs , z

b
t )

f11,kl
st =

(
zbs − zbt

)2
+
(
zfs − z

f
t

)2

+ ı
{
zfs ≤ zbs, z

f
t ≤ zbt

}
+ ıRkl

st
(zfs , z

f
t ),

where

Rklst
def
= [lks , u

k
s ]× [llt, u

l
t]

is a feasible rectangle in 2D. We have l0s = 0, u0
s =

l1s = ẑs − δ, u1
s = l2s = ẑs + δ, and u2

s = ∞ (or some
maximal depth) for all s. Finally,

f0,0
s (zbs, z

f
t ) = α(ẑs − zbs) f1,0

s (zbs, z
f
t ) = α(ẑs − zfs )

f0,1
s (zbs, z

f
t ) = 0 f1,1

s (zbs, z
f
t ) = 0

f0,2
s (zbs, z

f
t ) = α(zbs − ẑs) f1,2

s (zbs, z
f
t ) = α(zfs − ẑs).

We utilize the smoothing technique sketched in Sec-
tion 3.2 and use both L-BFGS and FISTA for op-
timization. Figs. 2(a,c) illustrates two input depth
maps (with missing data), and Figs. 2(b,d) display the
“only background” pseudo-marginals, x0

s =
∑
k x

0,k
s .

The results are largely binary indicating a strong re-
laxation. Convergence is rather slow for—what we
assume–the following reasons: (i) only the sparse set of
strong depth discontinuities determines the layer seg-
mentation, (ii) computation of the gradients for the
smooth approximation requires to solve a small-scale
QP (which we solve by exhaustive case analysis), (iiI)

the number of dual variables is 10L per node/pixel (in
contrast to just 2L for discrete inference with the same
number of discrete states), and (iv) the overall objec-
tive is nonlinear. Fig. 2 illustrate obtained results for
example depth maps (normalized to a [0, 1] range) for
α = 1, β = 4/1000, and δ = 2/1000.

Note that in this particular application it is non-trivial
to initialize alternation-based methods: it is not obvi-
ous how to initialize the segmentation due to the lack
of a per-pixel layer preference, and starting with an
initial estimate for the depth is also challenging due to
missing and occluded data in the input, which has to
be filled in.

6 Conclusion

In this work we deepened the understanding of con-
vex relaxations for joint discrete-continuous inference
problems by deriving the relaxation via dual decom-
position. Further, we obtained several insights how to
properly strengthen the convex relaxations, which im-
mediately points to fundamental differences between
convex LP relaxations for inference problems with only
discrete states and relaxations addressing discrete-
continuous state spaces.

Given the improved understanding of the convex
discrete-continuous formulation we aim for more ef-
ficient inference methods in the future based on the
message passing principle. While standard message
passing essentially leads to agreement of costs in over-
lapping cliques, an extended discrete-continuous mes-
sage passing scheme will likely be based on joint agree-
ment of costs and location of minimizers. Achieving
this agreement between overlapping cliques in an effi-
cient (e.g. closed-form) manner is ongoing research.
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