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Abstract

The multivariate multi-response (MVMR)
linear regression problem is investigated, in
which design matrices are Gaussian with co-
variance matrices Σ(1:K) =

(
Σ(1), . . . ,Σ(K)

)
for K linear regressions. The support union
of K p-dimensional regression vectors (col-
lected as columns of matrix B∗) are recov-
ered using l1/l2-regularized Lasso. Sufficient
and necessary conditions to guarantee suc-
cessful recovery of the support union are
characterized via a threshold. More specif-
ically, it is shown that under certain condi-
tions on the distributions of design matri-
ces, if n > cp1ψ(B∗,Σ(1:K)) log(p − s) where
cp1 is a constant, and s is the size of the
support set, then l1/l2-regularized Lasso cor-
rectly recovers the support union; and if
n < cp2ψ(B∗,Σ(1:K)) log(p − s) where cp2 is
a constant, then l1/l2-regularized Lasso fails
to recover the support union. In particu-
lar, ψ(B∗,Σ(1:K)) captures the impact of the
sparsity of K regression vectors and the sta-
tistical properties of the design matrices on
the threshold for support recovery. Numer-
ical results are provided to demonstrate the
advantages of joint support union recovery
using multi-task Lasso over individual sup-
port recovery using single-task Lasso.

1 Introduction

Linear regression is a simple but practically very useful
statistical model, in which an n sample response vector−→
Y can be modeled as

−→
Y = X

−→
θ +
−→
W
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where X ∈ Rn×p is the design matrix containing n

samples of feature vectors,
−→
θ = (θ1, . . . , θp) ∈ Rp con-

tains regression coefficients, and
−→
W ∈ Rn is the noise

vector. The goal is to find the regression coefficients
−→
θ

such that the linear relationship is as accurate as pos-
sible with regard to a certain performance criterion.
The problem is more interesting in high dimensional
regime with a sparse regression vector, in which the
sample size n can be much smaller than the dimension
p of the regression vector.

In order to estimate the sparse regression vector, it is
natural to construct an optimization problem with an

l0-constraint on
−→
θ , i.e., the number of nonzero com-

ponents of
−→
θ . However, such an optimization problem

is nonconvex and in general very difficult to solve in
an efficient manner [1]. More recently, the convex re-
laxation (referred to as Lasso) has been studied with

an l1-constraint on
−→
θ based on the idea in the seminal

work [2] by Tibshirani, [3] by Chen, Donoho and Saun-
ders, and [4] by Donoho and Huo. More specifically,
the regression problem can be formulated as:

min−→
θ ∈Rp

1

n
‖
−→
Y −X

−→
θ ‖2l2 + λn‖

−→
θ ‖l1 .

The l1-regularized estimator has been proved to be
equivalent to Dantzig Selector [5], which was proposed
in [6]. Various efficient algorithms have been devel-
oped to solve the above convex problem efficiently
(see a review monograph [7]), although the objective
function is not differentiable everywhere due to l1-
regularization. Moreover, the l1-regularization is crit-
ical to force the minimizer to have sparse components
as shown in [2–4].

A vast amount of recent work has studied the high di-
mensional linear regression problem via l1-regularized
Lasso under various assumptions. For example, the
studies in [8–11] investigated the noiseless scenario
and showed that recovery of true coefficients could be
guaranteed with certain conditions on design matri-
ces and sparsity. A number of studies developed l1-
regularized quadratic programming to achieve sparsity
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recovery for noisy scenarios. Some work (e.g., [12–14])
focused on the problem with deterministic design ma-
trices, while other work (e. g., [15, 16]) studied the
problem with random design matrices. Lasso has also
been proved to be useful for generalized linear models
(GLMs) such as logistic regression [17, 18] and some
specific exponential families [19].

Inspired by the success of Lasso in the single-task prob-
lem, block-regularized Lasso for the high-dimensional
multivariate linear regression problem (i.e., the multi-
task linear regression problem) was intensively studied
(see, e.g., [20–23] and references therein). The model
of the problem is given by

Y = XB∗ +W (1)

where Y ∈ Rn×K has each column corresponding to
the output of one task, X ∈ Rn×p is the design matrix,
the regression matrix B∗ ∈ Rp×K has each column
corresponding to the regression vector for one task,
and W ∈ Rn×K has each column corresponding to the

noise vector of one task. For each column
−→
Y (k) of

the matrix Y , it is clear that
−→
Y (k) = X

−→
θ ∗(k) +

−→
W (k),

where
−→
θ ∗(k) and

−→
W (k) are the corresponding columns

in B∗ and W . Then each column is a single-task lin-
ear regression problem and can be solved individually.
However, the K individual problems (i.e., tasks) can
also be coupled together via a block regularized Lasso
and solved jointly in one problem.

Various types of block regularization have been pro-
posed and studied. In [24], the l1/l2-regularization was
adopted to recover the support union of the regression
vectors. More specifically, the following problem was
studied

min
B∈Rp×K

1

2n
|||Y −XB|||2F + λn‖B‖l1/l2 ,

where ‖·‖la/lb is defined in (5) in section 2.1. Sufficient
and necessary conditions for correct recovery of the
support union (i.e., the union of the supports of all
columns of B∗) have been characterized. The l1/lq-
regularized Lasso was adopted for learning structured
linear regression model in [25]. Block regularized Lasso
has also been applied to study various other models
and problems in [26–36].

In the multivariate linear regression problem given in
(1), the design matrix is identical for all tasks, namely,
i.e., X is the same for all column vectors of Y and B∗.
However, in many applications, it is often the case
that different output variables may depend on design
variables that are different or distributed differently.
Thus, the resulting model includes K linear regression
models with different design matrices and is given by:

−→
Y (k) = X(k)−→θ ∗(k) +

−→
W (k) (2)

for k = 1, . . . ,K, where
−→
Y (k) ∈ Rn, X(k) ∈ Rn×p,−→

θ ∗(k) ∈ Rp, and
−→
W (k) ∈ Rn. We refer to the above

problem as the multivariate multi-response (MVMR)
linear regression model, and the goal is to recover−→
θ ∗(k) for k = 1, . . . ,K jointly. This problem has been
studied in [37] via the l1/l2 regularized Lasso for fixed
matrices X(1), . . . , X(K). For random design matri-
ces, this model has been studied via l1/l∞-regularized
Lasso in [38] and via l1/l1 + l1/l∞-regularized Lasso
in [22] for incorporating both row sparsity and indi-
vidual sparsity.

In this paper, we study the MVMR problem for ran-
dom design matrices via l1/l2-regularized Lasso. It is
assumed that the design matrices are Gaussian dis-
tributed, and are independent but not identical across
k. For each task k, the row vector of X(k) is Gaussian
with mean zero and the covariance matrix Σ(k) for
k = 1, . . . ,K. The noise vectors and hence the output
vectors are also Gaussian distributed and independent
across tasks. We are interested in joint recovery of the
union of the support sets (i.e., the support union) of

regression vectors
−→
θ ∗(1), . . . ,

−→
θ ∗(K). We collect these

vectors together as a matrix B∗ =
[−→
θ ∗(1), . . . ,

−→
θ ∗(K)

]
.

We adopt the l1/l2-regularized Lasso problem for re-
covery of the support union via the following optimiza-
tion problem:

min
B∈Rp×K

1

2n

K∑
k=1

∥∥∥−→Y (k) −X(k)−→θ (k)
∥∥∥2
2

+ λn ‖B‖l1/l2

where B =
[−→
θ (1), . . . ,

−→
θ (K)

]
. In this way, the K lin-

ear regression problems are coupled together via the
regularization constraint. We show that this approach
is advantageous as opposed to individual recovery of
the support set for each linear regression problem.
This is because the K regression models may share
their samples in joint support recovery so that the to-
tal number of samples needed can be significantly re-
duced compared to performing each task individually.

1.1 Main Results and Contributions

In the following, we summarize the main contributions
of this work. Our results contain two parts: the achiev-
ability and the converse, corresponding respectively to
sufficient and necessary conditions under which the
l1/l2- regularized Lasso recovers the support union
for the MVMR linear regression problem. Our proof
adapts the techniques developed by Wainwright in [15]
and by Obozinski, Wainwright, and Jordan in [24], but
involves nontrivial development to deal with the dif-
ferently distributed design matrices across tasks. This
also leads to interesting generalization of the results
in [24] as we articulate in section 1.2.
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More specifically, we show that under certain condi-
tions that the distributions of the design matrices sat-
isfy, if n > cp1ψ(B∗,Σ(1:K)) log(p − s), where ψ(·) is
defined in (6) in Section 2.1 and cp1 is a constant,
then the l1/l2-regularized Lasso recovers the support
union for the MVMR linear regression problem; and
if n < cp2ψ(B∗,Σ(1:K)) log(p − s), where cp2 is a con-
stant, then the l1/l2-regularized Lasso fails to recover
the support union. Thus, ψ(B∗,Σ(1:K)) log(p − s)
serves as a sharp threshold on the sample size.

In particular, ψ(B∗,Σ(1:K)) captures the sparsity of
B∗ and the statistical properties of the design ma-
trices, which are important in determining the suffi-
cient and necessary conditions for successful recovery
of the support union. The property of ψ(B∗,Σ(1:K))
also captures the advantages of the multi-task Lasso
over solving each problem individually via the single-
task Lasso. We show that when the K tasks share
the same support sets (although the design matri-
ces can be differently distributed), ψ(B∗,Σ(1:K)) =
1
K max1≤k≤K ψ(

−→
θ ∗k,Σ

(k)). This means that the num-
ber of samples needed per task for the multi-task Lasso
to jointly recover the support union is reduced by
K compared to that of the single-task Lasso to re-
cover each support set individually. On the other
hand, if the K tasks have disjoint support sets, then

ψ(B∗,Σ(1:K)) = max1≤k≤K ψ(
−→
θ ∗(k),Σ(k)). This im-

plies that the number of samples needed per task to
correctly recover the support union is almost the same
as that of the single-task Lasso to recover each sup-
port individually. Between these two extreme cases,
tasks can have overlapped support sets with different
overlapping levels, and the impact of these properties
on the sample size for recovery of the support union is
precisely captured by ψ(B∗,Σ(1:K)).

1.2 Comparison to Previous Results

The MVMR model (with differently distributed design
matrices across tasks) can be viewed as generalization
of the multivariate model (with an identical design ma-
trix across tasks) studied in [24]. It is thus interesting
to compare our results to the results in [24]. For the
scenario when the tasks share the same regression vec-
tor, it is shown in [24] that the major advantage of
jointly solving a multi-task Lasso problem over solv-
ing each single-task Lasso problem individually is re-
duction of effective noise variance by the factor K.
But the sample size needed per task for recovery of
the support union via multi-task Lasso is the same as
that needed for recovery of each support set individu-
ally via single-task Lasso. This implies that multi-task
Lasso does not offer benefit in reducing the sample size
(in the order sense) for this case. Our result, on the
other hand, shows that the benefit in the sample size

of multi-task Lasso appears when the design matri-
ces are differently distributed across tasks. For such a
case, although the design matrices are different across
K tasks, we show that the same total sample size (i.e.,
as the case with the same design matrix) is still suffi-
cient for correct recovery of the support union. Hence,
the sample size needed per task is reduced by K via
multi-task Lasso compared to recovery of each support
set individually via single-task Lasso. Consequently,
our result is a nontrivial generalization of the result
in [24]. For the scenario when the tasks have disjoint
support sets, our result is consistent with the result
in [24], which suggests that there is no advantage of
performing multi-task Lasso as opposed to performing
single-task Lasso for each task.

As we mentioned before, the MVMR model was also
studied in [22, 38], in which l1/l∞ and l1/l1 + l1/l∞-
regularization were adopted for support union recov-
ery, respectively. We study the same model but under
l1/l2-regularization. More importantly, we character-
ize the gain in saving the sample size due to multi-task
Lasso. Furthermore, we characterize the conditions
on the sample size for recovery of support union as a
threshold for the general model. This type of results
were given in [22,38] only for specific scenarios.

1.3 Relationship to Jointly Learning
Multiple Markov Networks

One application of the MVMR linear regression model
is to jointly learning multiple Gaussian Markov net-
work structures. In this context, it solves a multi-task
neighbor selection problem. This is also a natural sce-
nario where features and their distributions vary across
tasks of linear regression.

We consider K Gaussian Markov networks, each with

p+ 1 nodes represented by X
(k)
1 , . . . , X

(k)
p+1 for k =

1, . . . ,K. The distribution of the Gaussian vector

for graph k is given by N
(

0,Σ
(k)
p+1

)
, where Σ

(k)
p+1 ∈

R(p+1)×(p+1). Assume for each graph, there are n i.i.d.
samples generated based on the joint distribution of
the nodes. The objective is to estimate the connection
relationship of nodes based on the samples. We denote

n samples of each variable X
(k)
j by a column vector

−→
X

(k)
j ∈ Rn for j = 1, . . . , p+ 1 and k = 1, . . . ,K. For

each graph k and each node with index a, the sample

vector
−→
X

(k)
a can be expressed as:

−→
X (k)
a = X

(k)
−a
−→
θ (k) +

−→
W (k)

a (3)

where X
(k)
−a is an n × p matrix that groups all col-

umn vectors
−→
X

(k)
j for j 6= a,

−→
θ (k) is a p-dimensional

vector consisting of the estimation parameters of X
(k)
a
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from X
(k)
j with j 6= a, and

−→
W

(k)
a is the n-dimensional

Gaussian vector containing i.i.d. components with zero
mean and variance given by

σ
(k)
W

2
= V ar(X1a)

− Cov(X1a, X1,−a)Cov−1(X1,−a)Cov(X1,−a, X1a).

It has been shown that the nonzero components of the

vector
−→
θ (k) represent existence of the edges between

the corresponding nodes and node a in graph k. Hence,

estimation of the support set of
−→
θ (k) provides an esti-

mation of the graph structure, which is referred to as
the neighbor selection problem [39].

Therefore, multi-task Lasso for the MVMR linear
regression problem provides an useful approach for
joint neighbor selection over K graphs. It is clear

that in this case, the design matrices X
(k)
−a in gen-

eral have different distributions across k, and hence
the multi-feature model is well justified. We note that
jointly learning multiple graphs has also been studied
in [40,41], which adopted a different objective function
of the precision matrix Σ−1. Via the MVMR linear
regression model, we characterize the threshold-based
sufficient and necessary conditions for joint recovery of
the graphs.

2 Problem Formulation and Notations

In this paper, we study the MVMR linear regression
problem given by (2), which contains K linear re-
gressions. Here, the design matrices X(1), . . . , X(K)

and noise vectors
−→
W (1), . . . ,

−→
W (K) are Gaussian dis-

tributed, and are independent but not identical across
k. For each task k, X(k) has independent and iden-
tically distributed (i.i.d.) row vectors with each be-
ing Gaussian with mean zero and covariance matrix

Σ(k), and the noise vector
−→
W (k) has i.i.d. components

with each being Gaussian with mean zero and variance

σ
(k)
W

2
. We let σmax = max1≤k≤K σ

(k)
W

2
.

In (2),
−→
θ ∗(k) denotes the true regression vector for

each task k. We define the support set for each
−→
θ ∗(k)

as Sk := {j ∈ {1, . . . , p}|
−→
θ
∗(k)
j 6= 0}. The support

union over K tasks is defined to be S := ∪Kk=1Sk. In
this paper, we are interested in estimating the support
union jointly for K tasks.

We adopt the l1/l2-regularized Lasso to jointly recover
the support union for the MVMR linear regression
model. More specifically, we solve the following multi-

task Lasso problem rewritten below:

min
B∈Rp×K

1

2n

K∑
k=1

∥∥∥−→Y (k) −X(k)−→θ (k)
∥∥∥2
2

+ λn ‖B‖l1/l2

(4)

where B =
[−→
θ (1), . . . ,

−→
θ (K)

]
. In this way, the K lin-

ear regression problems are coupled together via the
regularization constraint. In this paper, we character-
ize conditions under which the solution to the above
multi-task Lasso problem correctly recover the support
union of the true regression vectors for K tasks.

2.1 Notations

We introduce some notations that we use in this paper.
For a matrix A ∈ Rp×K , we define the la/lb block norm
as

‖A‖la/lb :=

 p∑
i=1

 K∑
j=1

|Aij |b
a/b


1/a

. (5)

We also define the operator norm for a matrix as

|||A|||a,b := sup
‖x‖b=1

‖Ax‖a.

In particular, we define the spectral norm as |||A|||2 =
|||A|||2,2 and the l∞-operator norm as |||A|||∞ =
|||A|||∞,∞, which are special cases of the operator norm.

For matrix B =
[−→
θ (1), . . . ,

−→
θ (K)

]
that appears in (4),

−→
θ (k) denotes its kth columns for k = 1, . . . ,K. We
further let Bi to be the ith row of B. Similarly, for

B∗ =
[−→
θ ∗(1), . . . ,

−→
θ ∗(K)

]
that contains true regression

vectors, its kth column is denoted by
−→
θ ∗(k) and the ith

row is denoted by B∗i . We next define the normalized
row vectors of B∗ as

Z∗i =


B∗i
‖B∗i ‖l2

if B∗i 6= 0

0 otherwise,

and define the matrix Z∗ to contain Z∗i as its ith row

for i = 1, . . . , p. To avoid confusion, we use B̂ to de-
note the solution to the multi-task Lasso problem (4).

The support union S(B) for a matrix B ∈ Rp×K is
denoted as S(B) = {i ∈ {1, . . . , p}|Bi 6= 0}, which in-
cludes indices of the nonzero rows of the matrix B. We
use S to represent S(B∗) (i.e., the true support union)
for convenience and use Sc to denote the complement
of the set S. We let s = |S| denote the size of the set

S. For any matrix X(k) ∈ Rn×p, the matrix X
(k)
S con-

tains the columns of matrix X(k) with column indices
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in the set S, and X
(k)
Sc contains the columns of matrix

X(k) with column indices in the set Sc. Similarly, B∗S
and Z∗S respectively contain rows of B∗ and Z∗ with
indices in S.

As each row of matrix X(k) is Gaussian distributed
as N (0,Σ(k)), we use Σ

(k)
SS to denote the covariance

matrix for each row of X
(k)
S , and use Σ

(k)
ScS to denote

the cross covariance between rows of X
(k)
Sc and X

(k)
S .

For convenience, we use Σ(1:K) to denote a set of matri-
ces Σ(1), . . . ,Σ(K). We also define the following func-
tions of matrices Q(1:K) to simply our notations:

ρu

(
Q(1:K)

)
:= max

j∈Sc
max

1≤k≤K
Q

(k)
jj ,

ρl

(
Q(1:K)

)
:= min

i,j∈Sc,j 6=i
min

1≤k≤K

[
Q

(k)
jj +Q

(k)
ii − 2Q

(k)
ji

]
.

In particular, our results contain the functions

ρu

(
Σ

(1:K)
ScSc|S

)
and ρl

(
Σ

(1:K)
ScSc|S

)
, where Σ

(k)
ScSc|S is the

covariance matrix of each row of X
(k)
Sc with X

(1:K)
S

given.

For matrix B∗, we define b∗min = minj∈S
∥∥B∗j ∥∥l2 . We

define the following function that captures the spar-
sity of B∗ and the statistical properties of the design

matrices X
(1:K)
S :

ψ(B∗,Σ(1:K)) := max
1≤k≤K

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk, (6)

where
−→
Z ∗Sk is the kth column of Z∗S . We note that this

definition of ψ(·) function is different from the previous
work [24]. Here, due to different design matrices, ψ(·)
depends on K quantities

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk with each

depending on a column vector
−→
Z ∗Sk.

3 Main Results

In this section, we provide our main results on using
multi-task Lasso to recover the support union for the
MVMR linear regression model. Our results contain
two parts: one is the achievability, i.e., sufficient con-
ditions for the l1/l2-regularized Lasso to recover the
support union; and the other is the converse, i.e., con-
ditions under which the l1/l2-regularized Lasso fails to
recover the support union. We then discuss implica-
tions of our results by considering a few representative
scenarios, and compare our results with those for the
multivariate linear regression with an identical design
matrix across tasks.

3.1 Achievability and Converse

We first introduce a number of conditions on covari-
ance matrices Σ(k) for k = 1, . . . ,K, which are useful

for the statements of our results.

(C1). There exists a real number γ ∈ (0, 1]
such that |||A|||∞ ≤ 1 − γ, where Ajs =

max1≤k≤K

∣∣∣∣∣
(

Σ
(k)
ScS

(
Σ

(k)
SS

)−1)
js

∣∣∣∣∣ for j ∈ Sc and s ∈ S.

(C2). There exist constants 0 < Cmin ≤ Cmax < +∞
such that all eigenvalues of the matrix Σ

(k)
SS are con-

tained in the interval [Cmin, Cmax] for k = 1, . . . ,K.

(C3). There exists a constant Dmax < +∞ such that

max1≤k≤K

∣∣∣∣∣∣∣∣∣∣∣∣(Σ
(k)
SS

)−1∣∣∣∣∣∣∣∣∣∣∣∣
∞
≤ Dmax.

In this paper, we consider the asymptotic regime, in
which p→∞, s→∞, and log (p− s)→ +∞. In such
a regime, we introduce the conditions on the regular-
ization parameter and the sample size n as follows:

(P1). Regularization parameter λn =
√

f(p) log p
n ,

where the function f(p) is chosen such that f(p) →
+∞ as p → +∞, and f(p) log p

n → 0 as n → ∞, i.e.,
λn → 0 as n→ +∞.

(P2). Define ρ(n, s, λn) as

ρ(n, s, λn) :=

√
8σ2

maxs log s

nCmin
+λn

(
Dmax +

12s

Cmin
√
n

)
and require ρ(n,s,λn)

b∗min
= o(1).

The following theorem characterizes sufficient condi-
tions for recovery of the support union via the multi-
task Lasso.

Theorem 1. Consider the MVMR problem in the
asymptotic regime, in which p → ∞, s → ∞ and
log(p − s) → ∞. We assume that the parameters(
n, p, s, B∗,Σ(1:K)

)
satisfy the conditions (C1)-(C3),

and (P1)-(P2). If for some small constant v > 0,

n > 2(1 + v)ψ
(
B∗,Σ(1:K)

)
log(p− s)

ρu

(
Σ

(1:K)
ScSc|S

)
γ2

,

(7)

then the problem (4) has a unique solution B̂, the sup-

port union S(B̂) is the same as the true support union

S(B∗),and ‖B̂−B∗‖l∞/l2 = o(b∗min) with the probabil-
ity greater than

1−K exp (−c0 log s)− exp (−c1 log (p− s)) (8)

where c0 and c1 are constants.

Theorem 1 provides sufficient conditions on the sam-
ple size such that the solution to the multi-task Lasso
problem correctly recovers the support union of the
MVMR linear regression model. We next provides a
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theorem about the conditions on the sample size un-
der which the solution to the multi-task Lasso problem
fails to recover the support union.

Theorem 2. Consider the MVMR problem in the
asymptotic regime, in which p → ∞, s → ∞ and
log(p − s) → ∞. We assume that the parameters(
n, p, s, B∗,Σ(1:K)

)
satisfy the conditions (C1)-(C2)

and the conditions: s/n = o(1) and 1
λ2
ns
→ 0. If for

some small constant v > 0,

n < 2(1− v)ψ(B∗,Σ(1:K)) log (p− s)
ρl

(
Σ

(1:K)
(ScSc|S)

)
(2− γ)2

,

(9)
then with the probability greater than

1− exp(−c2s)− c3 exp
(
−c4

n

s

)
(10)

for some positive constants c2, c3 and c4, no solution
B̂ to the multi-task Lasso problem recovers the true
support union and achieves ‖B̂ −B∗‖l∞/l2 = o(b∗min).

The proofs of Theorems 1 and 2 adapt the techniques
developed by Obozinski, Wainwright, and Jordan in
[24], but involve novel development to deal with the
differently distributed design matrices across tasks.

Combining Theorems 1 and 2, the quantity
ψ(B∗,Σ(1:K)) log(p − s) serves as a threshold on the
sample size n, which is tight in the order sense. As
the sample size is above the threshold, the multi-task
Lasso recovers the true support union, and as the sam-
ple size is below the threshold, the multi-task Lasso
fails to recover the true support union. The following
proposition provides bounds on the scaling behavior of
the function ψ(B∗,Σ(1:K)) in the asymptotic regime.

Proposition 1. Consider the MVMR linear regres-
sion model with the regression matrix B∗ and the co-
variance matrices Σ(1:K) satisfying the condition (C2),
the function ψ(B∗,Σ(1:K)) is bounded:

s

KCmin
≤ ψ(B∗,Σ(1:K)) ≤ s

Cmin
.

In the next subsection, we explore the properties of the
quantity ψ(B∗,Σ(1:K)) in order to understand the im-
pact of sparsity of B∗ and covariance matrices Σ(1:K)

on the conditions for recovering the support union.

3.2 Implications

The quantity ψ(B∗,Σ(1:K)) captures sparsity of B∗

and statistical properties of design matrices (i.e.,
Σ(1:K)), and hence plays an important role in deter-
mining the conditions on the sample size for recovery
of the support union as shown in Theorems 1 and 2.

In this section, we analyze ψ(B∗,Σ(1:K)) for a num-
ber of representative cases in order to understand ad-
vantages of multi-task Lasso which solves multiple lin-
ear regression problems jointly over single-task Lasso
which solves each linear regression problem individu-
ally.

We denote ψ(
−→
θ ∗(k),Σ(k)) as the function correspond-

ing to a single linear regression problem, where
−→
θ ∗(k)

represents the kth column of B∗. It is clear that
ψ(B∗,Σ(1:K)) captures the threshold on the sample
size for the multi-task Lasso problem. Comparison

of ψ(B∗,Σ(1:K)) and ψ(
−→
θ ∗(k),Σ(k)) provides compar-

ison between multi-task Lasso and single-task Lasso
in terms of the number of samples needed for recov-
ery of the support union/set. We explicitly express

ψ(B∗,Σ(1:K)) and ψ(
−→
θ ∗(k),Σ(k)) as follows:

ψ(B∗,Σ(1:K))

= max
1≤k≤K

∑
i∈S

∑
j∈S

B∗ikB
∗
jk

‖B∗i ‖l2
∥∥B∗j ∥∥l2

((
Σ

(k)
SS

)−1)
ij

(11)

ψ(
−→
θ ∗(k),Σ(k)) =

∑
i∈S

∑
j∈S

−→
θ
∗(k)
i

−→
θ
∗(k)
j∣∣∣−→θ ∗(k)i

∣∣∣ ∣∣∣−→θ ∗(k)j

∣∣∣
((

Σ
(k)
SS

)−1)
ij

(12)

where B∗ik denotes the (i, k)th entry of the matrix B∗

and
−→
θ
∗(k)
i denotes the ith entry of the vector

−→
θ ∗(k).

We first study the scenario, in which all K tasks have
the same regression vectors, and hence have the same
support sets.

Corollary 1. (Identical Regression Vectors) If B∗ has

identical column vectors, i.e.,
−→
θ ∗(k) =

−→
θ ∗ for k =

1, . . . ,K, then

ψ(B∗,Σ(1:K)) =
1

K
max

1≤k≤K
ψ(
−→
θ ∗,Σ(k)). (13)

Remark 1. Corollary 1 implies that the number of
samples per task needed to correctly recover the sup-
port union via multi-task Lasso is reduced by a factor
of K compared to single-task Lasso that recovers each
support set individually.

It can be seen that although the K tasks involve de-
sign matrices that have different covariances, as long
as dependence of the output variables on the feature
variables is the same for all tasks, the tasks share sam-
ples in multi-task Lasso to recover the support union
so that the sample size needed per task is reduced by a
factor of K. Hence, there is a significant advantage of
grouping tasks with similar regression vectors together
for multi-task learning.
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Corollary 1 can be viewed as a generalization of the
result in [24], in which the design matrices for the
tasks are the same. The result in [24] suggests that
if the tasks share the same regression vector, there is
no benefit in terms of the number of samples needed
for support recovery using multi-task Lasso compared
to single-task Lasso. Our result suggests that the ben-
efit of multi-task Lasso in fact appears when the design
matrices are differently distributed. For such a case,
we show that the total number of samples needed for
recovery of the support union is not increased for the
case with differently distributed design matrices com-
pared to the case with the same design matrix (studied
in [24]). Hence, sample size needed per design matrix
(i.e., per task) is reduced by the factor K. Moreover,
compared to recovery of each support set individually
via single-task Lasso, multi-task Lasso also reduces
sample size per task by the factor K. However, such
an advantage does not appear if the K tasks have the
same design matrix and regression vectors as in [24].

We next study a more general case when regression
vectors are also different across tasks (but the support
sets of tasks are the same) in addition to varying design
matrices across tasks.

Corollary 2. (Varying Regression Vectors with Same
Supports) Suppose all entries B∗jk > 0 for j ∈ S and
k = 1, . . . ,K, and all coefficients are bounded, i.e.,
B̄k −∆k ≤ B∗jk ≤ B̄k + ∆k, where ∆k > 0 is a small

perturbation constant with B̄k > ∆k. Then,

ψ(B∗,Σ(1:K))

max1≤k≤K ψ(
−→
θ ∗(k),Σ(k))

≤ 1

K
max

1≤k≤K

(
B̄k + ∆k

)2(
B̄k −∆k

)2 .
Corollary 2 is a strengthened version of Corollary 1 in
that Corollary 2 allows both the regression vectors and
design matrices to be different across tasks and still
shows that the number of samples needed is reduced
by a factor of K compared to single-task Lasso, as long
as the support sets across tasks are the same.

Corollary 3. (Disjoint Support Sets) Suppose the dis-
tribution of all design matrices are the same, i.e.,

Σ(k) = Σ and Σ
(k)
SS = ΣSS for k = 1, . . . ,K, and sup-

pose that the support sets Sk of all tasks are disjoint.
Let sk = |Sk|, and hence s =

∑K
k=1 sk. Then,

ψ(B∗,Σ(1:K)) = max
1≤k≤K

ψ(
−→
θ ∗(k),Σ(k)).

We note that

max
1≤k≤K

ψ(
−→
θ ∗(k),Σ(k)) log (p− s)

≤ max
1≤k≤K

ψ(
−→
θ ∗(k),Σ(k)) log (p− sk).

Since the number of samples needed per
task for multi-task Lasso is proportional to

max1≤k≤K ψ(
−→
θ ∗(k),Σ(k)) log (p− s), and the number

of samples needed for single-task Lasso for task k is

proportional to ψ(
−→
θ ∗(k),Σ(k)) log (p− sk), the above

equation implies that the required number of samples
for multi-task Lasso is smaller than (in fact almost
the same as) that for single-task Lasso.

Corollary 3 suggests that if the tasks have disjoint sup-
port sets for regression vectors, the advantage of the
multi-task Lasso disappear. This is reasonable because
the tasks do not benefit from sharing the samples for
recovering the supports if their supports are disjoint.
The essential message of Corollary 3 should not change
if the tasks have different design matrices and/or dif-
ferent regression vectors. The critical assumption in
Corollary 3 is the disjoint support sets.

Corollaries 1 and 3 provide two extreme cases when the
tasks share the same support sets and have disjoint
support sets, respectively. The number of samples
needed per task for recovery of the support union goes
from 1/K of to the same as the sample size needed for
single-task Lasso. It is conceivable that between these
two extreme cases, tasks may have overlapped support
sets with various overlapping levels. Correspondingly,
the number of samples needed for recovering the sup-
port union should depend on the overlapping levels of
the support sets and is captured precisely by the quan-
tify ψ(B∗,Σ(1:K)). We demonstrate such behavior via
our numerically results in the next section.

4 Numerical Results

In this section, we provide numerical simulations to
demonstrate our theoretical results on using block-
regularized multi-task Lasso for recovery of the sup-
port union for the MVMR linear regression model. We
study how the sample size needed for correct recov-
ery of the support union depends on sparsity of the
regression vectors, on the distributions of the design
matrices, and on the number of tasks.

We first study the scenario considered in Corollary 1
when the K tasks have the same regression vectors,

i.e., B∗ =
−→
θ ∗~1TK . We set

−→
θ ∗ = 1√

K
~1S , where S

is the common support set across K tasks. We set
the covariance matrix Σ(k) different across K tasks as
follows. For k = 1, . . . ,K, we set Cov(Xa, Xb) > 0
(where a, b ∈ {1, 2, . . . , p}) if a = b ± 1, otherwise
Cov(Xa, Xb) = 0. Cov(Xa, Xb) = 1 + 1/k if a = b± 1
and a is odd. Cov(Xa, Xb) = 1−0.8/k if a = b±1 and
a is even. The sparsity of linear regression vectors is
linearly proportional to the dimension p, i.e., s = αp,
with the parameter α controlling the sparsity of the
model. We set α = 1/8. We choose the dimension p =
128, 256, 512. We solve multi-task Lasso for recovery
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Figure 1: Impact of number of tasks on the sample size for scenarios with identical regression vectors and varying
distributions for design matrices across tasks

1 2 3
0

0.2

0.4

0.6

0.8

1

n/[2s log(p−s)]

P
ro

ba
bi

lit
y 

of
 C

or
re

ct
 R

ec
ov

er
y p=128

 

 

Identical
Overlap
Disjoint

1 2 3
0

0.2

0.4

0.6

0.8

1

n/[2s log(p−s)]

P
ro

ba
bi

lit
y 

of
 C

or
re

ct
 R

ec
ov

er
y p=256

 

 

Identical
Overlap
Disjoint

1 2 3
0

0.2

0.4

0.6

0.8

1

n/[2s log(p−s)]

P
ro

ba
bi

lit
y 

of
 C

or
re

ct
 R

ec
ov

er
y p=512

 

 

Identical
Overlap
Disjoint

Figure 2: Impact of overlapping levels of support sets on the sample size with same regression values for over-
lapping entries and identical distributions for design matrices across tasks

of the support union for K = 2, 4, 6, 8. We set the reg-
ularization parameter λn = 3.5×

√
log (p− s) log s/n.

Fig. 1 plots the probability of correct recovery of the
support union as a function of the scaled sample size
for p = 128, 256, 512. It can be seen that the sample
size for guaranteeing correct recovery scales in the or-
der of s log(p−s) for all plots. Moreover, as the number
of tasks K increases, the sample size (per task) needed
for correct recovery decreases inversely proportionally
with K, which is consistent with Corollary 1. These
results demonstrate that when the regression vectors
are the same across tasks, multi-task Lasso has a great
advantage compared to single-task Lasso in terms of
reduction in the sample size needed per task.

We next study how the overlapping levels of the sup-
port sets across tasks affect the sample size for correct
recovery of the support union. We set K = 2, i.e.,
two tasks, and study three overlapping models for the
two tasks: (1) same support sets S1 = S2 = {j ≤ p :
8tpe + 1}, where tpe ≥ 0 is an integer; (2) disjoint sup-
port sets S1

⋂
S2 = φ in which S1 = {j ≤ p : 16tpe+1}

and S2 = {j ≤ p : 16tpe + 2}; (3) overlapping support
sets in which S1 = {j : j = 24tpe+ 1 or j = 24tpe+ 2},
and S2 = {j : j = 24tpe + 2 or j = 24tpe + 3}. We
choose the linear sparsity model with α = 1/8. We set
p = 128, 256, 512, and Σ(k) = Ip for k = 1 and 2. We

also set λn = 3.5×
√

log (p− s) log s/n.

Fig. 2 compares the probability of correct recovery of
the support union as a function of the scaled sample
size for the three overlapping models. It can be seen
that the model with the same support set requires the

smallest sample size, and the model with disjoint sup-
port sets requires the largest sample size. The model
with overlapping support sets needs the sample size
between the two extreme models. This is reasonable
because as the support sets overlap more, tasks share
more information in samples for support recovery and
hence need less number of samples for correct recovery.

5 Conclusions

In this paper, we have investigated the Gaussian
MVMR linear regression model. We have character-
ized sufficient and necessary conditions under which
the multi-task Lasso guarantees successful recovery of
the support union of K linear regression vectors. The
two conditions are characterized by a threshold and
hence are tight in the order sense. Our numerical re-
sults have demonstrated the advantage of joint recov-
ery of the support union compared to using single-task
Lasso to recover the support set of each task individu-
ally. Further studying the MVMR model under other
block-constrains is an interesting topic in the future.
Applications of the approach here to structure learn-
ing problems based on real data sets such as social
network data are also interesting.
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