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Abstract

Approximate inference for Bayesian models
is dominated by two approaches, variational
Bayesian inference and Markov Chain Monte
Carlo. Both approaches have their own ad-
vantages and disadvantages, and they can
complement each other. Recently researchers
have proposed collapsed variational Bayesian
inference to combine the advantages of both.
Such inference methods have been success-
ful in several models whose hidden variables
are conditionally independent given the pa-
rameters. In this paper we propose two col-
lapsed variational Bayesian inference algo-
rithms for hidden Markov models, a pop-
ular framework for representing time series
data. We validate our algorithms on the nat-
ural language processing task of unsupervised
part-of-speech induction, showing that they
are both more computationally efficient than
sampling, and more accurate than standard
variational Bayesian inference for HMMs.

1 Introduction

Hidden Markov Models (HMMs) are widely used for
representing sequential data in various fields including
speech recognition, natural language processing, infor-
mation retrieval, computer vision, bioinformatics and
finance. The core theory of HMMs, together with the
celebrated forward-backward (or Baum-Welch) algo-
rithm was developed by Baum and colleagues (Baum
and Petrie, 1966; Baum et al., 1970). As a simple
but effective statistical tool, the popularity of HMMs
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soared in the following decade, yielding a variety of
elaborations and applications, reviewed by Juang and
Rabiner (1991). Smyth et al. (1997) expressed HMMs
as Bayesian networks, which promoted the develop-
ment of a number of Bayesian approaches (MacKay,
1997; Beal, 2003; Goldwater and Griffiths, 2007).

Variational Bayesian inference (VB) (MacKay, 1997;
Beal, 2003) for HMMs seeks to minimise the divergence
between the true posterior and an approximation in
which the parameters and hidden variables are as-
sumed independent. This strong assumption allows for
an efficient iterative solution, but it can often lead to
poor approximations. Alternatively, collapsed Gibbs
sampling (CGS) for HMMs by Goldwater and Grif-
fiths (2007) integrates out the parameters, and draws
samples for hidden variables in turn from the true pos-
terior. In theory, CGS reaches the true posterior after
convergence. In practice it is notoriously difficult to
assess the convergence of samplers, and mixing is slow
for distributions with tightly coupled latent variables
like the HMM. It remains a challenge to develop algo-
rithms that are both accurate and efficient, especially
for large scale problems in our application domain of
natural language processing.

Recently Teh et al. (2007) and Sung et al. (2008) sug-
gest a third class of algorithms: collapsed variational
Bayesian inference (CVB), which applies variational
inference in the same collapsed space as CGS. Integrat-
ing out the parameters induces dependencies which
spread over many hidden variables, and thus the de-
pendency between any two hidden variables is very
weak. Following the collapsing step, the hidden vari-
ables are assumed to be independent and mean field
inference is applied.

Sung et al. (2008) studied CVB inference in the con-
text of the general conjugate-exponential family. Nev-
ertheless, one cannot derive CVB for a particular
model based on this general result. Teh et al. (2007)
successfully applied CVB inference to latent Dirich-
let allocation (LDA), a popular framework for topic
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modeling, and also suggested the usage of CVB in
a wider class of discrete graphical models, including
HMMs. To date CVB has not been extended to mod-
els that have time series dependencies (e.g. HMMs)
or structural dependencies (e.g. probabilistic context
free grammars (PCFGs)). For such models, there ex-
ist strong dependencies among hidden variables even
in the collapsed space. In this context the indepen-
dence assumption, required by the mean field method,
is not an optimal choice.

In this paper we propose two CVB algorithms for
HMMs. The first algorithm assumes independence
among the hidden variables in the collapsed space,
as was done for LDA (Teh et al., 2007). The sec-
ond algorithm keeps the strong dependencies in the
original model and neglects the weak dependencies in-
duced by marginalizing out the parameters. Because
of such weak assumptions the second CVB algorithm
can approximate the true posterior very closely. Our
experiments show that both algorithms surpass VB
inference, while maintaining the same computational
complexity. The second algorithm outperforms CGS
as the size of the data increases, with an order of mag-
nitude less training time.

2 Approximate inference for HMMs

A HMM models a sequence of observations x =
x1, x2, ..., xT , together with a sequence of hidden states
z = z0, z1, z2, ..., zT , which is generated by a first or-
der Markov process. Each observation xt ∈ {1, ...,W}
is emitted by the corresponding hidden state zt ∈
{1, ...,K} at time step t. For convenience, we let
z0 = s, the start state, which is also included in the
hidden state space. The set of parameters θ for a
HMM consists of a transition matrix A and en emission
matrix B. Let Ak,k′ denote the probability of transi-
tioning into state k′ from state k, and Bk,w denote
the probability of emitting observation w from hidden
state k. Symmetric Dirichlet priors with hyperparam-
eters α and β are placed on each of Ak = {Ak,k′} and
Bk = {Bk,w}, respectively. The joint probability of
the parameters and variables is:

p(x, z, θ|α, β) =

p(A|α)p(B|β)
T−1∏
t=0

p(zt+1|zt, A)p(xt+1|zt+1, B) (1)

2.1 Variational Bayesian inference

The standard Baum-Welch training algorithm (Baum
et al., 1970) for a HMM is a special case of a general
class of algorithms, namely expectation-maximization
(EM) (Dempster et al., 1977), which can be further

considered as a subclass of VB. VB inference lower
bounds the log marginal likelihood of the data log p(x)
by using the negative variational free energy.

logp(x|α, β) ≥ −F(q(z, θ))
= Eq(z,θ)[log p(x, z, θ|α, β)]− Eq(z,θ)[log q(z, θ)]

(2)

with q(z, θ) an approximate posterior, and q(z, θ) is
factorized by assuming independence between param-
eters and latent variables:

q(z, θ) ≈ q(z)q(θ) (3)

Maximizing −F(q(z, θ)) updates q(z) and q(θ) in turn.
For the Baum-Welch algorithm using maximum likeli-
hood estimation, q(θ) degenerates, i.e. δ(θ = θ?).

E step: q(z) ∝ exp(Eq(θ)[log p(x, z, θ)]) (4)
M step: θ? = argmax

θ
p(x, z, θ) (5)

Solving the E step yields

q(z) ∝p(x, z|θ?)

=
T−1∏
t=0

p(zt+1|zt, A?)p(xt+1|zt+1, B
?)

=
T−1∏
t=0

A?zt,zt+1
B?zt+1,xt+1

(6)

The distribution over the whole sequence q(z) is in-
tractable, dynamic programming tricks are carried out
to compute p(zt,x|θ?) and p(zt, zt+1,x|θ?).

p(zt,x|θ?) ∝ αt(zt)βt(zt) (7)
p(zt, zt+1,x|θ?) ∝ αt(zt)A?zt,zt+1

B?zt+1,xt+1
βt+1(zt+1)

(8)

where αt(k) is the forward probability of being in state
k at time step t, given observations before and include
t; βt(k) is the backward probability of seeing observa-
tions after t, given state is k at time step t. Both are
computed recursively.

Solving the M step yields

A?k,k′ =
∑T−1
t=0 q(zt = k, zt+1 = k′)∑T−1

t=0 q(zt = k)
(9)

B?k,w =
∑T
t=1 q(zt = k)δ(xt = w)∑T

t=1 q(zt = k)
(10)

VB inference generalizes EM by putting no restrictions
on the parametric form of q(θ). Thus, the update in
the M step becomes

q(θ) ∝ exp(Eq(z)[log p(x, z, θ|α, β)]) (11)
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p(zt = k|x, z¬t, α, β) ∝
C¬tk,w + β

C¬tk,· +Wβ
·
C¬tzt−1,k

+ α

C¬tzt−1,· +Kα
·
C¬tk,zt+1

+ α+ δ(zt−1 = k = zt+1)

C¬tk,· +Kα+ δ(zt−1 = k)

Figure 1: The conditional distribution for a single hidden state zi in the collapsed Gibbs sampler, conditioned
on all other hidden states z¬t. C¬i is the count that does not include zi, w is the observation at time step t, W
is the size of observation space, and K is the size of hidden state space. δ is the standard indicator function.

Solving the above equation results in Dirichlet distri-
butions with updated hyperparameters. Equivalently,
Beal (2003) suggested the mean parameters θ̃ instead.
This involves only a minor change in the M step:

Ãk,k′ =
f(

∑T−1
t=0 q(zt = k, zt+1 = k′) + α)

f(
∑T−1
t=0 q(zt = k) +Kα)

B̃k,w =
f(

∑T
t=1 q(zt = k)δ(xt = w) + β)

f(
∑T
t=1 q(zt = k) +Wβ)

f(x) = exp(Ψ(x))

where Ψ(x) = ∂Γ(x)
∂x is the digamma function.

Ignoring how fluctuations in θ induce fluctuations in
z (and vice-versa) allows for analytic iterations, and
both EM and VB inference algorithms are efficient and
easy to implement. Nevertheless, the independence
assumption may potentially lead to very inaccurate
estimations. The parameters and latent variables are
strongly dependent in the true posterior p(z, θ|x, α, β),
which is proportional to the joint distribution in (1).
As we shall see in the following, CGS and CVB model
the dependencies between parameters and hidden vari-
ables in an exact fashion.

2.2 Collapsed Gibbs sampling

The collapsed Gibbs sampler produces a hidden state
sequence z sampled from the posterior distribution

p(z|x, α, β) =
∫
p(z,x|θ)p(θ|α, β)dθ (12)

Because Dirichlet priors are conjugate to discrete dis-
tributions, it is possible to integrate out the model pa-
rameters θ to yield the conditional distribution for zi
shown in Figure 1. The derivation is quite standard by
following the tutorial (Resnik and Hardisty, 2010). It
also appeared in Goldwater and Griffiths (2007), and
Gao and Johnson (2008).

CGS does not make any independence assumptions
between parameters and hidden variables, and draws
samples from the true posterior. However, as with
other MCMC samplers, it is often hard to assess con-
vergence, and one needs to set the number of sam-
ples and the burn-in period based on experience. In

practice, one often draws as many samples as possible
(within the limited time frame) to reduce sampling
variance, and thus it is much less efficient than EM
and VB.

Griffiths and Steyvers (2004) observed that the CGS
for LDA converged relatively quickly. In LDA, the
conditional distribution for the currently updating
variable depends on other variables only through the
counts, i.e. the dependency on any particular other
variable is very small. Hence quick convergence is to
be expected. For HMMs the conditional distribution
for zt in Figure 1 depends on the states of the previ-
ous hidden variable (zt−1) and the next hidden vari-
able (zt+1), as well as the global counts. Such strong
dependencies makes CGS for HMMs much slower to
converge (Gao and Johnson, 2008).

3 Collapsed variational inference for
i.i.d. hidden variables

The rapid convergence of CGS for LDA indicates that
VB in the collapsed space is likely to be effective. For
any independent and identically distributed models,1

collapsing the parameters induces only weak depen-
dencies among the hidden variables. The sum of the
dependencies is decisive, but any particular depen-
dency is tiny, especially for large data sets. This fits
exactly with the assumptions underlying mean field
theory. The currently updating variable relies on the
field (i.e. summary statistics), through which it inter-
acts with other variables. As the influence from any
single variable on the field is small we may expect mean
field updates in the collapsed space to be accurate.

Formally, CVB models the dependencies between pa-
rameters and hidden variables in an exact fashion.

q(z, θ) = q(z)q(θ|z) (13)

The mean field method requires independent variables,
and thus the induced weak dependencies among hid-

1We define a model to be i.i.d., if any two hidden vari-
ables are conditionally independent given the parameters.
LDA and mixture models are typical examples. HMMs
are not i.i.d., as each hidden variable is dependent on the
previous one given the parameters.
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den variables are neglected.

q(z) ≈
T∏
t=1

q(zt) (14)

The negative variational free energy becomes:

−F(q(z)q(θ|z)) =Eq(z)q(θ|z)[log p(x, z, θ)− log q(z, θ)]

=Eq(z)[Eq(θ|z)[log
p(x, z, θ)
q(θ|z)

]− log q(z)]

(15)

Maximizing −F(q(z)q(θ|z)) updates q(θ|z) and q(z) in
turn. We set q(θ|z) equal to the true posterior:

−F(q(z)p(θ|x, z)) =Eq(z)[Ep(θ|x,z)[log
p(x, z, θ)
p(θ|x, z)

]

− log q(z)]
=Eq(z)[log p(x, z)− log q(z)] (16)

The mean field update for each q(zt) in q(z) is:

q(zt) ∝ exp(Eq(z¬t)[log p(x, z)])

∝ exp(Eq(z¬t)[log p(zt|x, z¬t)]) (17)

The term p(zt|x, z¬t) is exactly the conditional distri-
bution for zt, up to a normalization constant, used in
CGS. It is easy to verify that the conditional distribu-
tion from Figure 1 can be substituted into (17). This
suggests a systematic way to obtain CVB updates for
any i.i.d. model for which the CGS posterior has al-
ready been derived.

4 Collapsed variational inference for
HMMs

For HMMs with time series dependencies each hid-
den variable is dependent on the previous one given
the parameters. In the collapsed space, a hidden vari-
able strongly depends on both the previous and next
variables, and weakly depends on others through their
counts. We describe two CVB inference algorithms for
HMMs which make different assumptions about the
variational distribution q(z).

4.1 Algorithm 1

The first CVB algorithm for HMMs follows the the-
ory for i.i.d. models developed in the previous section
by assuming that the hidden variables are mutually
independent in the collapsed space. Although this is
a strong assumption for HMMs, the independence be-
tween parameters and hidden variables in standard VB
is also a strong assumption. It is not immediately ap-
parent which assumption is weaker, and thus this CVB

algorithm has the potential to lead to better approxi-
mations than the standard VB.

From (17), by substituting the conditional distribu-
tion for zt in Figure 1, we get the first CVB algorithm
for HMMs (Figure 2). The exact computation is too
expensive for practical applications. We follow Teh
et al. (2007) by using a Gaussian approximation, but
use only the first order expansion of the Taylor ap-
proximation to compute each expected log count in
Figure 2.2 For example,

Eq(z¬t)[log(C¬tk,w + β)] ≈ log(Eq(z¬t)[C¬tk,w] + β) (18)

where C¬tk,w =
∑
t′ 6=t δ(xt′ = w)δ(zt′ = k) is the sum of

the independent Bernoulli variables δ(xt′ = w, zt′ = k)
for all t′ 6= t. That is:

Eq(z¬t)[C¬tk,w] =
∑
t′ 6=t

δ(xt′ = w)q(zt′ = k) (19)

Plugging (18) into Figure 2, we have the approximate
solution as shown in Figure 3. The extreme similarity
between CGS in Figure 1 (actual counts) and CVB
in Figure 3 (expected counts) confirms that the first
CVB algorithm is the mean field version of collapsed
Gibbs sampling.

However, the strong independence assumption brings
unforeseen challenges. The counts and delta functions
involving zt−1 and zt+1 give rise to difficulties. Unlike
in CGS, zt−1 and zt+1 are not fixed values, but distri-
butions. The same scenario does not appear for i.i.d.
models, as their CGS formula is a function of only the
current updating variable zt as well as the counts.

By utilizing the independence assumption in (14), the
expected counts involving zt−1 and zt+1 in Figure 3
can be computed as follows,

Eq(z¬t)[C¬tzt−1,k]

=Eq(zt−1)[Eq(z¬(t−1,t))[C
¬(t−1,t)
zt−1,k

+ Ct−2,t−1
zt−1,k

]]

=
∑

zt−1=k′

q(zt−1 = k′)

× (Eq(z¬(t−1,t))[C
¬(t−1,t)
k′,k + Ct−2,t−1

k′,k ])

=
∑

zt−1=k′

q(zt−1 = k′)Eq(z¬(t−1,t))[C
¬(t−1,t)
k′,k ]

+ q(zt−2 = k′)q(zt−1 = k) (20)

The delta functions involving zt−1 and zt+1 in Figure 3

2Originally Teh et al. (2007) adopted the second order
Taylor approximation which was shown to under perform
the same algorithm with only the first order information
in later work (Asuncion et al., 2009). Sato and Nakagawa
(2012) argued that this was caused by a zero-forcing effect.
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q(zt = k) ∝
exp(Eq(z¬t)[log(C¬tk,w + β) + log(C¬tzt−1,k

+ α) + log(C¬tk,zt+1
+ α+ δ(zt−1 = k = zt+1))])

exp(Eq(z¬t)[log(C¬tk,· +Wβ) + log(C¬tzt−1,· +Kα) + log(C¬tk,· +Kα+ δ(zt−1 = k))])

Figure 2: The exact mean field update for the first CVB inference algorithm.

q(zt = k) ∝
Eq(z¬t)[C¬tk,w] + β

Eq(z¬t)[C¬tk,·] +Wβ
·

Eq(z¬t)[C¬tzt−1,k
] + α

Eq(z¬t)[C¬tzt−1,·] +Kα
·

Eq(z¬t)[C¬tk,zt+1
] + α+ Eq(z¬t)[δ(zt−1 = k = zt+1)]

Eq(z¬t)[C¬tk,·] +Kα+ Eq(z¬t)[δ(zt−1 = k)]

Figure 3: The update for the first CVB algorithm using a first order Taylor series approximation.

can be computed as follows,

Eq(z¬t)[δ(zt−1 = k = zt+1)] = q(zt−1 = k)q(zt+1 = k)
(21)

The implementation for the first CVB algorithm sim-
ply keeps track of the global expected counts Ck,w and
Ck′,k, subtracting the expected counts for zt (and zt−1

or zt+1 when needed). After updating q(zt), the mean
counts around zt are added back into the global counts.
Each update of q(zt) has the computational complex-
ity O(K2), which is same as EM and VB.

4.2 Algorithm 2

The strong independence assumption in Algorithm 1
has the potential to lead to inaccurate results. How-
ever in order to apply the mean field method one has
to partition the latent variables into disjoint and inde-
pendent groups.

Our investigation of CVB algorithms for HMMs is in-
spired by large scale applications in natural language
processing. A common feature of those problems is
that there are usually many short sequences (i.e. sen-
tences), where each sequence is drawn i.i.d. from the
same set of parameters. Therefore the collection of
HMM sequences can be considered as an i.i.d. model
with a shared set of parameters.

Let xi be the ith sequence of observations, and zi be
the ith sequence of hidden states. Denote the number
of sequences to be I. By using the derivation for i.i.d.
models it is reasonable to assume that each hidden
state sequence is independent of the others, since they
are only weakly dependent in the collapsed space.

q(z, θ) =q(θ|z)q(z)

≈q(θ|z)
I∏
i=1

q(zi) (22)

As with any i.i.d. model,

q(zi) ∝ exp(Eq(z¬i)[log p(zi|x, z¬i)])
∝ exp(Eq(z¬i)[log p(xi, zi|x¬i, z¬i)]) (23)

The challenge is to compute the term p(xi, zi|x¬i, z¬i).
The exact computation includes expensive non-
Markov delta functions, as shown in Figure 4. We ap-
proximate by assuming that hidden variables within a
sequence only exhibit first order Markov dependencies
and output independence.

p(xi, zi|x¬i, z¬i)

≈
T−1∏
t=0

p(zi,t+1|zi,t,x¬i, z¬i)p(xi,t+1|zi,t+1,x¬i, z¬i)

=
T−1∏
t=0

C¬izi,t,zi,t+1
+ α

C¬izi,t,· +Kα
·
C¬izi,t+1,xi,t+1

+ β

C¬izi,t+1,· +Wβ
(24)

This approximation ignores the contributions from
other parts of the ith sequence to the global counts.
Compared with contributions from all other sequences,
we assume the impact of these local counts is small.

Substituting (24) into (23), and with the first order
Taylor approximation,

q(zi) ≈
T−1∏
t=0

ACVB
zi,t,zi,t+1

BCVB
zi,t+1,xi,t+1

(25)

where we define,

ACVB
zi,t,zi,t+1

=
Eq(z¬i)[C¬izi,t,zi,t+1

] + α

Eq(z¬i)[C¬izi,t,·] +Kα

BCVB
zi,t+1,xi,t+1

=
Eq(z¬i)[C¬izi,t+1,xi,t+1

] + β

Eq(z¬i)[C¬izi,t+1,·] +Wβ

The striking similarity between (6) and (25) suggests
that the dynamic programming approach used in the
EM and VB algorithms can be applied here. In the
E step, the EM algorithm uses the maximum likeli-
hood parameters A?, B? from the M step; the VB al-
gorithm uses the mean parameters Ã, B̃ from the M
step; while the second CVB algorithm uses the pa-
rameters ACVB, BCVB based on the expected counts
from all other sequences. The main difference with EM
and VB is that the parameters in CVB are dynamic,
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p(xi, zi|x¬i, z¬i) =
T−1∏
t=0

C¬izi,t,zi,t+1
+

∑t−1
t′=0 δ(zi,t′ = zi,t)δ(zi,t′+1 = zi,t+1) + α

C¬izi,t,· +
∑t−1
t′=0 δ(zi,t′ = zi,t) +Kα

·
C¬izi,t+1,xi,t+1

+
∑t−1
t′=0 δ(zi,t′+1 = zi,t+1)δ(xi,t′+1 = xi,t+1) + β

C¬izi,t+1,· +
∑t−1
t′=0 δ(zi,t′+1 = zi,t+1) +Wβ

Figure 4: The exact computation of p(xi, zi|x¬i, z¬i) in the second CVB algorithm.

meaning that the parameters change after updating
each sequence; whereas EM and VB batch update the
parameters in the M step after processing all sequences
in the E step.

In our described scenario (i.e. many short sequences),
which is the norm in speech and language processing
and also very common in other applications of HMMs,
the assumptions made by our second CVB algorithm
are weak. Therefore we might hope that its result will
be very close to the true posterior.

5 Experiments

We validate the above inference algorithms for HMMs
on the task of learning syntactic categories for words
in text (part-of-speech tagging). We adopt the unsu-
pervised formulation of Merialdo (1994): given a raw
corpus and a tag dictionary that defines legal parts-of-
speech for each word, tag each token in the corpus with
the goal of maximizing accuracy against a reference
tagged corpus. We experiment with simple bi-gram
taggers with the aim of understanding the properties of
our proposed inference algorithms, rather than build-
ing a state-of-the-art tagger (e.g. Berg-Kirkpatrick
et al. (2010); Blunsom and Cohn (2011)).

Our data set is the Wall Street Journal (WSJ) tree-
bank (Marcus et al., 1993). The tag dictionary is con-
structed by collecting all the tags found for each word
type in the entire corpus. We conduct experiments
for different corpus sizes, from 1K sentences to the
entire treebank. For all the corpora, the percentages
of ambiguous tokens is roughly 55% and the average
number of tags per token in the dictionary is approx-
imately 2.3. In later experiments we gradually relax
the tag dictionary constraints until the tagging is fully
ambiguous (i.e. fully unsupervised learning).

5.1 Varying the corpus size

In the first set of experiments the tagging accuracies of
all the algorithms are compared for corpora of various
sizes. Note that the EM algorithm optimizes likeli-
hood (p(x|θ)), whereas the other algorithms optimize
(a lower bound of) p(x). The EM algorithm is included
to serve as a benchmark. We run 50 iterations for the

variational algorithms, and 20,000 iterations for CGS
with the annealing scheme designed by Goldwater and
Griffiths (2007) (temperature incrementally decreased
from 2.0 to 0.08). Finally, each algorithm is run 10
times with different random initializations, and the hy-
perparameters α and β ∈ [0.003, 0.01, 0.03, 0.1, 0.3, 1.0]
are optimized on held-out data.

Table 1 presents the accuracies achieved by each of
the algorithms on the various corpora. Both of the
CVB algorithms outperform the standard VB algo-
rithm, which in turn does not seem to have an advan-
tage over EM. The first CVB algorithm surpasses VB
by 2-3% , suggesting that in this experiment the seem-
ingly strong hidden variable independence assumption
proves to be weaker than the assumptions in standard
VB. Furthermore, we expect the posterior to be highly
peaked by using sparse priors, making the product of
marginals a good approximation to the joint distri-
bution. The second CVB algorithm yields the best
results in most cases except for the 1K subset.

When CGS mixes quickly we would expect its per-
formance to exceed all the other algorithms. From
our experiments we see that this is the case for the
smallest dataset, but as the data size increases CGS
performs poorly. We find that the accuracies of the
collapsed variational algorithms increase with the size
of the data, countering the decreasing trend for CGS.
In addition, the algorithms in the collapsed space have
smaller variances than EM or standard VB.

Figure 5 shows the convergence rates for all the al-
gorithms. The variational algorithms converge after
approximately 15 iterations, whereas the accuracy of
CGS is near its maximum with 10K iterations. All the
variational algorithms have the same computational
complexity (O(TK2)), but their time usage varies in
practice. Surprisingly, the most efficient method is
not the EM algorithm as it has to be implemented
in log space (or rescaled) to avoid underflow (Juang
and Rabiner, 1991). VB requires computing expensive
digamma functions, and the second CVB algorithm
calculates dynamic parameters, hence both are slower
than EM. Finally, CGS takes an order of magnitude
more time than any of the deterministic algorithms.
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EM VB Algorithm 1 Algorithm 2 CGS
Size Random µ σ µ σ µ σ µ σ µ σ
1K 65.1 81.0 1.2 79.2 1.3 82.9 0.2 84.2 0.2 85.3 0.5
2K 65.2 81.1 0.9 80.5 1.1 83.1 0.3 85.5 0.3 85.0 0.3
3K 65.1 81.1 0.8 80.5 1.0 83.1 0.2 85.8 0.3 85.0 0.2
5K 64.9 81.0 1.5 80.4 1.5 83.0 0.2 85.6 0.1 85.2 0.2
10K 64.7 81.4 1.7 80.7 1.2 83.4 0.2 85.6 0.1 85.0 0.2
All 64.8 81.4 0.9 81.4 1.1 83.7 0.1 85.7 0.1 84.6 0.1

Table 1: Tagging accuracies and standard deviations of 10 random runs on various corpus sizes with a complete
tag dictionary. Viterbi tagging is used for EM and VB, whereas at each word position CGS chooses the tag with
the maximum posterior. For Algorithm 1, both tagging methods achieve exactly the same results because of the
independence assumption. For Algorithm 2, the maximum posterior tagging is slightly better (up to 0.1).
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Figure 5: Accuracies averaged over 10 runs for the en-
tire treebank with a complete tag dictionary. The vari-
ational algorithms were implemented in Python and
run on an Intel Core i5 3.10GHZ computer with 4.0GB
RAM. The CGS algorithm was implemented in C++.

5.2 Varying dictionary knowledge

In practice, it is not always possible to build a complete
tag dictionary, especially for the infrequent words. We
investigate the effects of reducing dictionary informa-
tion. Following Smith and Eisner (2005), we randomly
select 1K unlabelled sentences from the treebank for
the training data3. We define a word type to be fre-
quent if the word’s tokens appear at least d times in
the training corpus, otherwise it is infrequent. For fre-
quent word types the standard tag dictionary is avail-
able; whereas for infrequent word types, all the tags
are considered to be legal.

Table 2 presents the accuracies achieved by the al-
gorithms at various ambiguity levels. Because of the
small data set, the collapsed Gibbs sampler performs

3Small data sets significantly favor CGS. We hope that
CGS can converge such that we can measure the margins
between the results of the second CVB algorithm and CGS
(i.e. close to the true posterior) in this and especially the
next set of experiments.
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Figure 6: Perplexities averaged over 10 runs for the
1K data set without a tag dictionary.

best in most cases, although somewhat surprisingly
in some cases the second CVB algorithm outperforms
CGS even in this small corpus. We find that with
increasing ambiguity (approaching fully unsupervised
learning), the margins between the standard VB and
both of the CVB algorithms increase dramatically. In
particular, when d = 10 (the average tags per token is
10.8, and the percentage of ambiguous tokens is 66%),
the margin is as large as 13%.

5.3 Test perplexities

Without a tag dictionary the tag types are inter-
changeable and we have a label identifiability issue.
Thus the tagging results cannot be evaluated directly
against the reference tagged corpus. In this set of ex-
periments, we randomly withhold 10% of the sentences
from the data for testing, and use the remaining 90%
for training. The algorithms are evaluated by their
test perplexities (per token) on the withheld test set.
We use |xi| to denote the length of ith sequence.

perplexity(xtest) = 2
“
−
P

i log2 p(xi)P
i |xi|

”
(26)
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EM VB Algorithm 1 Algorithm 2 CGS
d tags/token % ambig. µ σ µ σ µ σ µ σ µ σ
1 2.3 54 81.0 1.2 79.2 1.3 82.9 0.2 84.2 0.2 85.3 0.5
2 7.8 63 69.6 1.5 69.6 1.6 73.8 0.4 77.9 0.4 79.0 0.4
3 10.8 66 64.7 1.7 61.1 1.6 65.1 0.4 74.1 0.3 72.5 0.7
5 14.9 71 54.7 2.9 54.3 2.0 64.7 0.4 65.0 0.5 64.2 0.9
10 20.8 77 43.5 2.4 43.6 2.1 51.2 0.7 53.3 0.5 55.7 0.6

Table 2: The accuracies and standard deviations are collected from 10 runs for the 1K data set with various
incomplete dictionaries depending on values of d.
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Figure 7: Perplexities at iteration 50 (20K for CGS)
over 10 runs for the 1K data without a tag dictionary.

For the variational algorithms,

p(xi) =
∑
zi

T−1∏
t=0

Eq(z)[Ck′,k] + α

Eq(z)[Ck′,·] +Kα
·

Eq(z)[Ck,w] + β

Eq(z)[Ck,·] +Wβ

(27)

For CGS, given S samples from the posterior,4

p(xi) =
∑
zi

1
S

S∑
s=1

T−1∏
t=0

Csk′,k + α

Csk′,· +Kα

Csk,w + β

Csk,· +Wβ
(28)

where zi,t = k′, zi,t+1 = k and xi,t+1 = w. Instead of
using a grid search for the hyperparameters, we place
Gamma priors on them (α ∼ G(a, b), β ∼ G(c, d)), and
use a fixed-point update (Minka, 2009), e.g.

α′ =
a− 1 + α

∑
k′

∑
k[ψ(Ck′,k + α)− ψ(α)]

b+K
∑
k′ [ψ(Ck′,· +Kα)− ψ(Kα)]

(29)

where Ck,k′ is the expected counts for the variational
algorithms, and the actual counts for CGS. The re-
sulting test perplexities in Figures 6 and 7 reconfirm
the accuracy results achieved in the previous two sec-
tions. We find that both the CVB algorithms surpass
the standard VB algorithm by large margins, and the
second CVB algorithm is very close to CGS, which is
assumed to have converged after 20,000 iterations.

4Annealing is not used in order to facilitate the calcu-
lation of perplexity.

6 Discussion

We have presented two collapsed variational Bayesian
inference algorithms for hidden Markov models. Both
algorithms are easy to implement, computationally ef-
ficient, and more accurate than the standard Baum-
Welch and VB algorithms.

Our first CVB algorithm for the HMM makes strong
assumptions about the independence of the hidden
variables. The results indicate that these assumptions
in the collapsed setting are superior to the parameter
independence assumed in the standard VB algorithm.
Notably, a common decoding algorithm for HMMs is
to set each hidden variable to its maximum marginal
probability assignment under the posterior. Thus the
assumptions made by our first CVB algorithm natu-
rally fit our decoding objective. Coupled with its ef-
ficiency, this suggest that this algorithm represents a
practical trade-off between accuracy and scalability.

Our second CVB algorithm makes use of the common
HMM scenario in which the number of sequences is
large relative to their individual lengths. This allows
us to accurately approximate the counts by discarding
the small local contributions in favour of the contri-
butions from all other sequences. Both theoretically
and empirically the second algorithm is very accurate
and appears to closely follow the true posterior. As the
number of sequences increases this algorithm beats the
collapsed Gibbs sampler with significantly less train-
ing time. Therefore the second algorithm achieves the
same or better accuracy as CGS, with the efficiency of
standard VB.

The results of our investigation indicate that the ben-
efits of CVB may be more apparent for models which
exhibit strong local coupling between hidden variables,
than for the original LDA application. In this setting
Gibbs sampling struggles to mix adequately and the
time required to converge increases significantly. This
suggests that many other Bayesian graphical models
may also be amenable to CVB inference. In particu-
lar our work naturally extends to Bayesian models of
probabilistic context free grammars (Johnson et al.,
2007), and could be generalized to non-parametric
HMMs (Beal et al., 2002).
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John DeNero, and Dan Klein. Painless unsupervised
learning with features. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 582–590, Los Angeles, Cal-
ifornia, June 2010.

Phil Blunsom and Trevor Cohn. A hierarchical
Pitman-Yor process HMM for unsupervised part of
speech induction. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
865–874, Portland, Oregon, USA, June 2011. Asso-
ciation for Computational Linguistics.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistics Society,
Series B, 39(1):1–38, 1977.

Jianfeng Gao and Mark Johnson. A comparison
of Bayesian estimators for unsupervised hidden
Markov model POS taggers. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’08, pages 344–352, Mor-
ristown, NJ, USA, 2008.

Sharon Goldwater and Tom Griffiths. A fully Bayesian
approach to unsupervised part-of-speech tagging. In
Proc. of the 45th Annual Meeting of the ACL (ACL-
2007), pages 744–751, Prague, Czech Republic, June
2007.

Thomas Griffiths and Mark Steyvers. Finding scien-
tific topics. Proceedings of the National Academy of
Sciences of the United States of America, 101(Suppl
1):5228–5235, April 2004. ISSN 0027-8424.

Mark Johnson, Thomas Griffiths, and Sharon Gold-
water. Bayesian inference for PCFGs via Markov
chain Monte Carlo. In Proc. of the 7th Interna-
tional Conference on Human Language Technology
Research and 8th Annual Meeting of the NAACL
(HLT-NAACL 2007), pages 139–146, Rochester,
New York, April 2007.

Biing-Hwang Juang and Lawrence. R. Rabiner. Hid-
den Markov models for speech recognition. Techno-
metrics, 33(3):pp. 251–272, 1991.

David J.C. MacKay. Ensemble learning for hidden
Markov models. Technical report, Cavendish Labo-
ratory, University of Cambridge, 1997.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. Building a large annotated cor-
pus of English: the Penn treebank. Computational
Linguistics, 19(2):313–330, 1993. ISSN 0891-2017.

Bernard Merialdo. Tagging English text with a prob-
abilistic model. Comput. Linguist., 20(2):155–171,
June 1994. ISSN 0891-2017.

Thomas P. Minka. Estimating a Dirichlet distribution.
Technical report, 2009.

Philip Resnik and Eric Hardisty. Gibbs sampling
for the uninitiated. Technical report, University of
Maryland Computer Science Department, 2010.

Issei Sato and Hiroshi Nakagawa. Rethinking collapsed
variational Bayes inference for LDA. In Proceed-
ings of the 29th International Conference on Ma-
chine Learning, 2012.

Noah A. Smith and Jason Eisner. Contrastive estima-
tion: Training log-linear models on unlabeled data.
In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 354–362, Ann Arbor, Michigan, June 2005.

Padhraic Smyth, David Heckerman, and Michael I.
Jordan. Probabilistic independence networks for
hidden Markov probability models. Neural Com-
put., 9(2):227–269, February 1997. ISSN 0899-7667.

Jaemo Sung, Zoubin Ghahramani, and Sung-Yang
Bang. Latent-space variational Bayes. IEEE Trans.
Pattern Anal. Mach. Intell., 30(12), December 2008.

Yee Whye Teh, David Newman, and Max Welling. A
collapsed variational Bayesian inference algorithm
for latent Dirichlet allocation. In In Advances in
Neural Information Processing Systems, volume 19,
2007.


