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Abstract

We study sparse principal component analy-
sis (sparse PCA) for high dimensional multi-
variate vector autoregressive (VAR) time se-
ries. By treating the transition matrix as
a nuisance parameter, we show that sparse
PCA can be directly applied on analyzing
multivariate time series as if the data are
i.i.d. generated. Under a double asymp-
totic framework in which both the length of
the sample period T and dimensionality d
of the time series can increase (with possi-
bly d� T ), we provide explicit rates of con-
vergence of the angle between the estimated
and population leading eigenvectors of the
time series covariance matrix. Our results
suggest that the spectral norm of the tran-
sition matrix plays a pivotal role in deter-
mining the final rates of convergence. Im-
plications of such a general result is further
illustrated using concrete examples. The re-
sults of this paper have impacts on different
applications, including financial time series,
biomedical imaging, and social media, etc.

1 Introduction

This paper considers sparse principal component anal-
ysis for weakly stationary vector autoregressive (VAR)
time series (In this paper, we only consider VAR(1)
model, i.e., the model with lag 1. We extend our
results to VAR(p) in the longer version of this pa-
per): Let x1,x2, . . . ,xT ∈ Rd be T observations from
a time series X1,X2, . . . ,XT . Here we assume that
each Xt ∈ Rd is a d-dimensional random vector and
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follows a VAR model

Xt+1 = AXt +Zt, for t = 1, 2, . . . , T − 1, (1.1)

where A ∈ Rd×d is called transition matrix and
Z1,Z2, . . .

i.i.d∼ Nd(0,Ψ) are independent colored
Gaussian noise with covariance matrix Ψ. Since the
process is weakly stationary, we denote Σ to be the
covariance matrix of the time series,

Σ := Var(X1) = · · · = Var(XT ). (1.2)

Let u1, . . . ,um be the top m leading eigenvectors of
Σ. We want to find û1, . . . , ûm which can estimate
u1, . . . ,um accurately. In the special case where A is a
zero matrix, this problem reduces to classical principal
component analysis for i.i.d. Gaussian data. In more
general settings where A 6= 0, it is well known that
to secure the weakly stationarity of the time series in
(1.1), we must have the spectral norm of A (i.e., the
largest singular value of A) smaller than 1.

In this paper we consider high dimensional time series
under a double asymptotic framework, i.e., we allow
the time series dimension d to scale with the length of
the sample period T with possibly d� T . Compared
with the classical asymptotic framework for time series
in which only T increases while d remains fixed, such
a theoretical framework better reflects the challenge in
many real-world applications. For example, in fMRI
image processing, the machine collects T scans of the
human brain, each of which contains d voxels. In a
typical setting, the number of scans T is around hun-
dreds, while the number of voxels d could be tens of
thousands. In another application on modeling social
media stream, e.g., twitter data, we simultaneously
monitor the number of tweets for d persons across T
time units (e.g. hours). In a typical setting, T could
be hundreds or thousands while d could be millions.
Other applications include low-frequency stock data
in which T represents the number of records of the
closing price and d represents the number of stocks in
the market.

Such a double asymptotic framework, though more re-
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alistic, poses significant theoretical challenges. Even
in a simplified setting where A = 0, Johnstone and
Lu (2009) show that the classical PCA is inconsistent
under some conditions. In other words, letting the es-
timator û1 be the leading eigenvector of the sample
covariance matrix, the angle between u1 and û1, de-
noted as ∠(u1, û1), doesn’t converge to 0 as T goes
to infinity. To avoid such a curse of dimensionality,
the population leading eigenvector u1 is in general as-
sumed to be sparse. More specifically, let s be the
number of nonzero elements in u1, we assume s� T .
With this sparsity assumption, different versions of
sparse PCA have been proposed to handle i.i.d. Gaus-
sian data (i.e., A = 0): For example, greedy algo-
rithms (d’Aspremont et al., 2008), lasso-type meth-
ods including SCoTLASS (Jolliffe et al., 2003), SPCA
(Zou, 2006) and sPCA-rSVD (Shen and Huang, 2008),
a number of power methods (Journée et al., 2010;
Yuan, 2010; Ma, 2011), the biconvex algorithm PMD
(Witten et al., 2009) and the semidefinite relaxation
DSPCA (d’Aspremont et al., 2004). Sparse PCA has
been widely used in finance (d’Aspremont et al., 2005),
text mining (Zhang and El Ghaoui, 2011) and voting
data analysis (Zhang et al., 2012).

One drawback for these existing sparse PCA theories is
that they all assume the T observations x1,x2, . . . ,xT
are independently and identically distributed. Such an
assumption is obviously violated in most real-world
applications. For example, in the fMRI imaging ap-
plication we described before, the scans from two ad-
jacent time points are obviously correlated. In the
applications for stock price or twitter data, the exis-
tence of non-dependence is easily justified. Though
some work exists for low-dimensional PCA on depen-
dent data (Skinner et al., 1986), no such result exists
for high dimensional settings. There are some related
results on dependent data analysis in high dimensions
(Loh and Wainwright, 2011; Fan et al., 2012), they are
mainly for other learning methods. For example, Loh
and Wainwright (2011) study the high dimensional re-
gression for Gaussian data with missing values and
dependent data. Very recently, Fan et al. (2012) an-
alyze the penalized least square estimators, taking a
weakly dependence structure, called α-mixing, of the
noisy term into consideration.

In this paper, we study sparse PCA for weakly sta-
tionary VAR time series. By treating the transition
matrix A as a nuisance parameter, we directly apply
sparse PCA on the multivariate time series x1, . . . ,xT
to estimate the leading eigenvector u1 as if the data
are i.i.d. generated. Let ∠(u1, û1) be the angle be-
tween û1 and u1, and λk(Σ) be the k-th largest value
of Σ, we provide an explicit rate of convergence for
sin∠(u1, û1), i.e., for some absolute constant C,

∣∣ sin∠
(
u1, û1

)∣∣ ≤ C

λ1(Σ)−λ2(Σ)

√
s log d

T

(
‖Σ‖2

1−‖A‖2

)
,

with high probability.

Our result allows the quantities λ1(Σ), λ2(Σ) and
‖A‖2 all scale with d. Since Σ is jointly determined
by the structure of the transition matrix A and noise
covariance matrix Ψ, this result suggests that the in-
teraction between the structure of A and Ψ plays a
pivotal role in determining the final rate of conver-
gence. We also discuss specific structures of A and Ψ
to gain more insights. The results of this paper pro-
vide theoretical justifications for the popular practices
in which sparse PCA is directly applied on high dimen-
sional time series data for data visualization and fea-
ture selection. Examples areas include financial time
series, biomedical imaging, and social media, etc.

The rest of the paper is organized as follows. In the
next section, we briefly introduce sparse PCA and
VAR time series model. In Section 3, we derive several
useful results about the rate of convergence of sparse
PCA. We prove the main theoretical result in Section
4. In section 5, we conduct numerical experiments on
both simulated and real-world data to back up our
theory.

2 Background

In this section, we briefly introduce the background
of this paper. We start with notation. Let A =
[Ajk] ∈ Rd×d and v = (v1, . . . , vd)

T ∈ Rd. For
0 ≤ q ≤ 1, we define the vector `q norms as ‖v‖q :=(∑d

j=1 |vj |q
) 1
q . Specifically ‖v‖0 = card {supp(v)}.

We denote ‖A‖q to be the operator norm of matrix
A. In particular, ‖A‖2 is the spectral norm. Specif-

ically, for q = 1 or q = ∞, ‖A‖1 = max
1≤j≤d

∑d
i=1 |Aij |,

and ‖A‖∞ = max
1≤i≤d

∑d
j=1 |Aij |. We have ‖A‖2 ≤√

‖A‖1 ‖A‖∞. Let λj(A) be the j-th largest eigen-
value of A. The d-dimension Euclidean unit sphere
is Sd−1 :=

{
v
∣∣v ∈ Rd, ‖v‖2 = 1

}
. The `q ball with

radius Rq is Bq
(
Rq
)

:=
{
v ∈ Rd :

∥∥v∥∥
q
≤ Rq

}
. For

vector v1 and v2, define inner product as
〈
v1,v2

〉
:=

vT1 v2. For matrix A1,A2, we define the inner prod-
uct as

〈
A1,A2

〉
:= tr

(
AT

1 A2

)
. For a set K, |K| is its

cardinality. We use 0 to denote the all-zero matrix.

2.1 Vector Autoregressive Time Series

The weakly stationary Vector Autoregressive (VAR)
time series model linear dependencies between differ-
ent movements. In particular, the model assumes the
T observations x1,x2, · · · ,xT are generated by the lag
1 autoregressive process:

Xt+1 = AXt +Zt, for t = 1, . . . , T − 1. (2.1)
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To secure the weakly stationary of the above process,
the transition matrix A must have bounded spectral
norm ‖A‖2 < 1. We assume the Gaussian colored

noise Z1,Z2, . . .
i.i.d∼ Nd(0,Ψ). By assumption Zt and

Xt,Xt−1, . . . are independent. The stationary prop-
erty indicates

Σ = AΣAT + Ψ. (2.2)

For j ≥ k, the covariance between Xj and Xk is

Cov
(
Xj ,Xk

)
= A · · ·A︸ ︷︷ ︸

j−k

Σ := Aj−kΣ.

In the sequel we call A the transition matrix and
Ψ the noise matrix. VAR model is widely used in the
analysis of economic time series (Sims, 1980; Hatemi-J,
2004; Briiggemann and Liitkepohl, 2001), signal pro-
cessing (de Waele and Broersen, 2003) and brain fMRI
(Goebel et al., 2003; Roebroeck et al., 2005).

3 Sparse PCA for VAR Time Series

Let x1,x2, . . . ,xT be the T observations of a random
vectorX ∈ Rd. Let u1, . . . ,um be the top m eigenvec-
tors of the covariance matrix Σ. Let ũ1, . . . , ũm be the
top m eigenvector of the sample covariance matrix S.
In low dimensions, PCA uses ũ1, . . . , ũm to estimate
u1, . . . ,um.

In the high dimensional settings where d > T , we as-
sume that the leading eigenvector of Σ are under cer-
tain sparse constraints. In other words, we assume
that u1 satisfies that ||u||0 ≤ s and ||u||1 = 1, i.e.
u1 ∈ Sd−1 ∩ B0

(
s
)
. In this way, we define the model

M(s,Σ, λ1, λ2) as follows:

M(s,Σ, λ1, λ2) := {X : X ∼ Nd(µ,Σ),

λ1(Σ) = λ1, λ2(Σ) = λ2, ||u1||0 = s},

for some µ ∈ Rd. We define û1 to be the solution to
the following optimization problem:

û1 := arg max
v∈Rd

vTSv,

subject to v ∈ Sd−1 ∩ B0

(
s
)
. (3.1)

Here û1 is the global optimal estimator of u1. In this
paper we only discuss about û1 corresponding to the
leading eigenvalue λ1(Σ). Analysis for ûk correspond-
ing to λk(Σ) is discussed in the longer version of this
paper.

4 Theoretical Properties

In this section we provide the theoretical properties of
the sparse PCA estimator for VAR time series. In par-
ticular, we provide the nonasymptotic upper bound of
the rate of convergence in parameter estimation under
the VAR model. To our knowledge, this is the first
work analyzing the theoretical performance of PCA
for the dependent data in high dimensions.

4.1 Main Result

The main result states that under the VAR model, the
estimator û1 obtained by (3.1) can approximate u1

in a parametric rate with respect to (n, d, s), and the
upper bound is also related to the transition matrix A
and the noisy matrix Ψ.

Theorem 4.1. Provided that the random vector se-
quence {Xt}Tt=1 follows the VAR model described in
(2.1) and Xt ∈ M(s,Σ, λ1, λ2) for t = 1, . . . , T , the
estimator û1 derived in (3.1) has the following prop-
erty:∣∣ sin∠

(
u1, û1

)∣∣ = OP

(
1

λ1−λ2

√
s log d

T

(
‖Σ‖2

1−‖A‖2

))
.

Here for any two vectors v1 and v2 ∈ Sd−1,
| sin(v1,v2)| :=

√
1− (vT1 v2)2.

Remark 4.2. The bound obtained in (4.1) depends on
Σ,A,Ψ, where A characterizes the data dependence
degree. When both ||A||2 and ||Ψ||2 do not scale with
(n, d, s), this is the parametric optimal rate (Ma, 2011;
Vu and Lei, 2012).

4.2 Technical Proofs

To prove Theorem 4.1, first we need to prove several
lemmas. The following Lemma connects sin∠(u1, û1)
with supv∈Sd−1∩B0(2s) |v

T (Σ− S)v|. In the sequel, we
assume that the assumptions in Theorem 4.1 hold.

Lemma 4.3. u1 and û1 satisfy

sin∠
(
u1, û1

)
≤ 2

λ1 − λ2
sup

v∈Sd−1∩B0(2s)

|vT (Σ− S)v|.(4.1)

Proof. Let λ1 ≥ · · · ≥ λd be the eigenvalues of Σ. Let
u1,u2, . . . ,ud be the corresponding eigenvectors. We
have uTi uj = 0 for i 6= j and Σ =

∑d
j=1 λjuju

T
j . Let

Σ = λ1u1u
T
1 + Φ0, where Φ0 can represented by u1

and Σ as

Φ0 = Σ− λ1u1u
T
1

= Σ− λ1u1u
T
1 − λ1u1u

T
1 + λ1u1u

T
1

= Σ− u1u
T
1 Σ−Σu1u

T
1 + u1

(
uT1 Σu1

)
uT1

=
(
Id − u1u

T
1

)
Σ
(
Id − u1u

T
1

)
.

For any u ∈ Sd−1, we have〈
Σ,u1u

T
1 − uuT

〉
=

〈
Σ,u1u

T
1

〉
−
〈
λ1u1u

T
1 + Φ0,uu

T
〉

= λ1 − λ1
〈
u1,u

〉2 − 〈Φ0,uu
T
〉

= λ1−λ1
〈
u1,u

〉2−uT (Id−u1u
T
1

)
Σ
(
Id−u1u

T
1

)
u.

Now we consider the unit vector

a = (Id − u1u
T
1 )u/‖(Id − u1u

T
1 )u‖2 ∈ Rd.

It is easy to verify a is orthogonal to u1. There-
fore, a ∈ span{u2, . . . ,ud}. Letting aj = aTuj , j =

2, . . . , d, we can get
∑d
j=2 a

2
j = 1. Therefore we have
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aTΣa=aT
(
λ1u1u

T
1 +

d∑
j=2

λjuju
T
j

)
a=

d∑
j=2

λja
2
j ≤ λ2,

which indicates

uT
(
Id−u1u

T
1

)
Σ
(
Id−u1u

T
1

)
u≤λ2

∥∥(Id−u1u
T
1

)
u
∥∥2
2
.

Since u is on the unit sphere Sd−1, we have ‖u‖2 = 1.

Therefore,
∥∥(Id − u1u

T
1

)
u
∥∥2
2

= 1−
〈
u1,u

〉2
. Now we

obtain〈
Σ,u1u

T
1 − uuT

〉
≥ (λ1 − λ2)

(
1−

〈
u1,u

〉2)
. (4.2)

Since (4.2) holds for any u ∈ Sd−1, letting u = û1 we
have〈

Σ,u1u
T
1 − uuT

〉
≥ (λ1 − λ2) sin2 ∠

(
u1, û1

)
.

Since û1 is defined as û1 := arg maxv∈Rd v
TSv, we

know

ûT1 Sû1 − uT1 Su1 ≤ 0.

Therefore,
〈
S,u1u1

T − û1û
T
1

〉
≤ 0, we have

sin2 ∠
(
u1, û1

)
≤ 1

λ1 − λ2
〈
Σ,u1u

T
1 − û1û

T
1

〉
≤ 1

λ1 − λ2
〈
Σ− S,u1u

T
1 − û1û

T
1

〉
.

Let Π be the diagonal matrix with diagonal values
being 1 if and only if the corresponding entries in u1

or û1 are zero. Therefore, we know there are at most
2s nonzero values in Π. Then we have

sin2 ∠(u1, û1)

≤ 1

λ1 − λ2
〈
Σ− S,u1u

T
1 − û1û

T
1

〉
=

1

λ1 − λ2
〈
Σ− S,Π(u1u

T
1 − û1û

T
1 )Π

〉
=

1

λ1 − λ2
〈
Π(Σ− S)Π,u1u

T
1 − û1û

T
1

〉
≤ 1

λ1 − λ2
||Π(Σ− S)Π||2||u1u

T
1 − û1û

T
1 ||S

=
1

λ1 − λ2
||Π(Σ− S)Π||2 · 2| sin∠(u1, û1)|.

Here || · ||S denotes the sum of singular values. This
implies∣∣ sin∠(u1, û1)

∣∣ ≤ 2

λ1 − λ2
||Π(Σ− S)Π||2

≤ 2

λ1 − λ2
sup

v∈Sd−1∩B0(2s)

|vT (Σ− S)v|.

This completes the proof.

The next lemma comes from Ledoux and Talagrand
(2011) and is informative in the proof of the main the-
orem.

Lemma 4.4. Provided that x1, x2, . . . , xT
i.i.d∼ N(0, 1).

X = (x1, x2, . . . , xT )T ∈ RT is a random vector. Map-
ping f : RT → R is Lipschitz, i.e., for any v1,v2 ∈ RT :

∃L ≥ 0, s.t.
∣∣f(v1)− f(v2)

∣∣ ≤ L‖v1 − v2‖2,
Then for any t > 0 we have,

P
(∣∣f(X)− Ef(X)

∣∣ > t
)
≤ 2 exp

(
− t2

2L2

)
. (4.3)

Proof. We refer to Ledoux and Talagrand (2011)’s
proof of this lemma.
The next lemma quantifies the difference between Σ
and S for any fixed vector v ∈ Rd.
Lemma 4.5. Letting v ∈ Sd−1 ∩ Bq

(
Rq
)
, we have∣∣∣√vTΣv −

√
vTSv

∣∣∣ = OP

(√
1

T

)
. (4.4)

Proof. Let x1,x2, . . . ,xT be the T observations. Y =(
xT1 v,x

T
2 v, . . . ,x

T
Tv
)T
∈ RT is a zero-mean Gaussian

random vector. We denote the covariance matrix of
Y as ΣY . ΣY is symmetric and semi-definite. Thus
ΣY can be decomposed as ΣY = QTQ, where Q is
a matrix with orthogonal columns. Let σ = ‖Q‖2 =√
‖ΣY ‖2. According to the definition of Y , we have

vTSv = vT

(∑T
i=1 xix

T
i

T

)
v =

Y TY

T
=

(
‖Y ‖2√
T

)2

,

vTΣv = vTE
(
XXT

)
v = E

(
Y TY

T

)
= E

(
‖Y ‖2√
T

)
.

For convenience we define W := ‖Y ‖2/
√
T and

f(v) := ‖Qv‖2/
√
T for v ∈ RT . Since we have

Y = QV , V ∈ RT is a zero-mean Gaussian vector
with covariance matrix IT . It can be verified that
mapping f : RT → R is Lipschitz with L = σ/

√
T .

Using Lemma 4.4, we can get

P
(∣∣W − E

(
W
)∣∣ ≥ t) ≤ 2 exp

(
− t2T

2σ2

)
. (4.5)

Since Var
(
W
)

= E
(
W 2

)
− E2

(
W
)
≥ 0, at the same

time we have E
(
W 2

)
≥ 0,E

(
W
)
≥ 0, which implies√

E
(
W 2

)
− E

(
W
)
≥ 0. Thus we get(√

E
(
W 2

)
−E
(
W
))2

≤ E
(∣∣W−E(W )∣∣2) =

4σ2

T
,

which indicates∣∣∣√E
(
W 2

)
− E

(
W
)∣∣∣ ≤ 2σ√

T
. (4.6)

Here (4.6) together with
∣∣W − E

(
W
)∣∣ ≤ t implies∣∣∣W −

√
E
(
W 2

)∣∣∣ ≤ t + 2σ/
√
T . Therefore, according
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to the definition of Y and W ,

P
(∣∣√vTΣv −

√
vTSv

∣∣ ≥ t+
2σ√
T

)
(4.7)

= P
(∣∣∣W −

√
E
(
W 2

)∣∣∣ ≥ t+
2σ√
T

)
≤ P

(∣∣W − E
(
W
)∣∣ ≥ t)

≤ 2 exp

(
− t2T

2σ2

)
.

We reach the conclusion∣∣∣√vTΣv −
√
vTSv

∣∣∣ = Op

(√
1

T

)
.

This completes the proof.

Lemma 4.6. An ε-net Nε of a sphere Sn−1 (equipped
with Euclidean distance) is a subset of Sn−1 such that
for any v ∈ Sn−1, there exists u ∈ Nε subject to ‖u−
v‖2 ≤ ε. It is shown by Vershynin (2010) that for any
ε > 0, ∣∣Nε∣∣ ≤ (1 +

2

ε

)n
. (4.8)

Also, for matrix A ∈ Rn×n, the inequality below holds
for any ε ∈ [0, 1)

max
v1∈Sn−1

|v1Av1| ≤ (1− 2ε)−1 max
v2∈Nε

|v2Av2|. (4.9)

Proof. Construct a maximal ε-separated subset Nε of
Sn−1. Here an ε-separated set is defined as the set
whose arbitrary two different elements x,y are at least
distance ε away, i.e. ‖x − y‖2 ≥ ε. Since Nε is a
maximal ε-separated subset Nε of Sn−1, there isn’t any
other ε-separated N′ε of Sn−1 such that Nε ⊂ N′ε.

We can prove that Nε is an ε-net of Sn−1 by contra-
diction. If we assume for u ∈ Sn−1, there is a point
v ∈ Nε, ‖u − v‖2 > ε, then N′ε = {v} ∪ Nε is a larger
ε-separated subset of Sn−1 that contains Nε, which
contradicts with the fact that Nε is the maximal ε-
separated subset of Sn−1.

Now we derive the bound of |Nε|. We cover the
neighborhood of every xi ∈ Nε with disjoint balls
Byi =

{
yi|‖yi − xi‖2 < ε/2

}
. For any Byi ⊂ B0 ={

y
∣∣‖y‖2 < 1 + ε/2

}
we have

|Nε| · |Byi| =
|Nε|∑
i=1

|Byi| =

∣∣∣∣∣
|Nε|⋃
i=1

Byi

∣∣∣∣∣ ≤ |B0|,

|Nε| ≤
|B0|
|Byi |

=

(
1 + ε

2

)n(
ε
2

)n =

(
1 +

2

ε

)n
.

Then we turn to prove (4.9). For v1 ∈ Sn−1 and v2 ∈
Nε, we know since ‖v1 − v2‖2 ≤ ε,

|v1Av1 − v2Av2| ≤ ‖A‖2‖v1‖2‖v1 − v2‖2
+‖A‖2‖v2‖2‖v1 − v2‖2 ≤ 2ε‖A‖2

It follows that

|v2Av2| ≥ (1− 2ε)‖A‖2 = (1− 2ε) max
v1∈Sd−1

|v1Av1|

Taking the maximum over v2 ∈ Nε, we completes the
proof.

Combining the above Lemmas, we can now proceed to
the main proof.

Proof of Theorem 4.1. Using Lemma 4.5, it is easy to
show

√
vTΣv =

√
E
(
W 2

)
=

√
tr
(
QQT

)
T

=
‖Q‖F√

T
≤ σ.

Then using (4.7) we can get

P
( ∣∣∣√vTΣv +

√
vTSv

∣∣∣ ≥ t+ 4σ

)
≤ P

(∣∣∣√vTSv +
√
vTΣv

∣∣∣ ≥ t+
2σ√
T

+ 2
√
vTΣv

)
≤ P

(∣∣∣√vTΣv −
√
vTSv

∣∣∣ ≥ t+
2σ√
T

)
≤ 2 exp

(
− t2T

2σ2

)
. (4.10)

We define events E1 and E2, combining (4.7) (with t =
t1) and (4.10) (with t = t2),

E1 :=

{∣∣∣√vTΣv −
√
vTSv

∣∣∣ ≥ t1 + 2
σ√
T

}
E2 :=

{∣∣∣√vTΣv +
√
vTSv

∣∣∣ ≥ t2 + 4σ

}
.

We derive for any t1, t2 > 0,

P

(∣∣vT (Σ− S
)
v
∣∣ ≥ (t1 + 2

σ√
T

)
(t2 + 4σ)

)
≤ P(E1) + P(E2)

≤ 2 exp

(
− t21T

2σ2

)
+ 2 exp

(
− t22T

2σ2

)
. (4.11)

Now we turn to upper bound supv∈Sd−1∩B0(2s) |v
T (Σ−

S)v| in Lemma 4.3. Assuming we have a fixed subset
K ⊂ {1, . . . , d}, we define

BK =
{
v
∣∣for any i ∈ {1, . . . , d} \K, vi = 0

}
.

For any t1, t2 > 0, we define event EK and Ev as

EK:=

{
max

v∈Sd−1∩BK

∣∣vT (Σ−S
)
v
∣∣≥2

(
t1+2

σ√
T

)
(t2+4σ)

}
,

Ev:=

{∣∣vT (Σ− S
)
v
∣∣ ≥ (t1 + 2

σ√
T

)
(t2 + 4σ)

}
.

According to Lemma 4.6, we define the 1
4 -net of Sd−1∩

BK as NK, then we can get

EK ⊂
⋃

v∈NK

{∣∣vT (Σ−S
)
v
∣∣ ≥ (t1+2

σ√
T

)
(t2+4σ)

}
,



      53

Sparse Principal Component Analysis for High Dimensional Multivariate Time Series

Combining (4.11) and (4.8) and letting |K| = 2s, we
obtain

P
(
EK
)
≤
∑
v∈NK

P
(
Ev
)

=
∣∣NK

∣∣P(Ev)
≤ 92s

(
2 exp

(
− t21T

2σ2

)
+ 2 exp

(
− t22T

2σ2

))
.

Now we consider arbitrary subset K ⊂ {1, . . . , d} with
cardinality 2s. We define

E ′K:=

{
max

v∈Sd−1∩B0(2s)

∣∣vT(Σ−S
)
v
∣∣≥2

(
t1+2

σ√
T

)
(t2+4σ)

}
.

Then we have

P
(
E ′K
)
≤

∑
K⊂{1,...,d}

P
(
EK
)
≤
(
d

2s

)
P
(
EK
)

≤ 92s
(
d

2s

)(
2 exp

(
− t21T

2σ2

)
+2 exp

(
− t22T

2σ2

))
.

Using (4.1), we can get for any t1, t2 > 0,v ∈ Sd−1 ∩
B0(2s), which implies

P

(∣∣ sin∠
(
u1, û1

)∣∣ ≥ 4

λ1 − λ2

(
t1 + 2

σ√
T

)
(t2 + 4σ)

)

≤ P

(
max

∣∣vT (Σ− S
)
v
∣∣ ≥ 2

(
t1 + 2

σ√
T

)
(t2 + 4σ)

)

≤92s
(
d

2s

)(
2 exp

(
− t21T

2σ2

)
+2 exp

(
− t22T

2σ2

))
.

Now we are going to derive the upper bound for σ2 =∥∥ΣY

∥∥
2
. We note that VAR model assumes ‖A‖2 < 1.

Thus σ2 can be bounded as follows,

σ2 =
∥∥ΣY

∥∥
2
≤
∥∥ΣY

∥∥
∞= max

i∈{1,...,T}

T∑
j=1

∣∣(ΣY )ij
∣∣.(4.12)

We have ‖ΣY ‖2 ≤
√
‖ΣY ‖1 ‖ΣY ‖∞ = ‖ΣY ‖∞, since

ΣY is symmetric. According to the definition (1.1) we
have,

vT Cov(xi,xj)v = vT Cov(xj ,xi)v = vTA|i−j|Σv,

In order to get maxi∈{1,...,T}
∑T
j=1

∣∣(ΣY )ij
∣∣ in (4.12),

we first derive the upper bound of
∑T
j=1

∣∣(ΣY )ij
∣∣.

T∑
j=1

∣∣(ΣY )ij
∣∣=∑

j 6=i

∣∣vTCov(xi,xj)v
∣∣+∣∣vT Cov(xi,xi)v

∣∣
=
∑
j 6=i

∣∣vTA|i−j|Σv
∣∣+
∣∣vTΣv

∣∣
≤
∑
j 6=i

∥∥Σ∥∥
2
‖A‖|i−j|2 +

∥∥Σ∥∥
2

≤
2
∥∥Σ∥∥

2

1− ‖A‖2
.

Thus, letting δ2 = 2‖Σ‖2/(1− ‖A‖2) ≥ σ2, we have

for any t1, t2 > 0,

P

(∣∣ sin∠
(
u1, û1

∣∣ ≥ 4

λ1−λ2

(
t1+2

δ√
T

)
(t2+4δ)

)

≤ 92s
(
d

2s

)(
2 exp

(
− t21T

2δ2

)
+ 2 exp

(
− t22T

2δ2

))
.

Letting t1 =
√
sδ2 log d/T and t2 be a constant, we

reach the conclusion,

∣∣ sin∠
(
u1, û1

)∣∣ = OP

(
1

λ1−λ2

√
s log d

T

(
‖Σ‖2

1−‖A‖2

))
.

This is the main result of the rate of convergence.

5 Experiments

In this section we show some experimental results on
both synthetic and real-world data to back up the
theoretical results we obtain in last section. We use
the truncated power method proposed by Yuan and
Zhang (2011) to approximate the global estimator û1

obtained in (4.2).

5.1 Synthetic Data

In this section we experiment with sparse PCA on
synthetic data. We show how A, Σ and Ψ affect
| sin∠

(
u1, û1

)∣∣. First we create A given ‖A‖2. With
λ1(A) and λ2(A), we generate

Σ = (λ1(A)− 1)uT1 u1 + (λ2(A)− 1)uT2 u2 + I,

where ‖u1‖0 = s, u1 and u2 is orthogonal. According
to the stationary property (2.2), the covariance matrix
of the noise random vector Zi is Ψ = Σ − ATΣA,
where Ψ must be a positive semidefinite matrix. We
generate T = 50 data points according to the VAR
time series model in (1.1). We illustrate how the
scaling of ‖A‖2 affects the accuracy of estimator û1.
Set λ1(Σ) = 10, λ2(Σ) = 5, s = 20, d = 200 and
‖A‖2 ∈ [0, 0.9], we repeatedly experiment for 3000
times for each ‖A‖2. Here Σ is fixed while A and
Ψ are varying. The results are illustrated in Fig-
ure 1 by plotting the relevant part in the theoreti-

cal upper bound ||Σ||2
1−||A||2 against the empirical error

| sin∠(u1, û1)|. As can be observed in Fig. 1, the
empirical error increases when the spectral norm of
transition matrix ‖A‖2 increases. This makes sense
because when ‖A‖2 = 0, VAR model is reduced to the
i.i.d. case, since Xt+1 doesn’t depend on Xt. When
‖A‖2 → 1, the degree of dependency increases and
sparse PCA loses its estimation accuracy, as quanti-
fied in Theorem 4.1. Table 1 shows the values and the
standard deviations of | sin∠

(
u1, û1

)
| for each ‖A‖2.
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Figure 1: ‖A‖2’s impact on the estimation accuracy | sin∠
(
u1, û1

)
|. When dependency ‖A‖2 increases toward

1, the upper bound ‖Σ‖2
1−‖A‖2 increases, thus the estimator û1’ accuracy decreases, i.e. | sin∠

(
u1, û1

)
| increases

towards 1.

Table 1: Corresponding values when ‖A‖2 increases.

Here κ∗ = ‖Σ‖2
1−‖A‖2 and θ = ∠

(
u1, û1

)
‖A‖2 κ∗ | sin θ| σ

(
| sin θ

)
0 20.0000 0.3669 0.1284

0.0900 20.9080 0.3795 0.2150

0.1800 21.8711 0.3876 0.1319

0.2700 22.9696 0.4186 0.1591

0.3600 24.3290 0.5214 0.2201

0.4500 26.1568 0.5671 0.2625

0.5400 28.8231 0.6989 0.1981

0.6300 33.0580 0.8336 0.1549

0.7200 40.5303 0.8930 0.1410

0.8100 56.0706 0.9441 0.0765

0.9000 101.9000 0.9563 0.1196

5.2 Equity Data

In this section we apply sparse PCA on daily closing
prices of 452 stocks in the S&P 500 index between
January 1, 2003 through January 1, 2008 from
Yahoo! Finance (finance.yahoo.com). That is
to say, we have altogether T = 1257 observations
corresponding to the vector of closing prices on a
trading day. We categorize the 452 stocks into 10
Global Industry Classification Standard (GICS) sec-
tors, including Consumer Discretionary (70 stocks),
Consumer Staples (35 stocks), Energy (37 stocks),
Financials (74 stocks), Health Care (46 stocks),
Industrials (59 stocks), Information Technology

(64 stocks) Telecommunications Services (6
stocks), , Materials (29 stocks), and Utilities (32
stocks). We expect that the stocks from the same
sector are likely to appear in the non-zero entries of
the same principal component, since stocks from the
same sector tend to be more correlated.

Let P = [Pt,j ] be the closing price of stock j on day
t. In this paper we are interested in the transformed
data, where we calculate the log-ratio of the price at
time t to price at t− 1:

Xt,j = log(Pt+1,j/Pt,j), t = 1, . . . , T − 1.

It is obvious that there exists data dependence struc-
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ture between Xt1,j and Xt2,j for any t1, t2 ≤ T −1 and
it accordingly raises concern for conducting classical
sparse PCA algorithms on this dataset X. However,
the argument in this paper provides justifications to
such a procedure. In particular, we conclude that the
same parametric rate can be persisted if the opera-
tor norm of the transition matrix does not scale with
(n, d, s). Here we present labels of the first three esti-
mated leading eigenvectors in Table 2. As can be ob-
served, the sparse PCA algorithm tend to group stocks
from the same sector into the same eigenvector.
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Table 2: Non-zero terms’ sectors in the 1st, 2nd and
3rd eigenvectors obtained.

û1 û2 û3

Financials Industrials Consumer Discretionary

Financials Industrials Consumer Discretionary

Financials Industrials Consumer Discretionary

Financials Industrials Consumer Discretionary

Financials Industrials Consumer Discretionary

Financials Industrials Consumer Discretionary

Financials Industrials Consumer Discretionary

Financials Industrials Consumer Discretionary

Financials Industrials Consumer Discretionary

Financials Industrials Consumer Discretionary

Financials Industrials Consumer Discretionary

Financials Industrials Financials

Financials Industrials Financials

Financials Industrials Financials

Financials Industrials Financials

Financials Industrials Financials

Financials Industrials Industrials

Financials Materials Industrials

Financials Materials Industrials

Financials Materials Industrials

Financials Materials Industrials

Financials Materials Industrials

Financials Materials Industrials

Financials Materials Industrials

Financials Materials Industrials

Financials Materials Information Technology

Financials Materials Information Technology

Financials Materials Materials

Financials Materials Materials

Financials Materials Materials
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