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Abstract

Maximum margin Bayesian networks
(MMBNs) are Bayesian networks with dis-
criminatively optimized parameters. They
have shown good classification performance
in various applications. However, there has
not been any theoretic analysis of their
asymptotic performance, e.g. their Bayes
consistency. For specific classes of MMBNs,
i.e. MMBNs with fully connected graphs
and discrete-valued nodes, we show Bayes
consistency for binary-class problems and
a sufficient condition for Bayes consistency
in the multi-class case. We provide simple
examples showing that MMBNs in their
current formulation are not Bayes consistent
in general. These examples are especially in-
teresting, as the model used for the MMBNs
can represent the assumed true distributions.
This indicates that the current formulations
of MMBNs may be deficient. Furthermore,
experimental results on the generalization
performance are presented.

1 INTRODUCTION

Maximum margin Bayesian networks (MMBNs) were
first introduced in (Guo et al., 2005). The basic
idea is to mimic the concept of the margin known
from support vector machines (SVMs) in a proba-
bilistic environment. SVMs are one of the best per-
forming classifiers available. In their basic formula-
tion, they separate samples from different classes by
a linear hyperplane. While SVMs are theoretically
well-understood (Vapnik, 1998; Platt, 1999; Shalev-
Shwartz et al., 2007), there exist several issues that
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are hard to deal with. One example is the treatment
of missing features in the data. SVMs usually require
imputation techniques to complete the data before fur-
ther processing (Little and Rubin, 2002). In contrast,
Bayesian network (BN) classifiers can naturally handle
missing features.

BN classifiers are composed of a directed acyclic graph
and conditional probabilities associated with the nodes
of this graph. The task of identifying these conditional
probabilities is termed parameter learning. Genera-
tive parameter learning aims at finding a joint proba-
bility distribution that explains the generation of the
samples, e.g. by identifying maximum likelihood (ML)
parameters. ML parameters minimize the Kullback-
Leibler divergence between the true joint distribution
and the joint distributions that can be represented
by the considered BNs (Koller and Friedman, 2009).
However, in classification tasks the objective is classifi-
cation rate. This is the focus of discriminative param-
eter learning which aims at maximizing the classifica-
tion performance. Representatives of this paradigm
are maximum conditional likelihood (MCL) and max-
imum margin (MM) parameter learning.

Previous results (Ng and Jordan, 2001) show that lo-
gistic regression, i.e. BN classifiers with naive Bayes
structure and MCL parameters, exhibit lower asymp-
totic generalization error than classifiers with ML pa-
rameters. For BNs with MM parameters, i.e. MMBNs,
no such results are available. However, comparable
performance of these classifiers to SVMs has been re-
ported (Pernkopf et al., 2012). This encourages the
investigation of BN classifiers with MM parameters
in more detail. Specifically, in this paper we address
the issue of Bayes consistency, i.e. whether classifiers
with parameters optimizing the MM objective yield
asymptotically almost surely the Bayes optimal classi-
fier. Our main results are:

1. MMBN classifiers with discrete-valued nodes are
in general not Bayes consistent.

2. MMBN classifiers with discrete-valued nodes and
fully connected graphs are Bayes consistent in
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binary-class classification tasks.

3. A sufficient condition for MMBN classifiers with
discrete-valued nodes and fully connected graphs
to be Bayes consistent in multi-class classification
tasks.

The remainder of this paper is structured as follows:
In Section 2, we introduce the framework of proba-
bilistic classifiers. In Section 3, we present definitions
of MMBNs from the literature followed by our theo-
retical results in Section 4. In Section 5 we illustrate
the theoretical insights by empirical results and sub-
sequently discuss some implications of our results in
Section 6. Finally, we conclude the paper in Section 7.

2 BACKGROUND

We consider classification problems in a probabilis-
tic setting where C,X1, . . . , XL are RVs. These RVs
are jointly distributed according to the distribution
P∗(C,X1, . . . , XL). We refer to this distribution as
true distribution. The RV C corresponds to the class
label and the RVs X1, . . . , XL are the features.

We stack the RVs X1, . . . , XL into the random vector
X = (X1, . . . , XL). Each Xi can take one value in the
set sp(Xi). Similarly, C can assume values in sp(C).
We use sp(X) to refer to the set of possible assignments
of X. Instantiations of RVs are denoted using lower
case letters, i.e. x is an instantiation of X and c an in-
stantiation of C, respectively. Whenever P(C,X) is a
probability distribution over C and X, we write P(c,x)
as an abbreviation for P(C = c,X = x). The expec-
tation of a function f(C,X) with respect to a joint
distribution P(C,X) is denoted as EP(C,X) [f(C,X)].

A classifier h is a mapping h : sp(X) → sp(C),x 7→
h(x), i.e. a classifier maps an instantiation x of the
attributes to class c. The merit of a classifier can be
quantified by its classification rate, or equivalently, by
its generalization error.

Definition 1 (Generalization Error, Classification
Rate). Let h : sp(X)→ sp(C) be a classifier. Its gen-
eralization error Err(h) is

Err(h) = EP∗(C,X) [1{h(X) 6= C}] , (1)

where 1{a} is the indicator function that equals 1 if
and only if the statement a is true and 0 otherwise.
The classification rate CR(h) is CR(h) = 1− Err(h).

Any probability distribution P(C,X) naturally in-
duces a classifier hP(C,X) according to

hP(C,X) : sp(X)→ sp(C), (2)

x 7→ arg max
c′∈sp(C)

P(c′|x),

i.e. an instantiation x of the features is classified by
the maximum a posteriori estimate of class c given x.
Note that arg maxc′ P(c′|x) is not necessarily unique,
i.e. different classes may achieve maxc′ P(c′|x). These
classes are collected in the set [C|x]P(C,X), i.e.

[C|x]P(C,X) = (3){
c | P(C = c|X = x) = max

c′∈sp(C)
P(C = c′|X = x)

}
.

Whenever [C|x]P(C,X) consists of more than a single el-
ement, we assume the classifiers to return one of these
classes uniformly at random1 — this is termed as op-
timally classified with respect to P(C,X).

In this paper, we consider probability distributions
represented by Bayesian networks (BN). A BN B =
(G,P) consist of a directed acyclic graph G together
with a set of conditional probabilities P (Pearl, 1988).
The nodes V = {X0, . . . , XL} of G correspond to
RVs and the edges encode conditional independen-
cies among these RVs. The conditional probabilities
P = {P(X0|Pa(X0)), . . . ,P(XL|Pa(XL))} are associ-
ated with the nodes of the graph and Pa(Xi) denotes
the parents of Xi in G. The BN defines the joint dis-
tribution

PB(X0, . . . , XL) =

L∏
i=0

P(Xi|Pa(Xi)). (4)

Throughout this paper, we assume that X0 corre-
sponds to the class RV, i.e. X0 = C. According to
the joint distribution, a BN B induces the classifier
hB = hPB(C,X).

In the following, we are interested in classifiers in the
hypothesis class of BN classifiers with discrete RVs and
fixed graph structure G, denoted as B(G). Optimality
of a classifier with respect to its hypothesis class is
defined as follows:

Definition 2 (Optimal Classifier). A classifier
hB, B ∈ B(G) is optimal with respect to the hypoth-
esis class B(G) if it satisfies

Err(hB) = inf
B′∈B(G)

Err(hB′). (5)

A classifier from any hypotheses class can not be better
than the Bayes optimal classifier hP∗(C,X) (Mitchell,
1997). The sub-optimality of a classifier hB ∈ B(G)

1Technically, hP(C,X) is not a mapping, because there
is no unique assignment of x ∈ sp(X) to some c ∈ sp(C).
For ease of notation, we ignore this fact.
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can be expressed as

Err(hB)− Err(hP∗(C,X)) (6)

=

(
Err(hB)− inf

B′∈B(G)
Err(hB′)

)
+

(
inf

B′∈B(G)
Err(hB′)− Err(hP∗(C,X))

)
,

where the first term is referred to as estimation error
and the second term as approximation error. The esti-
mation error measures the optimality of the classifier
hB with respect to the class B(G), while the approx-
imation error quantifies how close the best classifier
in B(G) is to the Bayes optimal classifier. When con-
sidering limited graph structures G, i.e. G is not fully
connected, the generalization error of the Bayes opti-
mal classifier can not be achieved in general, but there
will at least be a bias corresponding to the approx-
imation error. Throughout this paper, we consider
the hypothesis classes of BNs with naive Bayes (NB)
structure and fully connected graphs. In NB struc-
tures, the class node has no parents, i.e. Pa(C) = ∅,
and the only parent of any feature is the class node,
i.e. Pa(Xi) = {C}. In fully connected graphs, the
class node has no parents, i.e. Pa(C) = ∅, and for any
feature Pa(Xi) = {C,X1, . . . , Xi−1}.

The distribution P∗(C,X) is hardly ever known and
can, therefore, be usually only used as a reference in
synthetic experiments. In most practical situations
no information about the true distribution is directly
available but a training set T consisting of N labeled
samples drawn i.i.d. from P∗(C,X) is available, i.e.

T = {(c(1),x(1)), . . . , (c(N),x(N))}. (7)

A sequence of classifiers hA,N
B , where the superscript

A,N denotes that the classifier is obtained from a
training set of size N using the parameter learning
method A (e.g. maximum likelihood or maximum mar-
gin), is Bayes consistent (with respect to B(G)), if

Err(hA,N
B )→ inf

B′∈B(G)
Err(hB′) a.s. as N →∞. (8)

A typical approach of identifying the parameters of
such classifiers is by learning the parameters in a gen-
erative sense, i.e. by maximizing the likelihood of the
samples in T . However, models with simple struc-
ture often can not represent P∗(C,X). The result is
poor classification performance. To compensate for
this model mismatch, parameters can be optimized
discriminatively. For example, parameters with max-
imum conditional likelihood (MCL) of the samples in
the training set can be identified (Roos et al., 2005).
A competitive alternative to using MCL parameters,
is to employ MM parameters. This type of parameter
optimization is introduced in the next section.

3 MAXIMUM MARGIN BAYESIAN
NETWORKS

Guo et al. (2005) introduced MMBNs as a convex op-
timization problem for parameter learning. Later, the
maximum margin criterion was reformulated and a
conjugate gradient based method for parameter learn-
ing was provided (Pernkopf et al., 2012). In experi-
ments, both formulations have shown similar classifi-
cation performance while the conjugate gradient opti-
mization is beneficial in terms of computation cost. We
shortly review both formulations and provide an ex-
ample for which neither formulation retrieves a Bayes
consistent classifier, although the Bayes optimal clas-
sifier is within the considered hypothesis class B(G).
In the remainder of the paper we adopt the MMBN
objective of Pernkopf et al. (2012).

3.1 Formulation by Pernkopf et al.

Assuming a fixed graph G, the objective for learning
the joint probability PB(C,X) is based on the margins

d̃B(c(n),x(n)) =
PB(c(n),x(n))

maxc′ 6=c(n) PB(c′,x(n))
(9)

of the training samples. Therefore, the nth sample in
the training set is classified correctly if d̃B(c(n),x(n)) >
1. To handle non separable data, a hinge function is
used such that

dB(c(n),x(n)) = min
(
γ̃, d̃B(c(n),x(n))

)
, (10)

where γ̃ > 1 is a parameter that controls the influence
of the margins. The objective for learning MMBNs is
maximization of the product of dB(c(n),x(n)) over the
samples.

Definition 3 (Maximum Margin Bayesian Network).
A BN B = (G,P) that achieves the optimal value of

maximize
B′∈B(G)

N∏
n=1

min
(
γ̃, d̃B(c(n),x(n))

)
(11)

is an MMBN.

This definition can be equivalently stated in the log-
domain by requiring B to solve

maximize
B′∈B(G)

1

N

N∑
n=1

min

(
γ, log PB

′
(c(n),x(n)) (12)

− max
c′ 6=c(n)

log PB
′
(c′,x(n))

)
,

where γ = log γ̃ and the objective is normalized by the
number of training samples N . This allows the intro-
duction of the empirical distribution on the training



     593

On the Asymptotic Optimality of Maximum Margin Bayesian Networks

set PT (C,X), i.e.

PT (c,x) =
1

N

N∑
n=1

1{c(n) = c,x(n) = x} (13)

to the optimization problem. The objective (12) be-
comes

maximize
B′∈B(G)

∑
c,x

PT (c,x) min

(
γ, log PB

′
(c,x) (14)

−max
c′ 6=c

log PB
′
(c′,x)

)
.

A justification why BNs with MM parameters can be
advantageous over BNs with ML or MCL parameters
is given in Appendix A.

3.2 Formulation by Guo et al.

The formulation by Guo et al. is based on the repre-
sentation of the probabilities PB(c,x) as

PB(c,x) = exp(φ(c,x)Tw), (15)

where the entries of w correspond to the log-
probabilities of the BN B, i.e. the (i, j,h)th entry of
w corresponds to wi

j|h = log P(Xi = j|Pa(Xi) =

h). The vector φ(c,x) is a binary vector indicat-
ing which entries of the log conditional probabilities
log P(Xi|Pa(Xi)) are to be summed up for assignment
C = c and X = x. This enables to represent the loga-
rithm of the margin (9) as

log d̃B(c(n),x(n)) = min
c′ 6=c(n)

[φ(c(n),x(n))− φ(c′,x(n))]Tw.

(16)

Learning the parameters of MMBNs is then performed
by solving

minimize
γ,w

1

2γ2
+ (17)

BN
∑
c,x

PT (c,x) max

(
0, γ −min

c′ 6=c
[φ(c,x)− φ(c′,x)]Tw

)
s.t.

∑
j

exp(wij|h) = 1, ∀i,h

γ > 0, (18)

where B ≥ 0 is a trade-off parameter between a large
margin and correct classification. To end up with a
convex formulation, Guo et al. replace the constraints∑

j exp(wi
j|h) = 1 by inequalities, i.e.

∑
j exp(wi

j|h) ≤
1.

Due to the relaxation, the found parameters are
typically not normalized. However, as pointed out
in (Roos et al., 2005; Wettig et al., 2003), for certain

network structures renormalization is possible without
changing the classifier induced by the unnormalized
parameters. The condition is for example satisfied by
NB structures and fully connected graphs. The condi-
tion for renormalization is as follows:

Condition 1 (Renormalization (Wettig et al., 2003)).
For all feature RVs Xj with C ∈ Pa(Xj) there ex-
ists another RV Xi ∈ Pa(Xj) such that Pa(Xj) ⊆
Pa(Xi) ∪ {Xi}.

3.3 Inconsistent MMBNs

In this section we present an example for which both
definitions of MMBNs result almost surely in inconsis-
tent classifiers. Consider a classifier with no features,
i.e. X = ∅, in a three-class scenario. Let the true dis-
tribution be defined by

P∗(C = 1) = 0.4,

P∗(C = 2) = 0.3, and

P∗(C = 3) = 0.3.

Hence, the Bayes optimal classifier would classify all
instances as belonging to class 1. By the strong law of
large numbers, the empirical distribution will satisfy
asymptotically almost surely PT (C = 1) > PT (C =
2), PT (C = 1) > PT (C = 3) and PT (C = 1) <
PT (C = 2) + PT (C = 3). In this case, any distri-
bution inducing a Bayes optimal classifier has strictly
smaller (larger) objective than the uniform distribu-
tion according to problem (14) (problem (17))2. Con-
sequently, any MM distribution induces almost surely
a Bayes inconsistent classifier.

In this example, the Bayes optimal classifier can be
represented by the assumed model. Nevertheless, an
inconsistent classifier is obtained. We can deduce, that
in the multi-class case we must not hope for Bayes
consistency of MMBN classifiers in general.

4 THEORETICAL RESULTS

4.1 Bayes Consistency of Fully Connected
MMBNs

In this section, we show that fully-connected binary-
class MMBN classifiers with discrete-valued nodes are
Bayes consistent. Furthermore, we present a sufficient
condition for Bayes consistency of multi-class MMBN
classifiers. The proof consists of two parts. In the first
part, we prove optimality with respect to the empirical
distribution of the training set. In the second part,

2The necessary calculations for this result are straight-
forward, but provided in the supplementary material for
completeness.
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we conclude that MMBN classifiers are almost surely
Bayes consistent.

Lemma 1 (Optimality in the binary-class case). Let
C be a binary class variable, and let T be a training
set with empirical distribution PT (C,X) and G a fully
connected graph. Any MMBN classifier on G is opti-
mal with respect to PT (C,X).

The proof is provided in Appendix B.

Lemma 2 (Optimality in the multi-class case). Let
C be a class variable with |sp(C)| > 2, and let T be a
training set with empirical distribution PT (C,X) and
G a fully connected graph. Any MMBN classifier on G
is optimal with respect to PT (C,X) if

∀x ∃c : PT (c,x) >
∑
c′ 6=c

PT (c′,x). (19)

The proof is similar to that of Lemma 1 (for reference
it is provided in the supplementary material). Bluntly
speaking, condition (19) requires that for every instan-
tiation of the features x there is a dominant class.

Using Lemma 1 and 2 we can derive the following the-
orem.

Theorem 1. Any MMBN classifier with a fully con-
nected graph is Bayes consistent if

(a) |sp(C)| = 2, i.e. the class variable is binary, or

(b) |sp(C)| > 2, i.e. the multi-class case, and addi-
tionally the true distribution P∗(C,X) satisfies

∀x ∃c : P∗(c,x) >
∑
c′ 6=c

P∗(c′,x). (20)

Proof. We have already established that, given the
stated conditions, MMBN classifiers are optimal with
respect to the empirical distribution on the training
set. With growing sample size the empirical distri-
bution converges to the true distribution. Therefore,
the MMBN classifier converges asymptotically almost
surely to the Bayes optimal classifier.

4.2 MMBN Classifiers with not Fully
Connected Graphs are not Necessarily
Bayes Consistent

MMBN classifiers with not fully-connected graphs G
are not Bayes consistent in general. This is even true in
cases in which the true distribution can be represented
by some BN B ∈ B(G).

As an example consider a naive Bayes classifier with
two features. Assume that the true data distribution
P∗(C,X) satisfies the independence assumptions of the

naive Bayes network and that the conditional proba-
bility densities are given according to Table 1(a). For
γ = 1, there exist MMBN classifiers that are Bayes
consistent and MMBN classifiers that are inconsistent,
i.e. there is no unique optimal (and consistent) solu-
tion. The corresponding MM distributions are shown
in Table 1(b), and Table 1(c), respectively. The incon-
sistent distribution induces a classifier which has uni-
form class posterior for the samples (x1 = 1, x2 = 1)
and (x1 = 1, x2 = 2). This results in a classification
rate that is 4.5 percent smaller than the maximum
classification rate, i.e.

CR(hP∗(C,X))− CR(hPMM(C,X)) (21)

= P∗(c1,x1)− 1

2

(
PMM(c1,x1) + PMM(c2,x1)

)
+ P∗(c2,x2)− 1

2

(
PMM(c1,x2) + PMM(c2,x2)

)
= 0.14− 1

2
(0.14 + 0.12) + 0.28− 1

2
(0.28 + 0.21)

= 0.045,

where c1 is a shorthand for C = 1, c2 for C = 2,
x1 for X1 = 1, X2 = 1, and x2 for X1 = 1, X2 = 2,
respectively.

5 EXPERIMENTAL RESULTS

We performed two experiments supporting the theo-
retical results in this paper. Furthermore, an experi-
ment demonstrating that MMBNs can perform well in
the case of model mismatch is presented.

5.1 Bayes Consistent Classification Using
Fully Connected Graphs

We assumed an arbitrary random distribution
P∗(C,X) for a fully connected graph. These distribu-
tions were obtained by selecting each entry of the con-
ditional probabilities associated with the nodes of the
graph uniformly at random in the range [0, 1]. To end
up with properly normalized distributions, each condi-
tional probability distribution was normalized subse-
quently. From the obtained distribution we generated
training sets with an increasing number of samples.
On these training sets we determined BN classifiers
with fully connected graphs and using ML, MCL, and
MM parameters. MM parameters are determined us-
ing the linear program provided in the supplementary
material and employing 5-fold cross-validation to se-
lect the value of γ. We evaluated the generalization
performance of these classifiers with respect to the true
distribution.

As pointed out above, classifiers with both ML and
MM parameters have to converge to the optimal clas-



     595

On the Asymptotic Optimality of Maximum Margin Bayesian Networks

Table 1: Probability distribution for which MMBN
classifiers can be inconsistent.

(a) True distribution P∗(C,X); Objective (14)
evaluates to 0.049.

c = 1 c = 2

P(C = c) 0.5 0.5

P(X1 = 1|C = c) 0.7 0.8
P(X1 = 2|C = c) 0.3 0.2

P(X2 = 1|C = c) 0.4 0.3
P(X2 = 2|C = c) 0.6 0.7

C X1 X2 P∗(C,X)

1 1 1 0.14
2 1 1 0.12
1 2 1 0.06
2 2 1 0.03
1 1 2 0.21
2 1 2 0.28
1 2 2 0.09
2 2 2 0.07

(b) Inconsistent MM distribution PMM(C,X);
Objective (14) evaluates to 0.05.

c = 1 c = 2

P(C = c) 0.5938 0.4062

P(X1 = 1|C = c) 0.5 0.7311
P(X1 = 2|C = c) 0.5 0.2689

P(X2 = 1|C = c) 0.5 0.5
P(X2 = 2|C = c) 0.5 0.5

C X1 X2 PMM(C,X)

1 1 1 0.1485
2 1 1 0.1485
1 2 1 0.1485
2 2 1 0.0546
1 1 2 0.1485
2 1 2 0.1485
1 2 2 0.1485
2 2 2 0.0546

(c) Consistent MM distribution PMM(C,X);
Objective (14) evaluates to 0.05.

c = 1 c = 2

P(C = c) 0.5798 0.4202

P(X1 = 1|C = c) 0.4750 0.5250
P(X1 = 2|C = c) 0.5250 0.4750

P(X2 = 1|C = c) 0.5 0.3100
P(X2 = 2|C = c) 0.5 0.6900

C X1 X2 PMM(C,X)

1 1 1 0.1377
2 1 1 0.0684
1 2 1 0.1522
2 2 1 0.0619
1 1 2 0.1377
2 1 2 0.1522
1 2 2 0.1522
2 2 2 0.1377

sifier as the training set size increases. Results are av-
eraged over 100 different training sets for every sample
size using 100 different random parameter sets for the
true distribution (the selected true distributions sat-
isfy the condition of Theorem 1). Results for using 5
binary features and 2 classes, as well as 5 binary fea-
tures and 4 classes are shown in Figures 1(a) and 1(b),
respectively. Convergence to the optimal classifier can
be observed.

5.2 Convergence Experiments Assuming NB
Structure

We repeated the experiment from above using true dis-
tributions satisfying the factorization properties of NB
networks. BN classifiers with NB structure and ML,
MCL and MM parameters are determined. In hope of
obtaining unique MM parameters, we selected MM pa-
rameters with minimum `1-norm. Results for networks
with 5 binary features and 2 classes, as well as 5 bi-
nary features and 4 classes are shown in Figures 2(a)
and 2(b), respectively. As noticed in Section 4, the
MMBN classifiers do not converge to the optimal clas-
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Figure 1: Convergence of ML, MCL and MMBN clas-
sifiers to the optimal classifier assuming a fully con-
nected graph. The generalization error of the optimal
classifier is indicated by the dotted line (= True).

sifier. In contrast, ML and MCL classifiers achieve the
lowest possible generalization error.

5.3 Model Mismatch

The setup for this experiments is similar to Section 5.1.
For the true distribution an arbitrary distribution over
(C,X) is assumed, but the BN classifiers are deter-
mined using NB structures. The results for two-class
and four-class classification are shown in Figures 3(a)
and 3(b), respectively.

We observe that classifiers with MM parameters con-
verge to a lower asymptotic error than classifiers with
ML parameters. This is consistent with the obser-
vations in (Ng and Jordan, 2001) where generatively
optimized NB classifiers are compared to logistic re-
gression. In cases of model mismatch discriminative
learning is usually beneficial.

6 DISCUSSION

We presented multi-class examples for which the Bayes
optimal classifier can be represented by the consid-
ered models but is not retrieved by learning BN clas-
sifiers with MM parameters, cf. Sections 3.3 and 4.2.
This suggests that the formulations of MMBNs is de-
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Figure 2: Convergence of ML, MCL and MMBN clas-
sifiers assuming a NB structure. The generalization
error of the optimal classifier is indicated by the dot-
ted line (= True).

ficient — reasonable learning algorithms for classifica-
tion purposes should, asymptotically, result in a Bayes
consistent classifier in this setup. This result raises the
question why good classification results have been re-
ported in the literature, e.g. in (Pernkopf et al., 2012).
We attribute these results to the model mismatch and
the implemented early stopping heuristic: MM param-
eters are obtained by starting at the maximum like-
lihood solution and subsequent maximization of the
margin objective by gradient ascent. This maximiza-
tion is not performed until a locally optimal solution is
obtained, but stopped after a certain number of steps,
where the stopping time is determined using 5-fold
cross-validation. Consequently, the authors do not ac-
tually compute an MMBN but a blend between a BN
with generatively and discriminatively optimized pa-
rameters.

Furthermore, we observed that in some binary-class
examples for which the true distribution can be rep-
resented by the model, MMBNs do not necessarily
induce a Bayes optimal classifiers, cf. Section 4.2.
There are consistent and inconsistent parameters that
achieve the same margin objective. This suggests that
one should exploit the degrees of freedom still re-
maining after achieving a certain margin to optimize
some additional criterion, e.g. maximization of the en-
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Figure 3: Compensation of model mismatch assum-
ing an arbitrary true distribution and ML, MCL and
MMBN classifiers with NB structure. The generaliza-
tion error of the optimal classifier is indicated by the
dotted line (= True).

tropy or maximization of the likelihood of the training
data (Peharz et al., 2013).

7 CONCLUSION

In this paper, we presented results on Bayes con-
sistency of MMBN classifiers with fully connected
graphs. We provided examples where MMBN clas-
sifiers can be inconsistent and demonstrated experi-
mentally that these classifiers are able to efficiently
compensate model mismatch.

In future work, we aim to quantify the asymptotic sub-
optimality of MMBN classifiers in terms of the true dis-
tribution. We want to establish rates of convergence to
the asymptotic performance. Furthermore, we aim at
extending the definition of margin objective. In partic-
ular, Bayes consistency shall be achieved whenever the
true distribution can be represented by the considered
BNs.
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A MMBNS MAXIMIZE A LOWER
BOUND OF THE
CLASSIFICATION RATE

The ideal approach for learning BN classifiers with
fixed structure G would be solving

maximize
B′∈B(G)

EP∗(C,X) [1{hB′(X) = C}] , (22)

i.e. maximization of the expected classification rate.
Directly finding a solution to this problem is difficult
as P∗(C,X) is unknown. Even if P∗(C,X) would be
available, the maximization in general corresponds to
a hard nonlinear optimization problem. Therefore, ap-
proximations are needed.

Solving (22) is equivalent to solving

maximize
B′∈B(G)

∑
c,x

P∗(c,x)1{hB′(x) = c}. (23)

The expression 1{hB′(x) = c} equals 1 if and only if

hB′(x) = c, or equivalently if PB
′
(c,x) > PB

′
(c′,x) for

all c′ 6= c (ignoring the possibility of equally large joint
probabilities), otherwise it is zero. In comparison, the
corresponding term in (14) with γ = 1 is at most 1

and positive if and only if PB
′
(c,x) > PB

′
(c′,x) for all

c′ 6= c. Otherwise it is negative. Consequently,

min

(
1, log PB

′
(c,x)−max

c′ 6=c
log PB

′
(c′,x)

)
(24)

≤ 1{hB′(x) = c}.

This holds for all c and x. Therefore, the MM objec-
tive (14) lower bounds asymptotically almost surely
the classification rate (as the empirical distribution
converges to the true distribution with increasing sam-
ple size).

B PROOF OF LEMMA 1

Proof. We give a proof by contradiction. Assume
that BMM = (G,PMM(C,X)) is an MMBN trained
on the training set T with empirical distribution
PT (C,X). Additionally, assume that the induced
classifier hPMM(C,X) is not optimal with respect to

PT (C,X). Thus, there exists an instantiation of
the features xf that is not optimally classified by
hPMM(C,X), i.e. for which

[C|xf ]PMM(C,X) \ [C|xf ]PT (C,X) 6= ∅. (25)

Because of the binary class variable, the set
[C|xf ]PT (C,X) consists only of a single element (oth-
erwise deciding for any of the two classes is optimal).

We consider the cases |[C|xf ]PMM(C,X)| = 1 and

|[C|xf ]PMM(C,X)| = 2 separately. Beforehand, note

that since G is fully connected, i.e. B(G) is the set of all
possible distributions over (C,X), we can arbitrarily
select the probabilities PMM(C = c,X = x), as long
as a correctly normalized distribution results. Conse-
quently, we can select PMM(C = c|X) without chang-
ing PMM(X). We use this to show that the MMBN
objective (14) can be strictly increased.

Case 1. If [C|xf ]PMM(C,X) consists of one element

cf ∈ sp(C), then there exists a c∗ ∈ sp(C) \ {cf}
such that PMM(cf |xf ) > PMM(c∗|xf ) and such that

PT (c∗|xf ) > PT (cf |xf ). We generate a new prob-

ability distribution P̃MM(C,X) from PMM(C,X) by
setting

P̃MM(c,x) = PMM(c,x) ∀ x 6= xf ∀c, (26)

P̃MM(cf ,xf ) = PMM(c∗,xf ), and (27)

P̃MM(c∗,xf ) = PMM(cf ,xf ). (28)

The distribution P̃ MM(C,X) optimally classifies
xf . Additionally, it has higher objective (14) than
PMM(C,X). Consequently, PMM(C,X) is no MMBN.

Case 2. If [C|xf ]PMM(C,X) consists of two elements,
both classes have posterior probabilities of 0.5 accord-
ing to PMM(C,X). Therefore, in the objective (14) the
sum ∑

c

PT (c,xf ) min

(
γ, log PMM(c,xf ) (29)

−max
c′ 6=c

log PMM(c′,xf )

)
evaluates to zero.

Let c∗, cf ∈ sp(C) satisfy PT (c∗|xf ) > PT (cf |xf ). As

above, we generate a new distribution P̃MM(C,X) that
classifies xf optimally and has higher objective. The
distribution P̃MM(C,X) is generated from PMM(C,X)
by setting

P̃MM(c,x) = PMM(c,x) ∀ x 6= xf ∀c, (30)

P̃MM(cf ,xf ) =
1

1 + exp(γ)
· PMM(xf ), and (31)

P̃MM(c∗,xf ) =
exp(γ)

1 + exp(γ)
· PMM(xf ). (32)

The terms in the objective (14) that change their value,
sum up to ∑

c

PT (c,xf ) min

(
γ, log P̃MM(c,xf )

−max
c′ 6=c

log P̃MM(c′,xf )

)
= γ

(
PT (c∗,xf )− PT (cf ,xf )

)
> 0.

As the objective increases, PMM(C,X) is not an
MMBN.
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