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1 MM PARAMETER LEARNING
BY LINEAR PROGRAMMING

The convex optimization problem for learning MM pa-
rameters (Guo et al., 2005) is based on a relaxation
of the normalization constraints inherent to learning
probability distributions.

We exploit the renormalization property and com-
bine ideas of Guo et al. (2005) and Pernkopf et al.
(2012) to come up with a linear program for opti-
mally learning MMBNs using the objective of Pernkopf
et al. (2012). Assume a fixed graph G of the BNs.
Then, we can express the joint probability PB(C,X)
in (4) satisfying the independence properties implied
by G as PB(C,X) = exp(φ(C,X)Tw). In this ex-
pression w is a vector containing the logarithms of
all the conditional probabilities in the network, i.e.
wij|h = log(P(Xi = j|Pa(Xi) = h)), and φ(c,x) is
a binary vector indicating which entries of the log
conditional probabilities log P(Xi|Pa(Xi)) are to be
summed up when C = c and X = x. Inserting the
above expression into (14), the objective for learning
MMBNs becomes

maximize
w

∑
c,x

PT (c,x) min

(
γ,φ(c,x)Tw (S1)

−max
c′ 6=c

φ(c′,x)Tw

)
,

s.t.
∑
j

exp
(
wij|h

)
= 1 ∀i,h ∈ sp(Pa(Xi)),

where optimization is now solved over the log-
parameters w. The constraints ensure that w rep-
resents properly normalized conditional probabilities.

Problem (S1) can readily be expressed as the optimiza-

tion problem

maximize
w,γ(c,x)

∑
c,x

PT (c,x)γ(c,x) (S2)

s.t. γ(c,x) ≤ γ ∀c,x

γ(c,x) ≤ [φ(c,x)− φ(c′,x)]
T
w

∀c,x ∀c′ 6= c∑
j

exp
(
wij|h

)
= 1 ∀i,h ∈ sp(Pa(Xi)).

This problem is nonlinear and non-convex. To achieve
convexity, Guo et al. (2005) relaxed the normalization
constraints1 to∑

j

exp
(
wij|h

)
≤ 1 ∀i,h ∈ sp(Pa(Xi)). (S3)

These relaxed constraints have the disadvantage to
cancel the effect of the margin-controlling parameter
γ: To see this, consider the problem in (S2). If the
normalization constraints are neglected, a linear pro-
gram results. The dual of this linear program exhibits
that its solutions in terms of w are independent of γ.
However, every solution of the linear program can be
transformed to a feasible solution of (S2) by subtract-
ing a sufficiently large quantity from each component
of w. This subtraction does not change the objective
and the induced classifier.

To achieve the desired effect of γ, we constrain the
components of w to be smaller than 0 and use an `1-
norm constraint on w. The resulting linear program
is

maximize
w,γc,x

∑
c,x

PT (c,x)γ(c,x) (S4)

s.t. γ(c,x) ≤ γ ∀c,x

γ(c,x) ≤ [φ(c,x)− φ(c′,x)]
T
w

∀c,x ∀c′ 6= c

−
∑
i,j,h

wij|h ≤ 1, w ≤ 0.

1Guo et al. (2005) used a different objective function.
However, the implications are the same.
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A parameter vector w∗ solving (S4) will in general not
represent a properly normalized distribution. When-
ever the renormalization Condition 1 is satisfied, nor-
malization is possible without changing hw∗ , where
hw∗ is the classifier induced by w∗. Roughly speaking,
normalization can be achieved as follows (details are
provided in (Wettig et al., 2003)): Due to the directed
acyclic graph G assumed for the BN classifiers, the
nodes of these classifiers can be topologically ordered.
The conditional probabilities of the nodes can be se-
quentially normalized in a bottom up manner starting
with the last node in the topological ordering. Multi-
plicative factors required for normalization are handed
to the parent nodes. This does not affect the normal-
ization of previous nodes.

If Condition 1 is not satisfied, the parameters can still
be normalized. However, the resulting parameters are
not guaranteed to maximize (14).

2 OPTIMAL MMBNS FOR THE
THREE-CLASS EXAMPLE

2.1 Review of the Example

Consider a classifier with no features, i.e. X = ∅, in
a three-class scenario. Let the true distribution be
defined by

P∗(C = 1) = 0.4,

P∗(C = 2) = 0.3, and

P∗(C = 3) = 0.3.

Hence, the Bayes optimal classifier would classify all
instances as belonging to class 1. In this case however,
any distribution inducing a Bayes optimal classifier has
strictly smaller (larger) objective than the uniform dis-
tribution according to problem (14) (problem (17)).
Consequently, any MM distribution induces an incon-
sistent classifier almost surely. In the remainder of this
section, we assume that PT (C = 1) > PT (C = 2),
PT (C = 1) > PT (C = 3) and PT (C = 1) < PT (C =
2) + PT (C = 3) which holds asymptotically a.s.

2.2 Optimality of the Solution According to
Guo et al.

For the considered example, MMBNs according to the
formulation by Guo et al. can be found by minimizing

1

2γ2
+BN

(
(S5)

PT (C = 1) max {0, γ −min{w1 − w2, w1 − w3}}
+ PT (C = 2) max {0, γ −min{w2 − w1, w2 − w3}}

+ PT (C = 3) max {0, γ −min{w3 − w1, w3 − w2}}
)

with respect to w1, w2, w3 and γ, under the constraints
that γ ≥ 0 and exp(w1) + exp(w2) + exp(w3) ≤ 1.

Assuming a solution corresponding to the uniform dis-
tribution, i.e. w1 = w2 = w3 = log( 1

3 ), the minimiza-
tion problem becomes

1

2γ2
+BNγ, (S6)

again, subject to γ ≥ 0 and exp(w1) + exp(w2) +
exp(w3) ≤ 1. The latter constraint is clearly satis-
fied. The optimal value of γ can be determined easily,
resulting in an objective value of

1

2 (BN)
− 2

3

+
3
√
B2N2. (S7)

We now show by lower-bounding the objective that
for any parameters w1, w2, w3 corresponding to the
Bayes optimal classifier, the objective is strictly larger
than (S7). Assume that w1 > w2, w1 > w3 and with-
out loss of generality, that w2 ≥ w3 (this parameters
correspond to a Bayes optimal classifier). Then the
following chain of inequalities results:

1

2γ2
+BN

(
PT (C = 1) max {0, γ −min{w1 − w2, w1 − w3}}
+ PT (C = 2) max {0, γ −min{w2 − w1, w2 − w3}}

+ PT (C = 3) max {0, γ −min{w3 − w1, w3 − w2}}
)

=
1

2γ2
+BN

(
PT (C = 1) max {0, γ − (w1 − w2)}

+ PT (C = 2) max {0, γ − (w2 − w1)}

+ PT (C = 3) max {0, γ − (w3 − w1)}
)

(a)

≥ 1

2γ2
+BN

(
PT (C = 1) max {0, γ − (w1 − w2)}

+
(
PT (C = 2) + PT (C = 3)

)
max {0, γ − (w2 − w1)}

)
(b)

≥ 1

2γ2
+BN

(
PT (C = 1)(γ − (w1 − w2))

+
(
PT (C = 2) + PT (C = 3)

)
(γ − (w2 − w1))

)
(c)
>

1

2γ2
+BNγ,

(S8)

where (a) is because w2−w1 ≤ w3−w1, (b) by selecting
arbitrary elements instead of performing the maximum
operations, and (c) because the empiric distribution
satisfies PT (C = 2)+PT (C = 3) > PT (C = 1) almost
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surely as N →∞. Consequently, an MMBN according
to the formulation of Guo et al. must not be Bayes
optimal for this example almost surely.

2.3 Optimality of the Solution According to
Pernkopf et al.

For the considered example, MMBNs according to the
formulation by Pernkopf et al. can be found by maxi-
mizing

PT (C = 1) min (γ, log θ1 −max{log θ2, log θ3})
(S9)

+PT (C = 2) min (γ, log θ2 −max{log θ1, log θ3})
+PT (C = 3) min (γ, log θ3 −max{log θ1, log θ2})

with respect to θ1, θ2, θ3, where PMM(C = 1) =
θ1, . . . ,P

MM(C = 3) = θ3. In the case θ1 = θ2 =
θ3 = 1

3 the objective (S9) evaluates to zero.

We now show by calculation, that any (θ1, θ2, θ3) that
would correspond to a Bayes optimal classifier results
in a strictly smaller objective. For this, assume that
θ1 > θ2 and θ1 > θ3. Without loss of generality, addi-
tionally assume that θ2 ≥ θ3. Consequently,

PT (C = 1) min (γ, log θ1 −max{log θ2, log θ3})
+ PT (C = 2) min (γ, log θ2 −max{log θ1, log θ3})
+ PT (C = 3) min (γ, log θ3 −max{log θ1, log θ2})

= PT (C = 1) min (γ, log θ1 − log θ2)

+ PT (C = 2) min (γ, log θ2 − log θ1)

+ PT (C = 3) min (γ, log θ3 − log θ1)

(a)

≤ PT (C = 1) min (γ, log θ1 − log θ2)

+ (PT (C = 2) + PT (C = 3)) min (γ, log θ2 − log θ1)

(b)
< (PT (C = 2) + PT (C = 3)) min (γ, log θ1 − log θ2)

+ (PT (C = 2) + PT (C = 3)) min (γ, log θ2 − log θ1)

= (PT (C = 2) + PT (C = 3)) min (γ, log θ1 − log θ2)

− (PT (C = 2) + PT (C = 3)) (log θ1 − log θ2)

(c)

≤ 0,

where (a) is because θ2 ≥ θ3 by assumption, (b) be-
cause PT (C = 1) < PT (C = 2) + PT (C = 3), and (c)
because log θ1 − log θ2 is bounded by γ. Hence, any
MMBN must not be Bayes optimal for this example
almost surely.

3 PROOF OF LEMMA 2

Proof. Similar to the proof of Lemma 1, we give a
proof by contradiction and make the same assump-
tions. As the induced classifier hPMM(C,X) is assumed

not to be optimal with respect to PT (C,X), there ex-
ists an instantiation of the features xf that is not op-
timally classified by hPMM(C,X), i.e. for which

[C|xf ]PMM(C,X) \ [C|xf ]PT (C,X) 6= ∅. (S10)

Because of the assumption of Lemma 2, the set
[C|xf ]PT (C,X) consists only of a single element. If

[C|xf ]PMM(C,X) consists of a single element, a con-
tradiction can be shown similar as in the binary-class
case. If [C|xf ]PMM(C,X) consists of multiple elements,
the sum∑

c

PT (c,xf ) min

(
γ, log PMM(c,xf ) (S11)

−max
c′ 6=c

log PMM(c′,xf )

)
in the MM-objective evaluates to at most zero.

Let {c∗} = [C|xf ]PT (C,X), i.e. c∗ satisfies PT (c∗|xf ) >

PT (c′|xf ) for all c′ 6= c∗. We generate a new distribu-

tion P̃
MM

(C,X) that classifies xf optimally and has

higher objective. The distribution P̃
MM

(C,X) is con-
structed from PMM(C,X) by setting

P̃
MM

(c,x) = PMM(c,x) ∀x 6= xf ∀c, (S12)

P̃
MM

(c′,xf ) =
1

|sp(C)| − 1 + exp(γ)
· PMM(xf )

∀c′ 6= c∗, and (S13)

P̃
MM

(c∗,xf ) =
exp(γ)

|sp(C)| − 1 + exp(γ)
· PMM(xf ).

(S14)

The terms in the objective that change their value,
sum up to∑

c

PT (c,xf ) min

(
γ, log P̃

MM
(c,xf ) (S15)

−max
c′ 6=c

log P̃
MM

(c′,xf )

)

= γ

PT (c∗,xf )−
∑
c′ 6=c

PT (c′,xf )


> 0,

where the inequality is due to the assumption of the
Lemma. As the objective increases, PMM(C,X) is not
an MMBN.
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