
     572

Completeness Results for Lifted Variable Elimination

Nima Taghipour Daan Fierens Guy Van den Broeck Jesse Davis Hendrik Blockeel
Department of Computer Science, KU Leuven, Belgium

Abstract

Lifting aims at improving the efficiency of
probabilistic inference by exploiting symme-
tries in the model. Various methods for lifted
probabilistic inference have been proposed,
but our understanding of these methods and
the relationships between them is still lim-
ited, compared to their propositional coun-
terparts. The only existing theoretical char-
acterization of lifting is a completeness re-
sult for weighted first-order model counting.
This paper addresses the question whether
the same completeness result holds for other
lifted inference algorithms. We answer this
question positively for lifted variable elimina-
tion (LVE). Our proof relies on introducing a
novel inference operator for LVE.

1 INTRODUCTION

Probabilistic logical models combine graphical models
with elements of first-order logic to compactly model
uncertainty in structured domains (social networks, ci-
tation graphs, etc.) [3, 8]. These domains can involve
a large number of objects, making efficient inference a
challenge. Lifted probabilistic inference methods ad-
dress this problem by exploiting symmetries present in
the structure of the model [1, 5, 9, 11, 12, 13, 14, 17, 18,
20, 22]. The basic principle is to identify “interchange-
able” groups of objects and perform an inference op-
eration once per group instead of once per individual
in the group. Researchers have proposed “lifted” ver-
sions of many standard propositional inference algo-
rithms, including variable elimination [5, 13, 14], belief
propagation [12, 17, 18], recursive conditioning [15],
weighted model counting [9], and knowledge compila-
tion [21, 22].

Appearing in Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2013, Scottsdale, AZ, USA. Volume 31 of JMLR: W&CP
31. Copyright 2013 by the authors.

Despite the progress made, we have far less insight
into lifted inference methods than into their propo-
sitional counterparts. Only recently has a definition
been proposed for lifted inference. Domain-lifted in-
ference requires the time-complexity of inference to be
at most polynomial in the domain size (number of ob-
jects) of the model [21]. In contrast, standard proposi-
tional inference is typically exponential in the domain
size in probabilistic logical models. Given this defini-
tion, it is possible to characterize, in the form of com-
pleteness results, which classes of models always per-
mit lifted inference. Weighted first-order model count-
ing (WFOMC) is the first lifted algorithm shown to
be complete for a non-trivial model class: Van den
Broeck [21] showed that WFOMC is complete for 2-
logvar models. These models can express many im-
portant regularities that commonly occur in real-world
problems, such as (anti-)homophily and symmetry.

This raises the question whether WFOMC is funda-
mentally more powerful for lifted inference than other
approaches, such as lifted variable elimination (LVE).
In this paper, we address that question. We prove
that LVE is complete for the same class of models that
WFOMC was shown to be complete for. This theoret-
ical result advances our understanding about the rela-
tionship between these two approaches. The complete-
ness theorem is proven by extending a state-of-the-art
algorithm for LVE with a new operator, called group-
inversion, and showing that the new algorithm has the
completeness property. We also show experimentally
that this completeness is not only of theoretical impor-
tance: the new algorithm can be orders of magnitude
faster than its incomplete predecessor.

2 REPRESENTATION

Many representation languages for probabilistic logi-
cal models have been proposed [8]. Like earlier work
on LVE [5, 13, 14], we use a representation based on
parametrized random variables and parametric factors.
This representation combines random variables and
factors (as used in factor graphs) with concepts from
first order logic. The goal is to compactly define com-
plex probability distributions over large sets of vari-



     573

Completeness Results for Lifted Variable Elimination

ables. We now introduce the necessary terminology.

We use the term ‘variable’ in both the logical and prob-
abilistic sense. We use logvar for logical variables and
randvar for random variables. We write variables in
uppercase and values in lowercase.

Preliminaries. A factor f = φf (Af ), where Af =
(A1, . . . , An) are randvars and φf is a potential func-
tion, maps each configuration of Af to a real num-
ber. A factor graph is a set of factors F over randvars
A =

⋃
f∈F Af and determines a probability distribu-

tion PF (A) = 1
Z

∏
f∈F φf (Af ), with Z a normaliza-

tion constant.

The vocabulary consists of predicates (representing
properties and relations), constants (representing ob-
jects) and logvars. A term is a constant or a logvar. An
atom is of the form P (t1, t2, . . . , tn), where P is a predi-
cate and each argument ti is a term. An atom is ground
if all its arguments are constants. Each logvar X has
a finite domain D(X), which is a set of constants. A
constraint C on a set of logvars X = {X1, . . . , Xn} is a
conjunction of inequalities of the form Xi 6= t where t
is a constant in D(Xi) or a logvar in X. A substitution
θ = {X1 → t1, . . . , Xn → tn} maps logvars to terms.
Applying a substitution θ to an atom (or term) a, re-
places each occurrence of Xi in a with ti; the result is
denoted aθ. When all ti’s are constants, θ is called a
grounding substitution. Given a constraint C, we use
gr(X|C) to denote the set of grounding substitutions
to X that are consistent with C.

Parametrized randvars. The representation asso-
ciates atoms with randvars. To this end, every predi-
cate is assigned a range, i.e., a set of possible values,
e.g., range(BloodType) = {a, b, ab, o}. A ground atom
then represents a randvar, e.g., BloodType(joe). The
randvar/atom has the same range as the involved pred-
icate. Unlike in first-order logic, a range is not limited
to {true, false} but can be any finite set.

To compactly encode distributions over many rand-
vars, the concept of a parametrized randvar (PRV) was
introduced [5, 13, 14]. A PRV is of the form P (X)|C,
where P (X) is an atom and C is a constraint on X. A
PRV represents a set of randvars. Concretely, the set
of randvars represented by a PRV V = P (X)|C is de-
noted RV (V) and is defined as {P (X)θ|θ ∈ gr(X|C)}.

Example 1. Suppose D(X) = D(Y ) = {a, b, c, d},
where a stands for the person ann, b for bob,
etc. The PRV Friends(X,Y )|X 6= Y represents a set
of 12 randvars, namely {Friends(a, b),Friends(a, c),
. . . ,Friends(d, c)}. Similarly, the (unconstrained)
PRVs Smokes(X) and Drinks(X) each represent a set
of 4 randvars. �

Parametric factors (parfactors). Like PRVs com-

pactly encode sets of randvars, parfactors compactly
encode sets of factors. A parfactor is of the form
∀L : φ(A)|C, with L a set of logvars, C a constraint
on L, A = (Ai)

n
i=1 a sequence of atoms parametrized

with L, and φ a potential function on A. The set of
logvars occurring in A is denoted logvar(A), and we
have logvar(A) ⊆ L. When logvar(A) = L, we omit
L and write the parfactor as φ(A)|C. A factor φ(A′) is
called a grounding of a parfactor φ(A)|C if A′ can be
obtained by instantiating L according to a grounding
substitution θ ∈ gr(L|C). The set of all groundings of
a parfactor g is denoted gr(g).

Example 2. We use the following as our running ex-
ample. Below we abbreviate Drinks to D, Friends to
F and Smokes to S. The parfactor

g1 = φ1(S (X),F (X,Y ),D(Y ))|X 6= Y (1)

represents a set of 12 factors, namely gr(g1) =
{φ1(S (a),F (a, b),D(b)), . . . , φ1(S (d),F (d, c),D(c))}.
If we choose the entries in the potential φ1 appro-
priately, we can use this parfactor to encode, for
instance, that if X is a smoker and is friends with Y ,
then Y is likely to be a drinker. The parfactor

g2 = φ2(F (X,Y ),F (Y,X))|X 6= Y (2)

also represents 12 factors, and can be used to encode,
for instance, that friendship is likely to be symmetric.�

Parfactor models. When talking about a model be-
low, we mean a set of parfactors. In essence, a set of
parfactors G is a compact way of defining a set of fac-
tors F = {f |f ∈ gr(g) ∧ g ∈ G}. The corresponding
probability distribution is PG(A) = 1

Z

∏
f∈F φf (Af ).

3 (LIFTED) VARIABLE
ELIMINATION

The state of art in lifted variable elimination (LVE) is
the result of various complementary efforts [1, 5, 13,
14, 19, 20]. This section reviews the algorithm that we
build on, namely C-FOVE [13].

Variable elimination calculates a marginal distribution
by eliminating randvars in a specific order from the
model until reaching the desired marginal [16]. To
eliminate a single randvar V , it first multiplies all
factors containing V into a single factor and then
sums out V from that single factor. LVE does this
on a lifted level by eliminating parametrized randvars
(i.e., whole sets of randvars) from parfactors (i.e., sets
of factors). The outer loop of LVE is shown in Algo-
rithm 1. As this shows, LVE works by applying a set
of lifted operators. We now discuss the most basic op-
erators. Beside these, LVE has conversion operators,
which we discuss in Section 6.



     574

Nima Taghipour Daan Fierens Guy Van den Broeck Jesse Davis Hendrik Blockeel

Inputs: G: a model; Q: the query randvar

while G contains other randvars than Q:

if a PRV V can be eliminated by lifted sum-out

G← eliminate V in G by lifted sum-out

else apply an enabling operator on G

end while

return G

Algorithm 1: The outer loop of LVE.

Lifted Sum-out. This operator sums-out a PRV, and
hence all the randvars represented by that PRV, from
the model. Lifted sum-out is applicable only under
a precondition (each randvar represented by the PRV
appears in exactly one grounding of exactly one par-
factor in the model). The goal of all other operators is
to manipulate the parfactors into a form that satisfies
this precondition. In this sense, all operators except
lifted sum-out can be seen as enabling operators.

Lifted Multiplication. This operator performs the
equivalent of many factor multiplications in a single
lifted operation. It prepares the model for sum-out
by replacing all the parfactors that share a particular
PRV by a single equivalent product parfactor.

Splitting and Shattering. These operators rewrite
the model into a normal form in which, e.g., each pair
of PRVs represent either identical or disjoint randvars.

4 COMPLETENESS OF LVE

Lifting can yield significant speedups over standard
inference. This has been demonstrated empirically in
large models where a lifted algorithm can conclude in-
ference without grounding. There, a central feature
of lifted inference is scalability w.r.t. the domain size
(the number of objects in the model). This is formally
captured in the definition of domain-lifted inference:

Definition 1 (Domain-lifted algorithm [21]) A
probabilistic inference algorithm is domain-lifted for
a model G, query Q and evidence E iff it runs in
polynomial time in |D1|, ..., |Dk|, with Di the domain
of logvar Xi ∈ logvar(G,Q, E).

Note that this definition of ‘lifting’ requires time poly-
nomial in the domain size. This is to contrast with
standard propositional inference, which is often ex-
ponential in the domain size for common probabilis-
tic logical models. This definition allows us to evalu-
ate lifted algorithms not only by empirical evaluation
on specific models, but by theoretically characterizing
their completeness w.r.t. useful model classes.

Definition 2 (Completeness [21]) An algorithm
is complete for a class M of models, if it is domain-

lifted for all models G ∈ M and all ground queries Q
and evidence E.

Intuitively, this means that we can analyze a model
syntactically and know a priori whether lifting is possi-
ble. Among all the lifted inference algorithms, the only
existing completeness results belongs to WFOMC,
which was shown to be complete for 2-logvar mod-
els [21]. This refers to any model where each parfactor
contains at most 2 logvars. While C-FOVE has a lifted
solution for some 2-logvar models, it is not complete
w.r.t. this class [21]. Consider the 2-logvar model from
Example 2. C-FOVE can handle the model consisting
only of the first parfactor g1 in a lifted way (i.e., with-
out grounding). However, including the second par-
factor g2 forces C-FOVE to ground the model and run
inference with exponential complexity in the domain
size. This raises the question whether this is due to an
inherent limitation of LVE.

In this paper, we answer this question negatively by
presenting a lifted inference solution for LVE for all
2-logvar models. For this, we introduce a novel lifted
operator in C-FOVE, resulting in the C-FOVE+ algo-
rithm. We then derive the first completeness results
for LVE, and prove that C-FOVE+ is complete in the
same sense as WFOMC.

Theorem 1 C-FOVE+ is a complete domain-lifted
algorithm for 2-logvar models.

Importance of the Result. Our completeness re-
sult furthers our understanding of the relation between
LVE and lifted search based methods, which is an im-
portant problem in the field [9, 10, 15, 21]. Van den
Broeck [21] showed that WFOMC is complete for the
class of 2-WFOMC models. Any such model can be
represented as a 2-logvar model, and vice versa (see
the appendix). Our completeness result for LVE is
thus equally strong as that of WFOMC.

The class of 2-logvar models includes many useful
and often employed models in statistical relational
learning. It can model multiple kinds of rela-
tions, including: homophily between linked entities,
e.g., φ(Property(X), Related(X,Y ), Property(Y ));
symmetry, e.g., φ(Friend(X,Y ), Friend(Y,X)); anti-
symmetry, e.g., φ(Smaller(X,Y ),Smaller(Y,X));
and reflexivity, e.g., φ(Knows(X,X)). Theorem 1
guarantees that for these models, LVE can perform
inference in time polynomial in the domain size.

Secondary Result. Beside our main result (Theo-
rem 1), we also present a second result (Theorem 2),
which is in line with a known result for lifted recursive
conditioning [15]. This theorem applies to models that
restrict the number of logvars per atom, whereas The-
orem 1 restricts the number of logvars per parfactor.



     575

Completeness Results for Lifted Variable Elimination

Theorem 2 C-FOVE+ is a complete domain-lifted
algorithm for the class of models in which each atom
has at most 1 logvar.

The next two sections develop the machinery that al-
lows us to prove our completeness results.

5 A NEW OPERATOR: GROUP
INVERSION

We now introduce a new lifted operator called group
inversion. This operator is required to make LVE com-
plete for important classes of models, as argued above.
Group inversion generalizes the existing inversion op-
erator of LVE [5, 14] and is inspired by the concept
of disconnected groundings in lifted recursive condi-
tioning [15]. We first review inversion, and then define
group inversion.

5.1 Inversion

Lifted sum-out eliminates a PRV, i.e., a whole set of
randvars, in a single operation. An important principle
that it relies on is inversion, which consists of turning
a sum of products into a product of sums [5, 14]. Con-
sider the sum of products

∑
i

∑
j i · j. If the range

of j does not depend on i, it can be rewritten as
(
∑
j j)(

∑
i i), which is a product of sums. More gen-

erally, given n variables x1, . . . , xn, with independent
ranges, we have

∑
x1

∑
x2

. . .
∑
xn

n∏
i=1

f(xi) =

n∏
i=1

∑
xi

f(xi).

Furthermore, if all xi have the same range, this equals
(
∑
x1
f(x1))n. That is, the summation can be per-

formed for only one representative x1 and the result
used for all xi.

Exactly the same principle can be applied in lifted
inference for summing out randvars. Suppose we
need to sum out F (X,Y ) from the parfactor g1 =
φ1(S(X), F (X,Y ), D(Y )), of our running example
(Example 2, Section 2). For each instantiation (x, y)
of (X,Y ), F (x, y) has the same range, hence applying
inversion yields∑
F (a,a)

∑
F (a,b)

. . .
∑
F (d,d)

∏
θ∈Θ

g1θ =
∏
θ∈Θ

( ∑
F (X,Y )θ

g1θ
)

(3)

with Θ = gr(X,Y ). This shows that we can per-
form the sum-out operations independently for each
F (X,Y )θ = F (x, y), and multiply the results. Fur-
thermore, since all the factors g1θ are groundings of
the same parfactor and have the same potential φ1, the
result of summing out their second argument F (X,Y )θ

is also the same potential, denoted φ′1. It thus suffices
to only perform one instance of these sum-out opera-
tions and rewrite Expression 3 as∏

(x,y)

( ∑
F (x,y)

φ1(S(x), F (x, y), D(y))
)

=
∏

(x,y)

(
φ′1(S(x), D(y))

)
= gr(g′1)

where g′1 = φ′1(S(X), D(Y )). This is what lifted sum-
out by inversion does: it directly computes the par-
factor g′1 from g1 = φ1(S(X), F (X,Y ), D(Y )) by sum-
ming out F (X,Y ) from g1 in a single operation. This
single lifted operation replaces |Θ| sum-out operations
on the ground level.

5.2 Group Inversion: Principle

Inversion only works when the summations are in-
dependent. Our first contribution is based on the
following observation. When we cannot apply in-
version because of dependencies between factors, we
can still partition the factors (and the summations)
into groups such that dependencies exist only among
factors within a group, but not between groups.
Furthermore, we can do this at the lifted level: we
can compute the result for one group and use it for all
groups, provided that these groups are isomorphic, i.e.,
that there exists a one-to-one-mapping of the randvars
from one group to the others such that exactly the
same sum of products is obtained.

Consider the problematic parfactor from Example 2,
g2 = φ2(F (X,Y ), F (Y,X))|X 6= Y . Figure 1 de-
picts this model graphically. Consider summing out
F (X,Y ) from this model. If we focus on the part of
the computation related to one particular instantiation
(a, b), the sum looks as follows.

. . .
∑
F (a,b)

∑
F (b,a)

φ2(F (a, b), F (b, a)) · φ2(F (b, a), F (a, b))

The product contains two factors over the considered
pair of randvars F (a, b) and F (b, a). Inversion is not
applicable here, since the product of these two can-
not be moved out of the summation over either rand-
var. Still, the two summations are independent of all
other factors, and can be isolated from the rest of the
computation. The same can be done for each pair of
instantiations {(x, y), (y, x)} of (X,Y ), corresponding
to each pair of factors grouped in the same box in Fig-
ure 1. This means that summing out F (X,Y ) from g2

can be done using group inversion:∑
F (a,b)

∑
F (a,c)

. . .
∑
F (d,c)

( ∏
θxy∈Θ

g2 θxy

)



     576

Nima Taghipour Daan Fierens Guy Van den Broeck Jesse Davis Hendrik Blockeel

F (a, b) F (b, a)φ

φ

F (z, w)F (w, z) φ

φ

F (a, c) F (c, a)φ

φ

. . .

Figure 1: Group inversion on pairs of randvars. Circles
represent randvars, squares represent factors. Dashed
boxes indicate the partitioning into groups.

=
∏

{θxy,θyx}∈Θ

( ∑
F (X,Y )θxy

∑
F (X,Y )θyx

g2 θxy · g2 θyx

)
where θxy is a grounding substitution {X → x, Y → y}
in Θ = gr(X,Y |X 6= Y ). Lifting is now possible again
since the groups are isomorphic (see Figure 1): for
all distinct pairs of substitutions (θxy, θyx) in Θ, the
pairs of factors (g2θxy, g2θyx) share the same potential
φ2. Thus, the multiplicands of each pair also have the
same potential φ′2, and summing out their arguments
results in the same potential φ′′2 . Hence, it suffices to
perform only one (lifted) instance of these operations
as follows ∏

{(x,y),(y,x)}

( ∑
F (x,y)

∑
F (y,x)

φ′2(F (x, y), F (y, x))
)

=
∏

{(x,y),(y,x)}

φ′′2() =
∏

(x,y)

φ′′2()1/2 = gr(g′2),

where g′2 is the parfactor ∀X,Y : φ′′2()| X 6= Y with
φ′′2 a potential function with no arguments, i.e., a con-
stant, because both arguments have been summed-out.

Group inversion partitions the set of factors (and rand-
vars) into independent and isomorphic groups. An
important question is what such a partitioning looks
like. Figure 1 shows this for the above example. In
general, let us call two factors directly linked if they
share a randvar, and let linked be the transitive clo-
sure of this relation. Factors that are linked end up
in the same group. Sometimes this yields useful par-
titionings, sometimes not. As a ‘negative’ example,
consider a parfactor φ(P (X), P (Y )). Any two factors
φ(P (a), P (b)) and φ(P (c), P (d)) are linked, since both
are directly linked to φ(P (b), P (c)). Hence the only
option is the trivial partition in which all factors are
in a single, large group, which is not practically use-
ful. As a ‘positive’ example, consider the case where
each atom uses all the logvars in the parfactor, as in
the earlier example φ(F (X,Y ), F (Y,X))|X 6= Y . In
such cases, we can always partition the randvars into
groups whose size is independent of the domain size.
The reason is that in such cases, the arguments of the
atoms in a linked group are necessarily permutations
of each other. Hence the size of a linked group can be
no larger than the number of possible permutations,
which is independent of the domain size. We use this
property in our group inversion operator.

5.3 The Group Inversion Operator

In- and output. Group inversion takes a parfactor
g = φ(A)|C and a set of atoms {A1, . . . , An} ⊆ A as
input. It returns a new parfactor that is the result of
summing out {A1, . . . , An} from g.

Preconditions. Group inversion is applicable when
(i) for all i, j: RV (Ai|C) = RV (Aj |C), (ii) each Ai
has all the logvars L in the parfactor, (iii) for each
pair of logvars Xi, Xj , with D(Xi) = D(Xj), there is
an inequality constraint Xi 6= Xj in C, and (iv) for
each PRV V outside g: RV (Ai|C) ∩ RV (V) = ∅. The
key observation is that, in such a parfactor, due to
conditions (i) and (ii), for each i 6= j, randvar Ai is a
permutation of Aj . That is, λij(Ai) = Aj , where λij
is a permutation of the logvars and λ(Ai) represents
the result of applying λ on the arguments of Ai.

Operator. When the preconditions hold, group in-
version applies the following four steps. We further
explain these steps below.

1. Partition. Find the set Λ of permutations λij such
that λij(Ai) = Aj . Then find the closure [Λ] of
Λ, i.e., the minimal set [Λ] of permutations such
that Λ ⊆ [Λ], and [Λ] is closed under composition.

2. Multiply to compute the parfactor g[Λ] = φ′(A′)|C
as the product

∏
λ∈[Λ] gλ, where gλ = φ(λ(A))|C.

3. Sum-out to compute g′ = φ′′(A′′)|C =
∑
A[Λ]

g[Λ],

where A[Λ] = {λ(A1)|λ ∈ [Λ]}.

4. Scale. Return g′′ = φ′′(A′′)1/m|C, with m = |[Λ]|.

Step 1 (partition). The goal here is to find, on the
lifted level, the set of factors and randvars that need to
be put (and summed-out) in the same group. Because
of the preconditions of the operator, we know that
each pair of factors (gθ, gθ′) in gr(g) that are directly
linked can be derived from each other by a permutation
of constants. Concretely, if randvar Aiθ in gθ is the
same as Ajθ

′ in gθ′, then we have θ = λij(θ
′).1 All

factors that are directly linked to a factor gθ are thus
in the set {gθ′|θ′ = λ(θ), λ ∈ Λ}. In Step 1, we find
the set of permutations Λ that convert directly linked
factors to each other. Since directly linked factors are
derived from each other by a permutation in Λ, each
factor linked to gθ can be written as gλ(θ), where λ is
a composition of permutations in Λ. We can thus find
all such factors by computing the closure of Λ under
the operation of composition, that is, the minimal set
[Λ] ⊇ Λ, such that ∀λ1, λ2 ∈ [Λ] : λ1.λ2 ∈ [Λ]. Note
that all the permutations are computed on the lifted
level, i.e., as permutations of logvars, not constants.

1Note that for any atom Ai, and a permutation λ of its
logvars, Aiλ(θ) = λ(Ai)θ.



     577

Completeness Results for Lifted Variable Elimination

F (a, b, c, d) F (d, a, b, c)

F (c, d, a, b)F (b, c, d, a)

F (a, c, b, d) F (d, a, c, b)

F (b, d, a, c)F (c, b, d, a)

φ

φ φ

φ

. . .
φ

φ φ

φ

Figure 2: Group inversion for the parfactor
φ(F (W,X, Y, Z), F (Z,W,X, Y ))|W 6= X 6= Y 6= Z,
which partitions the randvars and factors into groups
of size four.

Example 3. Consider the model shown in Fig-
ure 2, defined by a parfactor with two atoms A1 =
F (W,X, Y, Z) and A2 = F (Z,W,X, Y ). We partition
this model based on the closure [Λ] for A1 and A2. Let
us denote a permutation λ = {W → W ′, . . . Z → Z ′}
as λ = (W ′, . . . , Z ′). Note that a right-shift of A1’s
logvars yields A2. Thus, Λ includes the three permu-
tations λ11 = λ22 = (W,X, Y, Z), λ12 = (Z,W,X, Y )
and λ21 = (X,Y, Z,W ) (respectively identity, right-
and left-shift). These permutations map each randvar
F (a, b, c, d) to F (d, a, b, c), and F (b, c, d, a) that are di-
rectly linked to it, but not to F (c, d, a, b) that is in turn
directly linked to these two (see Figure 2). This is be-
cause Λ is not closed under composition: the composi-
tion λ′ = λ12.λ12 = (Y,Z,W,X) is not in Λ. Adding λ′

to Λ, however, yields a closed set of permutations, as
no other possible composition results in a permutation
out of this set. As such, we have [Λ] = Λ∪ {λ′}. Note
that [Λ] includes only 4 of all the possible 4! = 24 per-
mutations. Correspondingly, the model is partitioned
into groups of size 4, as shown in Figure 2. �

Step 2 (multiply). Next we apply lifted multiplica-
tion to compute a parfactor g[Λ] =

∏
λ∈[Λ] gλ, where

gλ = φ(λ(A))|C. This parfactor has the same form as
the product of all the factors in a representative group.

Step 3 (sum-out). Next we perform lifted sum-out,
which sums-out the set of atoms {λ(Ai)|λ ∈ [Λ]} from
parfactor g[Λ] and yields parfactor g′. At this point,
all randvars RV (Ai|C) have been eliminated from the
model, which is the goal of the entire procedure.

Step 4 (scale). For correctness, we still need to scale
g′, as it represents multiple equivalent factors. g′ has
the same constraint as g and hence the same set of
all possible grounding substitutions Θ. Hence gr(g′)
represents |[Λ]| equivalent factors instead of one factor,
for each group of the factors in gr(g).2 Hence, we
replace the potential φ′′ of g′ with φ

′′1/|[Λ]| to preserve
the distribution.

2This equivalence follows from the fact that each of
them can be derived from a same set of factors, but with
a different order of multiplications in Step 2.

The following illustrates all these steps in a complete
group inversion procedure on our running example.

Example 4. Consider eliminating the F atoms from
the model defined in Example 2. To sum-out, we first
multiply parfactors g1 and g2 to compute the product
g = φ(S(X), F (X,Y ), F (Y,X), D(Y )) |X 6= Y . Next
we use group inversion. In Step 1, we find the permu-
tation group [Λ] for A1 = F (X,Y ) and A2 = F (Y,X).
The group [Λ] = {λ, λ′} consists of the identity permu-
tation λ = {X → X,Y → Y }, and the permutation
λ′ = {X → Y, Y → X}. In Step 2, we multiply gλ = g
and gλ′ = φ(S(Y ), F (Y,X), F (X,Y ), D(X))|X 6=
Y , which results in the parfactor g[Λ] =
φ′(S(X), D(X), F (X,Y ), F (Y,X), S(Y ), D(Y ))|X 6=
Y . In Steps 3 and 4, we respectively sum-out
atoms F (X,Y ), F (Y,X) from g[Λ] and scale the
resulting potential, to compute the parfactor
g′′ = φ′′(S(X), D(X), S(Y ), D(Y ))1/2|X 6= Y .
This concludes group inversion for elimination of F
atoms. In Section 6, we see how LVE can eliminate
the remaining atoms in g′′ in a lifted way. �

As mentioned before, group inversion has inversion as
a special case (namely when there is only one atom in
the parfactor that covers the randvars RV (Ai|C), i.e.,
when n = 1 in the operator). In this case, the closure
[Λ] consists only of the identity permutation.

Theorem 3 Lifted sum-out with the group inversion
operator is sound, i.e., is equivalent to summing out
the randvars on the ground level.

The proof relies on showing that the corresponding
ground operations are independent and isomorphic,
see the appendix.

6 EXTENSION FOR COUNTING

A central concept in LVE (and in our completeness
proofs) that we have not discussed yet is counting,
which is essentially a tool for allowing more lifting to
take place. This requires an extension of the parfactor
representation with counting formulas [13]. We first
briefly review counting formulas and the existing op-
erators for handling them in LVE [1, 13, 19]. Then we
extend our new group inversion operator with support
for counting formulas.

Representation. A counting formula is of the form
#X:C [P (X)], with X ∈ X and C a constraint on X.
We call X the counted logvar. A ground counting for-
mula is a counting formula in which all arguments ex-
cept the counted logvar are constants. Such a for-
mula represents a counting randvar (CRV). The value

of a CRV is a histogram of the form {(vi, ni)}|range(P )|
i=1 ,

showing for each value vi ∈ range(P ) the number ni
of covered randvars whose state is vi.



     578

Nima Taghipour Daan Fierens Guy Van den Broeck Jesse Davis Hendrik Blockeel

Example 5. #Y :Y 6=X [F (X,Y )] is a counting for-
mula. Assume D(X) = D(Y ) = {a, b, c, d}, then
#Y :Y 6=a[F (a, Y )] is a ground counting formula. It
represents a CRV that counts how many people are
(and are not) friends with a. The value of this
CRV depends on the value of the three randvars
{F (a, b), F (a, c), F (a, d)}. For instance, if F (a, b) =
true, F (a, c) = false and F (a, d) = true, the value of
the CRV is the histogram {(true, 2), (false, 1)}, mean-
ing that a has two friends and one ‘non-friend’. Note
that while there are 2|D(X)|−1 different joint values for
the covered randvars, there are only |D(X)| different
histograms for the CRV. �

Counting formulas can be introduced in the model by
the following two operators.

(Just-different) Counting Conversion [1, 13].
This operator replaces an atom (in a particular fac-
tor) by a counting formula, e.g., replace F (X,Y ) by
#Y [F (X,Y )]. This is applicable on a set of logvars
that only appear in a single atom or in just-different
atoms [1], i.e., pairs of atoms P (X1,X), P (X2,X) with
a constraint X1 6= X2.

Joint Conversion [1]. This auxiliary operator works
on a pair of atoms A(X), B(X) and replaces any occur-
rence of A(.) or B(.) with a joint atom JAB (.), whose
range is the Cartesian product of the range of A and
B. This is useful because it can enable counting con-
version, namely when the result of the joint conversion
is a model with just-different atoms.

Example 6. Consider the parfactor g′′ =
φ(S (X ),D(X),S (Y ),D(Y ))|X 6= Y , from Exam-
ple 4, Section 5.3. Joint conversion on atoms S (.) and
D(.) rewrites this parfactor as φ′(JSD(X), JSD(X),
JSD(Y ), JSD(Y ))|X 6= Y , which can be simplified
to φ′′(JSD(X), JSD(Y ))|X 6= Y . Note that JSD(X)
and JSD(Y ) are now just-different atoms. Next, just-
different counting conversion rewrites this parfactor as
φ

′′′
(#X [JSD(X)]). This parfactor is now ready for ap-

plication of lifted sum-out. �

Extension of Group Inversion. The above are ex-
isting operators. Now that we have counting formulas,
we also need to support them in our new group inver-
sion operator. Counting formulas, like atoms, can be
eliminated by lifted sum-out. This can be done by
group inversion with a small modification of the oper-
ator. Suppose {Ai}ni=1 is a group of counting formulas
Ai = #Xi:C [P (L, Xi)], and let A[Λ] = {A′1, . . . A′m}.
Our operator eliminates all the formulas using the
same four steps as in Section 5.3, with the exception
of the sum-out step (Step 3), which becomes:

∑
(h1,...,hm)∈range(A′

1,...,A
′
m)

(( m∏
i=1

num(hi)
)
g[Λ]

)

where, for a histogram hi = {(vj , nj)}rj=1 with∑
j nj = n, the coefficient num(hi) is the multinomial

coefficient n!∏
j nj ! representing the number of possible

assignments to RV (A′i|C) that yield this histogram.
This operator generalizes the existing sum-out opera-
tion of LVE [13].

7 PROOF OF COMPLETENESS

By including group inversion in LVE, we can now prove
the correctness of Theorem 1 (Section 4), i.e., we can
show that LVE is complete domain-lifted for the sub-
class of 2-logvar parfactor models. This is the first
completeness result for LVE and the second for exact
lifted methods in general (after WFOMC [21]). The
concrete LVE algorithm considered is C-FOVE [13]
extended with joint formulas [1] and our new group-
inversion operator. We refer to it as C-FOVE+.

Proof of Theorem 1. We show the proof here since it
is ‘constructive’: it shows how C-FOVE+ deals with 2-
logvar models: first sum-out all 2-logvar atoms (atoms
A with |logvar(A)| = 2), then 1-logvar atoms, then
0-logvar atoms. We then show that this procedure is
domain-lifted.3

Step 1. We eliminate all 2-logvar atoms in two steps.
(a) We multiply the parfactors until there are no dis-
tinct pairs (Ai, Aj) of 2-logvar atoms in distinct par-
factors (gi, gj), such that RV (Ai|Ci) = RV (Aj |Cj).
The resulting equivalent modelM∗ is a 2-logvar model,
since multiplication preserves the number of logvars in
the product [13]. (b) We eliminate each 2-logvar atom
in M∗ by group inversion. This is possible since all
2-logvar atoms that represent the same randvars are
in the same parfactor, and have both of the logvars.
The result is a 1-logvar model.

Step 2. We eliminate all 1-logvar atoms in four
steps. (a) We (repeatedly) perform joint conversion
on a pair of atoms P1(X1, c1) and P2(X2, c2) (of dis-
tinct predicates). This replaces them with joint atoms
J12(X1, c12) and J12(X2, c12), respectively. When no
more such conversions are possible, any pair of logvars
X1, X2 that are constrained as X1 6= X2, appear only
in pairs of just-different atoms (otherwise, a joint con-
version is still possible between them). (b) We perform
(just-different) counting conversion on all the logvars.
(c) We multiply all the parfactors into one, which is
trivially possible since the model contains no free log-
vars. In the resulting parfactor each argument is ei-
ther a ground atom, or a counting formula of the form

3We assume that the model M is preemptively shat-
tered and in normalized form [13, 15]. Any 2-logvar model
M can be rewritten in poly time as an equivalent 2-logvar
model M ′ that satisfies these conditions [15].



     579

Completeness Results for Lifted Variable Elimination

γi = #Xi [J1...ki(Xi)]. (d) We sum-out the counting
formulas. The result of this step is a model in which
all arguments are ground, i.e., a 0-logvar model.

Step 3. We eliminate all the remaining (so 0-logvar)
non-query randvars. Inference is now performed at
the ground level, i.e., with standard VE. This step
concludes the inference process.

Complexity. All the above operations run in time
polynomial in the domain of the logvars. The most
expensive step is handling the counting formulas pro-
duced in Step 2b. The largest size for the range of
these formulas is O(nr) where r is the largest range
size among the (joint) atoms, and n is the largest do-
main size among logvars. As such the exponent r is
independent of the domain size. The complexity of
Step 2 is thus polynomial in the domain size. Step
3 has worst case complexity O(mc), with c the to-
tal number of symbols appearing in (M,Q, E), and m
the largest size of range among the randvars. This
complexity satisfies the definition of a domain-lifted
algorithm [21]. As such, C-FOVE+ is a domain-lifted
algorithm for any 2-logvar model, and hence complete
for this class of models. �

Proof of Theorem 2. The proof, which builds on
the proof of Theorem 1, is provided in the appendix.

8 EMPIRICAL EVALUATION

In addition to our theoretical analysis, we also pro-
vide an empirical evaluation to illustrate the benefit of
group inversion. We use the publicly available imple-
mentation of C-FOVE4 and augment it with the group
inversion operator, yielding the C-FOVE+ system. We
test both algorithms on two synthetic domains. The
first is the symmetric friends and smokers model [21].
The second is a collective classification model con-
taining the following parfactors: ∀i, j ∈ Classes :
φij(Classi(P1),Link(P1, P2),Classj(P2)) |P1 6= P2,
and φ2(Link(P1, P2),Link(P2, P1))|P1 6= P2. We set
|Classes| = 2 so this model has five parfactors in total.

Figure 3 illustrate the runtime performance for varying
domain sizes. The original C-FOVE algorithm can-
not solve either model in a lifted manner due to the
presence of the φ2 factors. Thus it resorts to ground
VE, which quickly becomes intractable (it runs out
of memory on a machine with 16 GBs of RAM). By
employing group inversion, C-FOVE+ can exploit the
symmetry expressed in the φ2 factors and solve both
models on the lifted level. Inference is more expensive
in the second model than in the first model for the
same domain size. This occurs because of the num-
ber of unary predicates involved in the φij parfactor

4http://people.csail.mit.edu/milch/blog/

10-2
10-1
100
101
102
103

 0  50  100  150  200

Ti
m

e 
(s

)

Number of People

C-FOVE+
C-FOVE

10-2
10-1
100
101
102
103

 0  50  100  150  200

Ti
m

e 
(s

)

Number of Pages

C-FOVE+
C-FOVE

Figure 3: Comparison of performance, with varying
domain size, on two models: symmetric friends and
smokers (top), and collective classification (bottom).

in the collective classification model, which increases
the complexity of the inference. See the appendix for
a more detailed explanation.

9 CONCLUSION

We showed how introducing a new inference operator,
called group inversion, makes lifted variable elimina-
tion a complete domain-lifted algorithm for 2-logvar
models. A corollary of the completeness result is that
lifted variable elimination and WFOMC are currently
known to be domain-lifted complete for the same sub-
class of models.

An interesting direction for future work is derivation
of (positive or negative) completeness results for use-
ful models that fall outside of the 2-logvar class. An
example are 3-logvar models containing a transitive re-
lation, e.g. φ(Like(X,Y ), Like(Y,Z), Like(X,Z)), for
which no domain-lifted inference procedure is known.
We further believe that future research on the relation-
ships between the various lifted inference algorithms
will yield valuable theoretical insights, similar to those
about the propositional inference methods [2, 6, 7].

Acknowledgements

NT is supported by the research fund KU Leu-
ven (GOA/08/008 and CREA/11/015). JD is par-
tially supported by the research fund KU Leuven
(CREA/11/015 and OT/11/051), and EU FP7 Marie
Curie Career Integration Grant (#294068). DF and
GVB are supported by FWO-Vlaanderen.



     580

Nima Taghipour Daan Fierens Guy Van den Broeck Jesse Davis Hendrik Blockeel

References

[1] Udi Apsel and Ronen I. Brafman. Extended lifted
inference with joint formulas. In Proceedings of
the 27th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 11–18, 2011.

[2] Adnan Darwiche. Recursive conditioning. Artif.
Intell., 126(1-2):5–41, 2001.

[3] Luc De Raedt, Paolo Frasconi, Kristian Kersting,
and Stephen Muggleton, editors. Probabilistic In-
ductive Logic Programming: Theory and Applica-
tions. Springer-Verlag, Berlin, Heidelberg, 2008.

[4] Rodrigo de Salvo Braz. Lifted First-order Prob-
abilistic Inference. PhD thesis, Department
of Computer Science, University of Illinois at
Urbana-Champaign, 2007.

[5] Rodrigo de Salvo Braz, Eyal Amir, and Dan
Roth. Lifted first-order probabilistic inference. In
Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages
1319–1325, 2005.

[6] Rina Dechter. Bucket elimination: A unifying
framework for reasoning. Artif. Intell., 113(1-
2):41–85, 1999.

[7] Rina Dechter and Robert Mateescu. And/or
search spaces for graphical models. Artif. Intell.,
171(2-3):73–106, 2007.

[8] Lise Getoor and Ben Taskar, editors. An Intro-
duction to Statistical Relational Learning. MIT
Press, 2007.

[9] Vibhav Gogate and Pedro Domingos. Probabilis-
tic theorem proving. In Proceedings of the 27th
Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 256–265, 2011.

[10] Manfred Jaeger and Guy Van den Broeck. Lifta-
bility of probabilistic inference: Upper and lower
bounds. In Proceedings of the 2nd International
Workshop on Statistical Relational AI (StaRAI),
pages 55–62, 2012.

[11] Abhay Jha, Vibhav Gogate, Alexandra Meliou,
and Dan Suciu. Lifted inference seen from the
other side : The tractable features. In Proceed-
ings of the 23rd Annual Conference on Neural In-
formation Processing Systems (NIPS), pages 973–
981. 2010.

[12] Kristian Kersting, Babak Ahmadi, and Sriraam
Natarajan. Counting belief propagation. In Pro-
ceedings of the 25th Conference on Uncertainty
in Artificial Intelligence (UAI), pages 277–284,
2009.

[13] Brian Milch, Luke S. Zettlemoyer, Kristian Kerst-
ing, Michael Haimes, and Leslie Pack Kaelbling.
Lifted probabilistic inference with counting for-
mulas. In Proceedings of the 23rd AAAI Con-
ference on Artificial Intelligence (AAAI), pages
1062–1608, 2008.

[14] David Poole. First-order probabilistic infer-
ence. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJ-
CAI), pages 985–991, 2003.

[15] David Poole, Fahiem Bacchus, and Jacek Kisyn-
ski. Towards completely lifted search-based prob-
abilistic inference. CoRR, abs/1107.4035, 2011.

[16] David Poole and Nevin Lianwen Zhang. Exploit-
ing contextual independence in probabilistic in-
ference. J. Artif. Intell. Res. (JAIR), 18:263–313,
2003.

[17] Prithviraj Sen, Amol Deshpande, and Lise
Getoor. Bisimulation-based approximate lifted in-
ference. In Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence (UAI09),
pages 496–505, 2009.

[18] Parag Singla and Pedro Domingos. Lifted first-
order belief propagation. In Proceedings of the
23rd AAAI Conference on Artificial Intelligence
(AAAI), pages 1094–1099, 2008.

[19] Nima Taghipour and Jesse Davis. Generalized
counting for lifted variable elimination. In Pro-
ceedings of the 2nd International Workshop on
Statistical Relational AI (StaRAI), pages 1–8,
2012.

[20] Nima Taghipour, Daan Fierens, Jesse Davis, and
Hendrik Blockeel. Lifted variable elimination
with arbitrary constraints. In Proceedings of the
15th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), pages 1194–
1202, 2012.

[21] Guy Van den Broeck. On the completeness of
first-order knowledge compilation for lifted prob-
abilistic inference. In Proceedings of the 24th An-
nual Conference on Advances in Neural Infor-
mation Processing Systems (NIPS), pages 1386–
1394, 2011.

[22] Guy Van den Broeck, Nima Taghipour, Wannes
Meert, Jesse Davis, and Luc De Raedt. Lifted
probabilistic inference by first-order knowledge
compilation. In Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence
(IJCAI), pages 2178–2185, 2011.


