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Abstract

In this document, we present proofs for
Theorem 2 and 3 (given in the paper), and
provide more explanation for the empirical
evaluation. Further, we present a procedure
for tramsforming weighted model counting
(WMC) models to parfactor models.

1 PROOF OF THEOREM 2
Let us first recall the theorem.

Theorem 2 C-FOVET is a complete domain-lifted
algorithm for the class of models in which each atom
has at most 1 logvar.

Proof sketch. The proof builds on the proof of The-
orem 2 (given in the paper). Note that the approach
used in Steps 2 and 3 of the proof of Theorem 2 is also
applicable here. The operations in Step 2, which to-
gether eliminate the 1-logvar atoms, do not depend on
the total number of logvars in the parfactors. Using
this approach, we can eliminate all the 1-logvar atoms
in any model whose atoms contain at most one logvar.
The resulting model can be solved as in Step 3. As was
shown in the proof of Theorem 2, the time-complexity
of these steps is polynomial in the domain size. The
inference procedure is thus domain-lifted. [J

2 PROOF OF THEOREM 3

Let us first recall the theorem.

Theorem 3 Lifted sum-out with the group inversion
operator is sound, i.e., it is equivalent to summing out
the randvars on the ground level.
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We prove the theorem by showing that the correspond-
ing ground operations are both independent and iso-
morphic.

Independence. We require the following definition.

Given a set of factors F' and set of randvars R, we
call a subset of factors F/ C F mutually closed with
respect to a group of randvars R’ C R, if (i) no factor
in F'\ F’' contains a randvar v/ € R’ (ii) no randvar
in R\ R’ appears in a factor f/ € F’, and (iii) each
randvar ' € R’ appears in some factor f' € F’.

Now, we show that we can form mutually closed sets of
randvars and factors in R = RV (A;|C) and F' = gr(g)
by partitioning them into sets in which all elements
are permutations of each other (can be derived from
one another by a permutation of constants). The set
of permutations that defines the partitioning is the
minimal permutation group [A].

Given a set of permutations A on X, we define two
substitutions 01,65 to be in the relation ~ iff A(61) =
05 for some A € A. Using this relation we can define a
partitioning of a set of substitutions © as ®,, where
0 and 6’ are in the same group if and only if 6§ ~, 6'.

As shown in steps 1 and 2 of the operator, for any two
factors gf and g#’ that share a randvar from the set
RV (4;), we have 8 = A(0'), for some A € [A]. Thus
for any ©; € ©y), the set of factors F; = {g0|f € ©;}
are mutually closed w.r.t. the set of randvars R; =
{A;0)6 € ©,}. This shows that we can divide the prob-
lem of summing out RV (4;) from gr(g) into indepen-
dent problems of summing out each set of randvars R;
from the set of factors Fj.

Isomorphism. We show that the sum-out prob-
lems are also isomorphic, by a mapping between the
ground substitutions that produce ground factors in
each group.

To show the isomorphism between groups of gr(g),
we note that each group is formed from the factors
{9010 € ©,}, where ©; is a group in @p4j. The one-to-
one mapping between the factors can thus be estab-
lished by a one-to-one mapping between the constants
of the grounding substitutions in different groups ©;
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and ©;. This is done by starting from an arbitrary
pair of substitutions 6; € ©; and 6; € ©; and map-
ping the constants that are assigned to the same logvar
to each other. It follows then that each substitution
0} € ©; such that A(f;) = 6, is mapped to exactly one
substitution ¢, € ©; such that A\(6;) = 0. Assuch the
set of factors (and the set of randvars) are isomorphic
up to a renaming of the constants in each group.

This shows that the sum-out problems in different
groups are independent and isomorphic. Hence, it is
correct to replace them by a single lifted operation,
i.e. to solve one instance of the problem for a repre-
sentative group and generalize the result for all, as is
performed in lifted sum-out by the group inversion op-
erator.

3 EXPLANATION ABOUT THE
EMPIRICAL EVALUATION

In this section we show how C-FOVET solves each
of the models used in our empirical evaluation, and
compare the complexity of inference in each model.

3.1 The friends and smokers model

This model consists of the following two parfactors (in
normal form):

g1 = 61(S(X), F(X,Y),S(Y))|X #Y
92 = (F(X,Y), F(Y, X)X #Y

We first eliminate the 2-logvar F' atoms, as follows.
We multiply g1 and g2 to compute the product

g= ¢(S(X)7F(X7Y)7F(YaX)vs(Y)”X #Y

Then we eliminate the F atoms by group-inversion,
which results in the parfactor

g =¢(SX),SY)X#Y

Next, we eliminate the 1-logvar S atoms as follows.
By just-different counting conversion, we rewrite g’ as

9" = ¢"(#x[S(X)])

We then eliminate the S randvars by summing-out the
counting formula v = #x[S(X)] from ¢g”. The result
is a potential with no arguments (a constant). This
concludes inference.

Complexity. The most expensive step here, is the
elimination of the counting formula # x [S(X)], whose
range size is O(n), with n the domain size of the log-
vars. As such the whole process runs in time linear in
the domain size.

3.2 The collective classification model

Below we abbreviate Link to L, and Class to C. The
model consists of the following parfactors:

Vi, j € {1,2) :
9ij = ¢ij(ci(P1)7L(P17P2)7Cj(P2)) |P1 7é P2
g2 = ¢2(L(P1, P2), L(Py, P1))|PL # P>

Inference in this model follows the same steps as the
friends and smokers model.

We first eliminate the 2-logvar L atoms, as follows.
We multiply all the 5 parfactors g2, g11, 912,921 and
g22 to compute the product g:

¢(C1(Pr), Co(Pr), L(Py1, P2), L(Py, P1), C1(P), C2 (1))
|PL # Py

Then we eliminate the L atoms by group-inversion,
which results in the parfactor

g = ¢ (C1(Pr),Co(Pr),C1(Py), Co(Po))| P # Py

Next, we eliminate the 1-logvar atoms C7,C5 as fol-
lows. By joint conversion on C; and Cs, we rewrite
each of their occurrences as a joint atom Jyo

¢" (J12(Pr), Ji2(P1), J12(Ps), J12(P2))| Py # P,

which after a simplification of recurring atoms be-
comes:

g = ¢"(Ji2(Pr), J12(Ps)) |Py # P,

Then, by just-different counting conversion, we rewrite
g as

9" =" (#p[J12(P)])
Finally, we eliminate the C); and C5 randvars by
summing-out the counting formula #p[ J12(P) | from
g”. The result is a potential with no arguments (a
constant). This concludes inference.

Complexity. The most expensive step in this process
is the elimination of the counting formula #p[ J12(P) ],
whose range size is O(nl"@"9¢(/12)I=1) " with n the do-
main size of the logvars. Note that here |range(Ji2)| =
4, since range(Ji2) = range(Ch) X range(Cs). Thus
the whole process runs in time O(n?), i.e., complexity
of inference is cubic in the domain size.

3.3 Comparison

Comparing the complexity of inference on the two
models, we can explain the difference between the run-
time of LVE on each model. The reason for this dif-
ference can be traced back to the number of distinct
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unary predicates in each model. The presence of two
distinct unary atoms C7 and C5 in the collective clas-
sification model, result in cubic complexity, while the
friends and smokers model has linear complexity, since
it contains only one unary predicate S.

Note that these complexities follow from our analysis
in the proof of Theorem 1. We showed in our proof
that elimination of 1-logvar atoms can have O(n")
complexity where r is the largest range size among the
(joint) unary atoms. In a model with k£ unary atoms,
r can be O(2F), since in the worst case we might need
to make a joint atom out of all unary atoms. Thus
the complexity of lifted inference in such a model is
O(nzk_l). In our experiments, k¥ = 1 for the friends
and smokers model, and k = 2 for the collective clas-
sification model.

4 TRANSFORMATION FROM
WMC TO PARFACTOR MODELS

In this section we introduce a method for transforming
any weighted model counting (WMC) model [6, 5, 2]
to an equivalent parfactor model [3, 4, 1], i.e., a trans-
formation from the representation used by WFOMC
to the representation used by LVE.

A WMC model M = (C,w) consists of a set of con-
strained clauses C and a weight function w that maps
each predicate P to a weight w(P). We present a
transformation from such a model to an equivalent
parfactor model. Given any k-WFOMC model (with
clauses containing up to k logvars), the following trans-
formation method returns an equivalent k-logvar par-
factor model (with parfactors containing up to k log-
vars).

Consider a WMC model M with the weighting func-
tion w and the set of constrained clauses C =
{(Cl;,C;)},, where Cl; is a disjunction of literals
of the form P(X) or =P(X), and C; is a constraint on
the logvars. We transform this model to a parfactor
model M’ consisting of two groups of parfactors:

Weight parfactors First we consider the weight
function w. For each predicate P in M we add
a parfactor ¢p(P(X)) to M’, with potential ¢p
defined as: ¢p(true) = w(P) and ¢p(false) =
1 —w(P).

Clause parfactors Now we consider the set of con-
strained clauses C. For each constrained clause
(Cl;,C;) € C, we add a parfactor ¢;(A;)|C; to
M’, where A; is the set of atoms that appear (in
negated form) in clause Cl;, and the potential ¢;
is defined such that for any assignment of values

ato A;: ¢;(a) =1 if a satisfies Cl;, and ¢;(a) =0
otherwise.

This transformation maps any WMC model M to a
parfactor model M’ that defines the same probability
distribution as M. The following example illustrates
such a transformation.

Example. Consider the 2-logvar WMC model M con-
sisting of the weight function w, and the constrained

clause,
“PX)VvQY)IX #Y

Using the above method we derive the equivalent par-
factor model M’ consisting of the following set of par-
factors:

e Two weight parfactors ¢p(P(X)) and ¢g(Q(X)),
with potentials ¢p and ¢ defined as follows:

P op
false | 1 —w(P)
true w(P)

Q o)
false | 1 —w(@Q)
true w(Q)

e One clause parfactor ¢(P(X),Q(Y))|X # Y,
with potential function ¢ defined as follows:

P Q |o
false  false | 1
false  true | 1
true  false | O
true  true | 1

Note that the parfactor model M’, similar to the WMC
model M, is a 2-logvar model. [J

Given any WMC model M, this transformation maps
each clause in M to a parfactor that involves the same
atoms, in the resulting parfactor model M’. As such,
each clause is mapped to a parfactor with the same
(number of) logvars. This transformation thus maps
any k-WFOMC model into an equivalent k-logvar par-
factor model.
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