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A Appendix

A.1 Proofs in Section 2

Proof of Lemma 2. To expedite the proof, we express
the LR statistics in terms of the sufficient statis-
tics y0 = 1

|C|
∑
i∈C yi ∼ N(β0, σ

2
0) and y1 =

1
|C̄|
∑
i∈C̄ yi ∼ N(β1, σ

2
1) for σ0 = σ/

√
|C| and σ1 =

σ/
√
|C̄|. Then, we obtain

2 log ΛC(y) =
1

σ2
0

(y0 − β̂)2 +
1

σ2
1

(y1 − β̂)2

where β̂ =
σ2
1

σ2
0+σ2

1
y0 +

σ2
0

σ2
0+σ2

1
y1 is the MLE under H0.

(The likelihood under the alternative balances with the
normalizing constant of the null likelihood.) Thus,
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Now we let x = 1C , making the statistic above

2σ2 log ΛC(y) =
x>ỹỹx

x>Kx
and

|∂C||V |
|C||C̄|

=
x>Lx

x>Kx
.

The result now follows by considering all the indicator
functions corresponding to the sets in C.

Proof of Remark 4. First we notice that (8) is equiva-
lent to

inf
x∈R
−x>ỹ s.t. x>Lx ≤ ρ, ‖x‖ ≤ 1

because x>Lx and x>ỹ are invariant under changes
in 1>x. This admits the Lagrangian (for parameters
ν0, ν1 > 0),

−x>ỹ + ν0(x>Lx− ρ) + ν1(x>x− 1)

which is minimized for fixed ν0, ν1 at x = − 1
2 [ν0L +

ν1I]−1ỹ (which confirms Slater’s condition). Hence,
the dual program is

sup
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A.2 Proofs in Section 3

Proof of Theorem 5 (1). Let the true C ∈ C be
known. The performance of the optimal test with C
known, which by the Neyman-Pearson Lemma is based
on 2 log ΛC(y), bounds the performance of that with
C unknown. To this end, note that, under H0, the LR
statistic (6) has a χ2

1, while under the alternative HC
1

it has a χ2
1(λ) distribution with non-centrality param-

eter
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,

which is the square of the SNR. For fixed C, asymp-
totically indistinguishable of H0 versus H1

C follows by
considering any threshold and noticing that the associ-
ated type 1 and type 2 errors are non-vanishing under
the SNR scaling assumed in the statement. Since the
risk of testing H0 versus H1 is no smaller than the risk
of testing H0 versus H1

C , the result follows.

We remark that the proof of the previous result shows
that when distinguishing H0 from HC

1 , the power of
the test is maximal when |C| = |C̄| for a fixed value of
the SNR.

Proof of Theorem 5 (2). We will begin by construct-
ing from our set, C′, a new set, S, of clusters which
are difficult to distinguish in the sense that the Bayes
risk for the uniform prior over those in the alterna-
tive is bounded away from 0. Enumerate C′ such that

C′ = {Ci}|C
′|

i=1. We will build S by unioning k ele-
ments of C′, then draw S, S′ uniformly from S. Specif-
ically, let k = b

√
|C′|c (recall that c = |C|,∀C ∈ C′),

and let K,K ′ be independent uniform samples with-
out replacement of k elements from {1, . . . , |C′|}. Then
let S = ∪i∈KCi and S′ = ∪i∈K′Ci. Notice that
kc = |S| ≤ n/2 for n large enough.
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Notice that the risk can be bounded by

sup
β∈Θ0

EβT (y) + sup
β∈Θ1

Eβ[1− T (y)]

≥ Eβ=0T (y) +
1

|S|
∑
S∈S

EβS [1− T (y)] = R∗



James Sharpnack, Alessandro Rinaldo, Aarti Singh

where βS = η
√
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|S||S̄|1S and S ⊆ C. Then by Propo-

sition 3.2 in [1],

R∗ ≥ 1− 1

2

√
E exp

{
η2

σ2
Z

}
− 1

where

Z =
n|S ∩ S′|√
|S||S̄||S′||S̄′|

for S, S′ drawn independently uniformly from S. No-
tice that
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Hence, we can apply Proposition 3.4 from [1] (by sub-
stituting µ← η
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Because k2 � |C′| we have asymptotic indistinguisha-
bility if η/σ = o(

√
k) = o(|C′|1/4). For some explana-

tion for the choice of k the term k log(1 + |C′|/k2) is
largest when k2 � |C′|.

Proof of Lemma 7. Without loss of generality, let y ∼
N (0, I). We recall that, since G is connected, the
combinatorial Laplacian L is symmetric, its small-
est eigenvalue is zero and the remaining eigenvalues
are positive. By the spectral theorem, we can write
L = UΛU>, where Λ is a (n − 1) × (n − 1) diago-
nal matrix containing the positive eigenvalues of L in
increasing order and the columns of the n × (n − 1)
matrix U are the associated eigenvectors. Then, since
each vector x ∈ Rn with 1>x = 0 can be written as
Uz for a unique vector z ∈ Rn−1, we have

X = {x ∈ Rn : x>Lx ≤ ρ,x>x = 1,1>x ≤ 0}
= {Uz : z ∈ Rn−1,

z>U>LUz ≤ ρ, z>U>Uz ≤ 1}
= {Uz : z ∈ Rn−1, 1

ρz>Λz ≤ 1, z>z ≤ 1},

where in the third identity we have used the fact that
U>U = In−1. Letting Z = {z ∈ Rn−1 : 1

ρz>Λz ≤
1, z>z ≤ 1}, we see that

sup
x∈X
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z∈Z

z>U>y
d
= sup

z∈Z
z>ξ,

where ξ ∼ N(0, In−1) and
d
= denotes equality in dis-

tribution.

Next, we show that the set Z, which is the intersection
of an ellipsoid with the unit ball in Rn−1, is contained
in an enlarged ellipsoid. The supremum of the Gaus-
sian process z>ξ over Z will then be bounded by the
supremum of the same process over this larger but sim-
pler set, which we will be able to bound using directly
a result from [38] based on chaining. To this end, let
A = 1

ρΛ = diag{ai}n−1
i=1 and d = max{j : aj < 1}.

For for a vector z ∈ Rn−1 set z1 = z[d], z2 = z[n−1]\[d],
and A2 = diag{ai}i>d. Then, we observe the following
chain of implications, holding for vectors z ∈ Rn−1:

‖z‖ ≤ 1, z>Az ≤ 1⇒ ‖z1‖ ≤ 1,
∑
i>d

aiz
2
i ≤ 1

⇒ z>1 z1 + z>2 A2z2 ≤ 2⇒
∑
i

max{1, ai}
2

z2
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Hence, we have the bound

E
√
ŝ ≤ E sup
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∑
i

2 max {1, ai}x2
i ≤ 1.

Recalling that ai = λi+1

ρ , for i = 1, . . . , n − 1, where

λi+1 is the (i + 1)th eigenvalue of L, by Proposition
2.2.1 in [38] the right hand side of the previous expres-

sion is bounded by
√

2
∑
i>1 min{1, ρλ−1

i }.

Supplement to the proof of Theorem 6. The following
property of Gaussian processes effectively reduces the
study of their supremum to the study of its expecta-
tion. It was established by [7] and [10] and can be
found in [22].

Lemma 14. Consider a Gaussian process {Zt}t∈U
where U is compact with respect to metric

d(s, t) = (E(Zs − Zt)2)1/2, s, t,∈ U ,

and let σ2 ≥ supt∈U EZ2
t . We have that with probabil-

ity at least 1− δ∣∣∣∣sup
t∈U

Zt − E sup
t∈U

Zt

∣∣∣∣ <
√

2σ2 log
2

δ
.

Notice that the natural distance is given by d(x0,x1) =
(E((x0−x1)>y)2)1/2 = σ‖x0−x1‖ for x0,x1 ∈ X .

A.3 Proof in Section 4

Proof of Corollary 11 (a). The study of the spectra of
trees really began in earnest with the work of [12]. No-
tably, it became apparent that tree have eigenvalues
with high multiplicities, particularly the eigenvalue 1.
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[30] gave a tight bound on the algebraic connectivity
of balanced binary trees (BBT). They found that for
a BBT of depth `, the reciprocal of the smallest eigen-

value (λ
(`)
2 ) is

1

λ
(`)
2

≤ 2` − 2`+ 2− 2` −
√

2(2`− 1− 2`−1)

2` − 1−
√

2(2`−1 − 1)

+(3− 2
√

2 cos(
π

2`− 1
))−1

≤ 2` + 105I{` < 4}

(12)

[32] gave a more exact characterization of the spectrum
of a balanced binary tree, providing a decomposition of
the Laplacian’s characteristic polynomial. Specifically,
the characteristic polynomial of L is given by

det(λI− L) = p2`−2

1 (λ)p2`−3

2 (λ) . . .

p22

`−3(λ)p2
`−2(λ)p`−1(λ)s`(λ)

(13)

where s`(λ) is a polynomial of degree ` and pi(λ) are
polynomials of degree i with the smallest root satis-
fying the bound in (12) with ` replaced with i. In
[33], they extended this work to more general balanced
trees.

By (13) we know that at most ` + (` − 1) + (` −
2)2 + ... + (` − j)2j−1 ≤ `2j eigenvalues have recip-
rocals larger than 2`−j + 105I{j < 4}. Let k =
max{d `c2

`(1−α)e, 23}, then we have ensured that at
most k eigenvalues are smaller than ρ. For n large
enough

∑
i>1

min{1, ρλ−1
i } ≤ k + ρ

∑̀
j>log k

`2j2`−j

= k + `(`− log k)nρ = O(n1−α(log n)2)

Proof of Corollary 11 (b). We will construct C′ in
Theorem 5 (b) from subtrees of size 4cnα. Let C be
such a subtree, then for n large enough

1− 4cnα−1 ≥ 1− cnα−1

2

⇒ n|∂C|
|C||C̄|

= [4cnα(1− 4cnα−1)]−1

≤ 1

2
[cnα(1− cnα−1)]−1 =

rho

2

Hence the conditions of Theorem 5 (b) hold with |C′| =
n/(4cnα) � n1−α

Proof of Corollary 12 (a). By a simple Fourier analy-
sis (see [36]), we know that the Laplacian eigenvalues
are 2(2− cos(2πi1/p)− cos(2πi2/p)) for all i1, i2 ∈ [p].

Let us denote the p2 eigenvalues as λ(i1,i2) for i1, i2 ∈
[p]. Notice that for i ∈ [p], |{(i1, i2) : i1∨ i2 = i}| ≤ 2i.
For simplicity let p be even. We know that if i1 ∨ i2 ≤
p/2 then λ(i1,i2) = 2 − cos(2πi1/p) − cos(2πi2/p) ≥
1− cos(2π(i1 ∨ i2)/p) . Thus,∑

(i1,i2)6=(1,1)∈[p]2

1 ∧ ρ

λ(i1,i2)

≤ 2
∑
i∈[p/2]

2i

(
1 ∧ ρ

1− cos(2πi/p)

)

≤ ρp
2

2

2

p

∑
i∈[p/2]

2
i/p

1− cos(2πi/p)

≤ ρp
2

2

∫ 1/2

1/p

xdx

1− cos(2πx)

≤ ρp
2

2

log(sin(πx))− πx cot(πx)

2π2

∣∣∣∣1/2
1/p

= ρ
p2

2

(π/p) cot(π/p)− log(sin(π/p))

2π2

While we can use the first order expansion of the terms
to obtain the behavior,

(π/p) cot(π/p) = 1 + o(π/p)

− log(sin(π/p)) = − log(π/p)− log(1 + o(1))

so we arrive at the following,∑
(i1,i2)6=(1,1)∈[p]2

1 ∧ ρ

λ(i1,i2)

≤ ρ p
2

4π2
(1 + log(p/π) + o(1))

=
C

4π2
p1+β(1 + log(p/π) + o(1))

= O(n(1+β)/2 log(p))

which in conjunction with (9) completes our proof.

Proof of Corollary 13 (a). The Kronecker product of
two matrices A,B ∈ Rn×n is defined as A ⊗
B ∈ R(n×n)×(n×n) such that (A ⊗ B)(i1,i2),(j1,j2) =
Ai1,j1Bi2,j2 . Some matrix algebra shows that if H1

and H2 are graphs on p vertices with Laplacians
L1,L2 then the Laplacian of their Kronecker product,
H1⊗H2, is given by L = L1⊗Ip+Ip⊗L2 ([28]). Hence,
if v1,v2 ∈ Rp are eigenvectors, viz. L1v1 = λ1v1 and
L2v2 = λ2v2, then L(v1 ⊗ v2) = (λ1 + λ2)v1 ⊗ v2,
where v1 ⊗ v2 is the usual tensor product. This com-
pletely characterizes the spectrum of Kronecker prod-
ucts of graphs.

We should argue the choice of ρ ∝ p2k−`−1, by showing
that it is the results of cuts at level k. We say that an
edge e = ((i1, ..., i`), (j1, ..., j`)) has scale k if ik 6= jk.



James Sharpnack, Alessandro Rinaldo, Aarti Singh

Furthermore, a cut has scale k if each of its constituent
edges has scale at least k. Each edge at scale k has
weight pk−` and there are p`−1 such edges, so cuts at
scale k have total edge weight bounded by

p`−1
k∑
i=1

pi−` = pk−1
p− 1

pk−1

p− 1
≤ pk

p− 1

Cuts at scale k leave components of size p`−k intact,
meaning that ρ ∝ p2k−`−1 for large enough p.

We now control the spectrum of the Kronecker graph.
Let the eigenvalues of the base graph H be {νj}pj=1 in
increasing order. The eigenvalues of G are precisely
the sums

λi =
1

p`−1
νi1 +

1

p`−2
νi2 + ...+

1

p
νi`−1

+ νi`

for i = (ij)
`
j=1 ⊆ [p]. The eigenvalue distribution {λi}

stochastically bounds

λi ≥
∑̀
j=1

1

p`−j
ν2I{νij 6= 0} ≥ ν2

pZ(i)

where Z(i) = min{j : νi`−j 6= 0}. Notice that if i is
chosen uniformly at random then Z(i) has a geometric
distribution with probability of success (p−1)/p. Also
ρ/( ν2

pZ(i) ) = pZ(i)+2k−`−1/ν2 ≥ 1 if Z(i) ≥ `+ 1− 2k+

logp ν2, so

1

p`

∑
i∈[p]`

min{1, ρ
λi
} ≤ p2k−`−1

ν2

+

b`+1−2k+logp ν2c∑
Z=1

pZ+2k−`−1

ν2

1

pZ
p− 1

p

≤ (`+ 2)p2k−`−1

ν2

This followed from the geometric probability mass
function. We also know that the algebraic connectiv-
ity, ν2, is bounded from below by 4p−2, so the following
result holds.

Proof of Corollary 13 (b). Similarly to the proof of
Corollary 11 (b), we form C′ as the connected com-
ponents of the graph with all the edges at coarseness
less than k− 2. So we have more than quadrupled the
size of the clusters without increasing their cut size.
Hence, |C′| � pk−2 � nk/`/p2.


