A Appendix

A.1 Proofs in Section 2

Proof of Lemma 2. To expedite the proof, we express the LR statistics in terms of the sufficient statistics $\mathbf{y}_0 = \frac{1}{|C|} \sum_{i \in C} \mathbf{y}_i \sim N(\beta_0, \sigma_0^2)$ and $\mathbf{y}_1 =$ $\frac{1}{|C|} \sum_{i \in \bar{C}} \mathbf{y}_i \sim N(\beta_1, \sigma_1^2)$ for $\sigma_0 = \sigma / \sqrt{|C|}$ and $\sigma_1 =$ $\sigma/\sqrt{|\overline{C}|}$. Then, we obtain

$$
2\log \Lambda_C(\mathbf{y}) = \frac{1}{\sigma_0^2}(\mathbf{y}_0 - \hat{\beta})^2 + \frac{1}{\sigma_1^2}(\mathbf{y}_1 - \hat{\beta})^2
$$

where $\hat{\beta} = \frac{\sigma_1^2}{\sigma_0^2 + \sigma_1^2} \mathbf{y}_0 + \frac{\sigma_0^2}{\sigma_0^2 + \sigma_1^2} \mathbf{y}_1$ is the MLE under H_0 . (The likelihood under the alternative balances with the normalizing constant of the null likelihood.) Thus,

$$
2 \log \Lambda_C(\mathbf{y}) = \frac{1}{\sigma_0^2} \left(\frac{\sigma_0^2}{\sigma_0^2 + \sigma_1^2} (\mathbf{y}_0 - \mathbf{y}_1) \right)^2
$$

$$
+ \frac{1}{\sigma_1^2} \left(\frac{\sigma_1^2}{\sigma_0^2 + \sigma_1^2} (\mathbf{y}_0 - \mathbf{y}_1) \right)^2
$$

$$
= \frac{(\mathbf{y}_0 - \mathbf{y}_1)^2}{\sigma_0^2 + \sigma_1^2} = \frac{1}{\sigma^2} \frac{|C||\bar{C}|}{|V|} (\mathbf{y}_0 - \mathbf{y}_1)^2
$$

$$
= \frac{1}{\sigma^2} \frac{|V|}{|C||\bar{C}|} \left(\frac{|\bar{C}|}{|V|} \sum_{v \in C} \mathbf{y}_v - \frac{|C|}{|V|} \sum_{v \in \bar{C}} \mathbf{y}_v \right)^2
$$

$$
= \frac{1}{\sigma^2} \frac{|V|}{|C||\bar{C}|} \left(\sum_{v \in C} \mathbf{y}_v - \frac{|C|}{|V|} \sum_{v \in V} \mathbf{y}_v \right)^2
$$

$$
= \frac{1}{\sigma^2} \frac{|V|}{|C||\bar{C}|} \left(\sum_{v \in C} \tilde{\mathbf{y}}_v \right)^2. \tag{11}
$$

Now we let $\mathbf{x} = \mathbf{1}_C$, making the statistic above

$$
2\sigma^2 \log \Lambda_C(\mathbf{y}) = \frac{\mathbf{x}^\top \tilde{\mathbf{y}} \tilde{\mathbf{y}} \mathbf{x}}{\mathbf{x}^\top \mathbf{K} \mathbf{x}} \text{ and } \frac{|\partial C||V|}{|C||\bar{C}|} = \frac{\mathbf{x}^\top \mathbf{L} \mathbf{x}}{\mathbf{x}^\top \mathbf{K} \mathbf{x}}.
$$

The result now follows by considering all the indicator functions corresponding to the sets in \mathcal{C} . \Box

Proof of Remark 4. First we notice that (8) is equivalent to

$$
\inf_{\mathbf{x} \in \mathbb{R}} -\mathbf{x}^{\top} \tilde{\mathbf{y}} \text{ s.t. } \mathbf{x}^{\top} \mathbf{L} \mathbf{x} \leq \rho, \|\mathbf{x}\| \leq 1
$$

because $\mathbf{x}^\top \mathbf{L} \mathbf{x}$ and $\mathbf{x}^\top \tilde{\mathbf{y}}$ are invariant under changes in $\mathbf{1}^\top \mathbf{x}$. This admits the Lagrangian (for parameters $\nu_0, \nu_1 > 0$),

$$
-\mathbf{x}^\top \tilde{\mathbf{y}} + \nu_0 (\mathbf{x}^\top \mathbf{L} \mathbf{x} - \rho) + \nu_1 (\mathbf{x}^\top \mathbf{x} - 1)
$$

which is minimized for fixed ν_0, ν_1 at $\mathbf{x} = -\frac{1}{2}[\nu_0 \mathbf{L} +$ $\nu_1 I^{-1} \tilde{y}$ (which confirms Slater's condition). Hence, the dual program is

$$
\sup_{\nu_0,\nu_1\geq 0}-\nu_0\rho-\nu_1-\frac{1}{2}\tilde{\mathbf{y}}[\nu_0\mathbf{L}+\nu_1\mathbf{I}]^{-1}\tilde{\mathbf{y}}+\frac{1}{4}\tilde{\mathbf{y}}[\nu_0\mathbf{L}+\nu_1\mathbf{I}]^{-1}\tilde{\mathbf{y}}
$$

A.2 Proofs in Section 3

Proof of Theorem 5 (1). Let the true $C \in \mathcal{C}$ be known. The performance of the optimal test with C known, which by the Neyman-Pearson Lemma is based on $2 \log \Lambda_C(y)$, bounds the performance of that with C unknown. To this end, note that, under H_0 , the LR statistic (6) has a χ_1^2 , while under the alternative H_1^C it has a $\chi_1^2(\lambda)$ distribution with non-centrality parameter

$$
\lambda = \frac{\delta^2}{\sigma^2} \frac{|C||\bar{C}|}{|V|} = \frac{\eta^2}{\sigma^2},
$$

which is the square of the SNR. For fixed C , asymptotically indistinguishable of H_0 versus H_C^1 follows by considering any threshold and noticing that the associated type 1 and type 2 errors are non-vanishing under the SNR scaling assumed in the statement. Since the risk of testing H_0 versus H_1 is no smaller than the risk of testing H_0 versus H_C^1 , the result follows. \Box

We remark that the proof of the previous result shows that when distinguishing H_0 from H_1^C , the power of the test is maximal when $|C| = |\bar{C}|$ for a fixed value of the SNR.

Proof of Theorem 5 (2). We will begin by constructing from our set, \mathcal{C}' , a new set, \mathcal{S} , of clusters which are difficult to distinguish in the sense that the Bayes risk for the uniform prior over those in the alternative is bounded away from 0. Enumerate \mathcal{C}' such that $\mathcal{C}' = \{C_i\}_{i=1}^{|\mathcal{C}'|}$. We will build S by unioning k elements of \mathcal{C}' , then draw S, S' uniformly from S. Specifically, let $k = |\sqrt{|C'|}|$ (recall that $c = |C|, \forall C \in C'$), and let K, K' be independent uniform samples without replacement of k elements from $\{1, \ldots, |\mathcal{C}'|\}$. Then let $S = \bigcup_{i \in K} C_i$ and $S' = \bigcup_{i \in K'} C_i$. Notice that $kc = |S| \leq n/2$ for *n* large enough.

$$
\frac{|\partial S|}{|S||\bar{S}|} \le \frac{k \max_{C \in C'} |\partial C|}{kc(n - kc)}
$$

$$
\le \frac{n - c}{n - kc} \max_{C \in C'} \frac{|\partial C|}{c(n - c)} \le 2\frac{\rho}{2} = \rho
$$

Notice that the risk can be bounded by

$$
\sup_{\beta \in \Theta_0} \mathbb{E}_{\beta} T(\mathbf{y}) + \sup_{\beta \in \Theta_1} \mathbb{E}_{\beta} [1 - T(\mathbf{y})]
$$

\n
$$
\geq \mathbb{E}_{\beta=0} T(\mathbf{y}) + \frac{1}{|\mathcal{S}|} \sum_{S \in \mathcal{S}} \mathbb{E}_{\beta} s [1 - T(\mathbf{y})] = R^*
$$

where $\beta^S = \eta \sqrt{\frac{n}{|S||\bar{S}|}} \mathbf{1}_S$ and $\mathcal{S} \subseteq \mathcal{C}$. Then by Proposition 3.2 in [1],

$$
R^* \ge 1 - \frac{1}{2} \sqrt{\mathbb{E} \exp\left\{ \frac{\eta^2}{\sigma^2} Z \right\} - 1}
$$

where

$$
Z = \frac{n|S \cap S'|}{\sqrt{|S||\bar{S}||S'||\bar{S}'|}}
$$

for S, S' drawn independently uniformly from S . Notice that

$$
\frac{n}{\sqrt{|\bar{S}'||\bar{S}|}} \leq 2
$$

Hence,

$$
Z \le 2\frac{|S \cap S'|}{\sqrt{|S||S'|}} = 2\frac{|K \cap K'|}{\sqrt{|K||K'|}}
$$

And we have that

$$
R^* \ge 1 - \frac{1}{2} \sqrt{\mathbb{E}e^{\frac{2\eta^2}{k\sigma^2}|K \cap K'|} - 1}
$$

Hence, we can apply Proposition 3.4 from [1] (by substituting $\mu \leftarrow \eta \sqrt{2}/(\sigma \sqrt{k})$ and determine that $R^* > \delta$ if

$$
\frac{\eta\sqrt{2}}{\sigma\sqrt{k}} \leq \sqrt{\log\left(1 + \frac{|\mathcal{C}'|\log(1 + 4(1-\delta)^2)}{k^2}\right)}
$$

Because $k^2 \approx |\mathcal{C}'|$ we have asymptotic indistinguishability if $\eta/\sigma = o(\sqrt{k}) = o(|\mathcal{C}'|^{1/4})$. For some explanation for the choice of k the term $k \log(1 + |\mathcal{C}'|/k^2)$ is largest when $k^2 \asymp |\mathcal{C}'|$. П

Proof of Lemma 7. Without loss of generality, let $y \sim$ $\mathcal{N}(\mathbf{0}, \mathbf{I})$. We recall that, since G is connected, the combinatorial Laplacian L is symmetric, its smallest eigenvalue is zero and the remaining eigenvalues are positive. By the spectral theorem, we can write $\mathbf{L} = \mathbf{U} \Lambda \mathbf{U}^{\top}$, where Λ is a $(n-1) \times (n-1)$ diagonal matrix containing the positive eigenvalues of L in increasing order and the columns of the $n \times (n-1)$ matrix U are the associated eigenvectors. Then, since each vector $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{1}^\top \mathbf{x} = 0$ can be written as **Uz** for a unique vector $\mathbf{z} \in \mathbb{R}^{n-1}$, we have

$$
\mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x}^\top \mathbf{L} \mathbf{x} \leq \rho, \mathbf{x}^\top \mathbf{x} = 1, \mathbf{1}^\top \mathbf{x} \leq 0 \} \n= \{ \mathbf{Uz} : \mathbf{z} \in \mathbb{R}^{n-1}, \n\mathbf{z}^\top \mathbf{U}^\top \mathbf{L} \mathbf{U} \mathbf{z} \leq \rho, \mathbf{z}^\top \mathbf{U}^\top \mathbf{U} \mathbf{z} \leq 1 \} \n= \{ \mathbf{Uz} : \mathbf{z} \in \mathbb{R}^{n-1}, \frac{1}{\rho} \mathbf{z}^\top \Lambda \mathbf{z} \leq 1, \mathbf{z}^\top \mathbf{z} \leq 1 \},
$$

where in the third identity we have used the fact that $\mathbf{U}^\top \mathbf{U} = \mathbf{I}_{n-1}$. Letting $\mathcal{Z} = \{ \mathbf{z} \in \mathbb{R}^{n-1} : \frac{1}{\rho} \mathbf{z}^\top \Lambda \mathbf{z} \leq$ $1, \mathbf{z}^\top \mathbf{z} \leq 1$, we see that

$$
\sup_{\mathbf{x}\in\mathcal{X}}\mathbf{x}^{\top}\mathbf{y} = \sup_{\mathbf{z}\in\mathcal{Z}}\mathbf{z}^{\top}\mathbf{U}^{\top}\mathbf{y} \stackrel{d}{=} \sup_{\mathbf{z}\in\mathcal{Z}}\mathbf{z}^{\top}\boldsymbol{\xi},
$$

where $\xi \sim N(0, \mathbf{I}_{n-1})$ and $\stackrel{d}{=}$ denotes equality in distribution.

Next, we show that the set \mathcal{Z} , which is the intersection of an ellipsoid with the unit ball in \mathbb{R}^{n-1} , is contained in an enlarged ellipsoid. The supremum of the Gaussian process $\mathbf{z}^{\top} \boldsymbol{\xi}$ over \mathcal{Z} will then be bounded by the supremum of the same process over this larger but simpler set, which we will be able to bound using directly a result from [38] based on chaining. To this end, let $\mathbf{A} = \frac{1}{\rho} \Lambda = \text{diag}\{a_i\}_{i=1}^{n-1} \text{ and } d = \max\{j : a_j < 1\}.$ For for a vector $\mathbf{z} \in \mathbb{R}^{n-1}$ set $\mathbf{z}_1 = \mathbf{z}_{[d]}, \mathbf{z}_2 = \mathbf{z}_{[n-1] \setminus [d]},$ and $\mathbf{A}_2 = \text{diag}\{a_i\}_{i>d}$. Then, we observe the following chain of implications, holding for vectors $\mathbf{z} \in \mathbb{R}^{n-1}$:

$$
\|\mathbf{z}\| \leq 1, \mathbf{z}^\top \mathbf{A} \mathbf{z} \leq 1 \Rightarrow \|\mathbf{z}_1\| \leq 1, \sum_{i>d} a_i \mathbf{z}_i^2 \leq 1
$$

$$
\Rightarrow \mathbf{z}_1^\top \mathbf{z}_1 + \mathbf{z}_2^\top \mathbf{A}_2 \mathbf{z}_2 \leq 2 \Rightarrow \sum_i \frac{\max\{1, a_i\}}{2} \mathbf{z}_i^2 \leq 1.
$$

Hence, we have the bound

$$
\mathbb{E}\sqrt{\hat{s}} \leq \mathbb{E}\sup_{\mathbf{z}\in\mathbb{R}^{n-1}}\mathbf{z}^{\top}\boldsymbol{\xi} \text{ s.t. } \sum_{i} 2\max\left\{1, a_{i}\right\}\mathbf{x}_{i}^{2} \leq 1.
$$

Recalling that $a_i = \frac{\lambda_{i+1}}{\rho}$, for $i = 1, \ldots, n-1$, where λ_{i+1} is the $(i + 1)$ th eigenvalue of **L**, by Proposition 2.2.1 in [38] the right hand side of the previous expression is bounded by $\sqrt{2\sum_{i>1} \min\{1,\rho\lambda_i^{-1}\}}$. \Box

Supplement to the proof of Theorem 6. The following property of Gaussian processes effectively reduces the study of their supremum to the study of its expectation. It was established by [7] and [10] and can be found in [22].

Lemma 14. Consider a Gaussian process $\{Z_t\}_{t\in\mathcal{U}}$ where U is compact with respect to metric

$$
d(s,t) = (\mathbb{E}(Z_s - Z_t)^2)^{1/2}, \quad s, t, \in \mathcal{U},
$$

and let $\sigma^2 \geq \sup_{t \in \mathcal{U}} \mathbb{E} Z_t^2$. We have that with probability at least $1 - \delta$

$$
\left|\sup_{t\in\mathcal{U}} Z_t - \mathbb{E}\sup_{t\in\mathcal{U}} Z_t\right| < \sqrt{2\sigma^2 \log \frac{2}{\delta}}.
$$

Notice that the natural distance is given by $d(\mathbf{x}_0, \mathbf{x}_1) =$ $(\mathbb{E}((\mathbf{x}_0-\mathbf{x}_1)^{\top}\mathbf{y})^2)^{1/2} = \sigma \|\mathbf{x}_0-\mathbf{x}_1\|$ for $\mathbf{x}_0, \mathbf{x}_1 \in \mathcal{X}$.

A.3 Proof in Section 4

Proof of Corollary 11 (a). The study of the spectra of trees really began in earnest with the work of [12]. Notably, it became apparent that tree have eigenvalues with high multiplicities, particularly the eigenvalue 1.

 \Box

[30] gave a tight bound on the algebraic connectivity of balanced binary trees (BBT). They found that for a BBT of depth ℓ , the reciprocal of the smallest eigenvalue $(\lambda_2^{(\ell)})$ is

$$
\frac{1}{\lambda_2^{(\ell)}} \le 2^{\ell} - 2\ell + 2 - \frac{2^{\ell} - \sqrt{2}(2\ell - 1 - 2^{\ell - 1})}{2^{\ell} - 1 - \sqrt{2}(2^{\ell - 1} - 1)} + (3 - 2\sqrt{2}\cos(\frac{\pi}{2\ell - 1}))^{-1}
$$
\n
$$
\le 2^{\ell} + 105I\{\ell < 4\}
$$
\n(12)

[32] gave a more exact characterization of the spectrum of a balanced binary tree, providing a decomposition of the Laplacian's characteristic polynomial. Specifically, the characteristic polynomial of L is given by

$$
\det(\lambda \mathbf{I} - \mathbf{L}) = p_1^{2^{\ell-2}}(\lambda) p_2^{2^{\ell-3}}(\lambda) \dots
$$

$$
p_{\ell-3}^{2^2}(\lambda) p_{\ell-2}^2(\lambda) p_{\ell-1}(\lambda) s_{\ell}(\lambda)
$$
 (13)

where $s_{\ell}(\lambda)$ is a polynomial of degree ℓ and $p_i(\lambda)$ are polynomials of degree i with the smallest root satisfying the bound in (12) with ℓ replaced with i. In [33], they extended this work to more general balanced trees.

By (13) we know that at most $\ell + (\ell - 1) + (\ell 2)2 + ... + (\ell - j)2^{j-1} \leq \ell 2^j$ eigenvalues have reciprocals larger than $2^{\ell-j} + 105I\{j \leq 4\}$. Let $k =$ $\max\{\lceil\frac{\ell}{c}2^{\ell(1-\alpha)}\rceil, 2^3\}$, then we have ensured that at most k eigenvalues are smaller than ρ . For n large enough

$$
\sum_{i>1} \min\{1, \rho \lambda_i^{-1}\} \le k + \rho \sum_{j>\log k}^{\ell} \ell 2^j 2^{\ell-j}
$$

= $k + \ell(\ell - \log k) n \rho = O(n^{1-\alpha} (\log n)^2)$

Proof of Corollary 11 (b). We will construct C' in Theorem 5 (b) from subtrees of size $4cn^{\alpha}$. Let C be such a subtree, then for n large enough

$$
1 - 4cn^{\alpha - 1} \ge \frac{1 - cn^{\alpha - 1}}{2}
$$

$$
\Rightarrow \frac{n|\partial C|}{|C||\bar{C}|} = [4cn^{\alpha}(1 - 4cn^{\alpha - 1})]^{-1}
$$

$$
\le \frac{1}{2}[cn^{\alpha}(1 - cn^{\alpha - 1})]^{-1} = \frac{rho}{2}
$$

Hence the conditions of Theorem 5 (b) hold with $|C'|$ = $n/(4cn^{\alpha}) \asymp n^{1-\alpha}$ П

Proof of Corollary 12 (a). By a simple Fourier analysis (see [36]), we know that the Laplacian eigenvalues are $2(2 - \cos(2\pi i_1/p) - \cos(2\pi i_2/p))$ for all $i_1, i_2 \in [p]$.

Let us denote the p^2 eigenvalues as $\lambda_{(i_1,i_2)}$ for $i_1, i_2 \in$ [p]. Notice that for $i \in [p], |\{(i_1, i_2) : i_1 \vee i_2 = i\}| \leq 2i$. For simplicity let p be even. We know that if $i_1 \vee i_2 \leq$ $p/2$ then $\lambda_{(i_1,i_2)} = 2 - \cos(2\pi i_1/p) - \cos(2\pi i_2/p) \ge$ $1 - \cos(2\pi(i_1 \vee i_2)/p)$. Thus,

$$
\sum_{(i_1, i_2) \neq (1, 1) \in [p]^2} 1 \wedge \frac{\rho}{\lambda_{(i_1, i_2)}}
$$
\n
$$
\leq 2 \sum_{i \in [p/2]} 2i \left(1 \wedge \frac{\rho}{1 - \cos(2\pi i/p)} \right)
$$
\n
$$
\leq \rho \frac{p^2}{2} \frac{2}{p} \sum_{i \in [p/2]} 2 \frac{i/p}{1 - \cos(2\pi i/p)}
$$
\n
$$
\leq \rho \frac{p^2}{2} \int_{1/p}^{1/2} \frac{x dx}{1 - \cos(2\pi x)}
$$
\n
$$
\leq \rho \frac{p^2}{2} \frac{\log(\sin(\pi x)) - \pi x \cot(\pi x)}{2\pi^2} \Big|_{1/p}^{1/2}
$$
\n
$$
= \rho \frac{p^2}{2} \frac{(\pi/p) \cot(\pi/p) - \log(\sin(\pi/p))}{2\pi^2}
$$

While we can use the first order expansion of the terms to obtain the behavior,

$$
(\pi/p)\cot(\pi/p) = 1 + o(\pi/p)
$$

- log(sin(\pi/p)) = - log(\pi/p) - log(1 + o(1))

so we arrive at the following,

$$
\sum_{(i_1,i_2)\neq(1,1)\in [p]^2} 1 \wedge \frac{\rho}{\lambda_{(i_1,i_2)}}
$$

\n
$$
\leq \rho \frac{p^2}{4\pi^2} (1 + \log(p/\pi) + o(1))
$$

\n
$$
= \frac{C}{4\pi^2} p^{1+\beta} (1 + \log(p/\pi) + o(1))
$$

\n
$$
= O(n^{(1+\beta)/2} \log(p))
$$

which in conjunction with (9) completes our proof. \Box

Proof of Corollary 13 (a). The Kronecker product of two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ is defined as $\mathbf{A} \otimes$ $\mathbf{B} \in \mathbb{R}^{(n \times n) \times (n \times n)}$ such that $(\mathbf{A} \otimes \mathbf{B})_{(i_1, i_2), (j_1, j_2)} =$ $A_{i_1,j_1}B_{i_2,j_2}$. Some matrix algebra shows that if H_1 and H_2 are graphs on p vertices with Laplacians L_1, L_2 then the Laplacian of their Kronecker product, $H_1 \otimes H_2$, is given by $\mathbf{L} = \mathbf{L}_1 \otimes \mathbf{I}_n + \mathbf{I}_n \otimes \mathbf{L}_2$ ([28]). Hence, if $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^p$ are eigenvectors, viz. $\mathbf{L}_1 \mathbf{v}_1 = \lambda_1 \mathbf{v}_1$ and $\mathbf{L}_2\mathbf{v}_2 = \lambda_2\mathbf{v}_2$, then $\mathbf{L}(\mathbf{v}_1 \otimes \mathbf{v}_2) = (\lambda_1 + \lambda_2)\mathbf{v}_1 \otimes \mathbf{v}_2$, where $\mathbf{v}_1 \otimes \mathbf{v}_2$ is the usual tensor product. This completely characterizes the spectrum of Kronecker products of graphs.

We should argue the choice of $\rho \propto p^{2k-\ell-1}$, by showing that it is the results of cuts at level k . We say that an edge $e = ((i_1, ..., i_\ell), (j_1, ..., j_\ell))$ has scale k if $i_k \neq j_k$.

Furthermore, a cut has scale k if each of its constituent edges has scale at least k . Each edge at scale k has weight $p^{k-\ell}$ and there are $p^{\ell-1}$ such edges, so cuts at scale k have total edge weight bounded by

$$
p^{\ell-1} \sum_{i=1}^{k} p^{i-\ell} = p^{k-1} \frac{p - \frac{1}{p^{k-1}}}{p-1} \le \frac{p^k}{p-1}
$$

Cuts at scale k leave components of size $p^{\ell-k}$ intact, meaning that $\rho \propto p^{2k-\ell-1}$ for large enough p.

We now control the spectrum of the Kronecker graph. Let the eigenvalues of the base graph H be $\{\nu_j\}_{j=1}^p$ in increasing order. The eigenvalues of G are precisely the sums

$$
\lambda_i = \frac{1}{p^{\ell-1}}\nu_{i_1} + \frac{1}{p^{\ell-2}}\nu_{i_2} + \dots + \frac{1}{p}\nu_{i_{\ell-1}} + \nu_{i_{\ell}}
$$

for $i = (i_j)_{j=1}^{\ell} \subseteq [p]$. The eigenvalue distribution $\{\lambda_i\}$ stochastically bounds

$$
\lambda_i \geq \sum_{j=1}^{\ell} \frac{1}{p^{\ell-j}} \nu_2 I\{\nu_{i_j} \neq 0\} \geq \frac{\nu_2}{p^{Z(i)}}
$$

where $Z(i) = \min\{j : \nu_{i_{\ell-j}} \neq 0\}$. Notice that if i is chosen uniformly at random then $Z(i)$ has a geometric distribution with probability of success $(p-1)/p$. Also $\rho/(\frac{\nu_2}{p^{Z(i)}}) = p^{Z(i)+2k-\ell-1}/\nu_2 \ge 1$ if $Z(i) \ge \ell+1-2k+1$ $\log_p v_2$, so

$$
\frac{1}{p^{\ell}} \sum_{i \in [p]^{\ell}} \min\{1, \frac{\rho}{\lambda_i}\} \le \frac{p^{2k-\ell-1}}{\nu_2}
$$
\n
$$
+ \sum_{Z=1}^{\lfloor \ell+1-2k+\log_p \nu_2 \rfloor} \frac{p^{Z+2k-\ell-1}}{\nu_2} \frac{1}{p^Z} \frac{p-1}{p}
$$
\n
$$
\le \frac{(\ell+2)p^{2k-\ell-1}}{\nu_2}
$$

This followed from the geometric probability mass function. We also know that the algebraic connectivity, ν_2 , is bounded from below by $4p^{-2}$, so the following result holds.

 \Box

Proof of Corollary 13 (b). Similarly to the proof of Corollary 11 (b), we form \mathcal{C}' as the connected components of the graph with all the edges at coarseness less than $k - 2$. So we have more than quadrupled the size of the clusters without increasing their cut size. Hence, $|\mathcal{C}'| \asymp p^{k-2} \asymp n^{k/\ell}/p^2$.