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Abstract

‘Distribution regression’ refers to the situa-
tion where a response Y depends on a co-
variate P where P is a probability distribu-
tion. The model is Y = f(P ) + µ where f
is an unknown regression function and µ is a
random error. Typically, we do not observe
P directly, but rather, we observe a sample
from P . In this paper we develop theory and
methods for distribution-free versions of dis-
tribution regression. This means that we do
not make strong distributional assumptions
about the error term µ and covariate P . We
prove that when the effective dimension is
small enough (as measured by the doubling
dimension), then the excess prediction risk
converges to zero with a polynomial rate.

1 Introduction

In a standard regression model, we need to predict a
real-valued response Y from a vector-valued covariate
(or feature) X ∈ Rd. Recently, there has been in-
terest in extensions of standard regression from finite
dimensional Euclidean spaces to other domains. For
example, in functional regression (Ferraty and Vieu
[2006]) the covariate is a function instead of a finite
dimensional vector.

In this paper, we study distribution regression where
the covariate is a probability distribution P . This dif-
fers from functional regression in two important ways.
First, P is a probability measure on Rk rather than
a one-dimensional function. Second, and more im-
portantly, we do not observe the covariate P directly.
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Rather, we observe a sample from P , which means
that we have a regression model with measurement
error (Carroll et al. [2006], Fan and Truong [1993]).

A practical example where this framework can be use-
ful is as follows. Suppose that we need to classify
patients in a hospital and diagnose whether they are
healthy or suffer from a disease. Traditional machine
learning based approaches would make a couple of
medical tests, and using the results of these measure-
ments they would form a feature vector for each per-
son and then apply a standard classifier to predict the
class labels of the feature vectors. Suppose we have
m patients, and these feature vectors are denoted by
Xi ∈ Rd, 1 ≤ i ≤ m. Our goal is to predict the class la-
bel Y ∈ {‘healthy’, ‘diseased’} for a person. The prob-
lem with this approach is that our heart rate, blood
pressure, chemical concentrations in blood, and many
other medical conditions in our body are always chang-
ing, and therefore if we repeat these measurements a
couple of times, then each time we might get differ-
ent measurements and different feature vectors for the
same person. For the ith person, let the set of these
measurements be denoted by Xi = {Xi,1, . . . , Xi,ni},
where Xi,ni ∈ Rd indicates that we repeated the med-
ical tests ni times. Interestingly, traditional feature
vector based machine learning algorithms cannot han-
dle well such simple problems. They might construct a
new feature vector as the average of the measurements
(X̃i

.
= 1

ni

∑ni
j=1Xi,j), but then they lose information.

If they want to keep all the measurements in a feature
vector, then they cannot just simply stack the fea-
ture vectors of each person to a larger vector, because
then each of these vectors could have different sizes
(dni). In contrast to the approaches, in our frame-
work we simply say that each person is represented
by an unknown distribution Pi, and those feature vec-
tors are samples from these distributions Xi,j ∼ Pi for
j = 1, . . . ni. Our goal is to classify these unknown Pi
distributions.

The formal definition of the problem is as follows.
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Figure 1: Illustration of the model - distribu-
tions P1, . . . , Pm, Pm+1 are unobserved, only the
X1, . . . ,Xm,Xm+1 sample sets are observable.

We consider a regression problem with variables
(P1, Y1), . . . , (Pm, Ym) where Yi ∈ R and each Pi is a
probability distribution on a compact subset K ⊂ Rk.
We assume that

Yi = f(Pi) + µi, i = 1, . . . ,m,

for some functional f , where µi is a noise variable with
mean 0. We do not observe Pi directly; rather we
observe a sample

Xi1, . . . , Xini
i.i.d∼ Pi. (1)

Thus the observed data are

(X1, Y1), . . . , (Xm, Ym) (2)

where Xi = {Xi1, . . . , Xini}. Our goal is to predict
a new Ym+1 from a new batch Xm+1 drawn from a
new distribution Pm+1. This model is illustrated in
Figure 1.

We model the unobservable probability distributions
P1, . . . , Pm as follows. Let D denote the set of all dis-
tributions on K that have a density with respect to the
Lebesgue measure. We assume that the distributions
Pi are an i.i.d. sample from a measure P on D, that
is1,

P1, . . . , Pm, Pm+1
i.i.d∼ P.

Note that f : D → R. If Q(·|P ) denotes the law of Y
given P , then the joint distribution of (Y, P ) is given
by

P(Y ∈ A,P ∈ B) = Q(Y ∈ A|P ∈ B)P(P ∈ B)

Our main result is a theorem where we prove that
when the effective dimension of P measured by the

1There are some subtle technical difficulties with the
definitions of measurability. Using outer expectations these
issues can be resolved. In this paper, however, we ignore
this question.

doubling dimension is small enough, then the estima-
tor is consistent and the prediction risk converges to
zero with a polynomial rate. Our results are distri-
bution free, similar to the functional regression case
Ferraty and Vieu [2006], in the sense that we do not
make any strong distributional assumptions.

Outline. In Section 2 we discuss related work. We
propose a specific estimator for distribution regression
in Section 3. We call this kernel-kernel estimator since
it makes use of kernels in two different ways. In Section
4 we derive an upper bound on the risk of the estima-
tor. The proofs can be found in Section 5. In Section
6 we analyze the risk bound in terms of the doubling
dimension, which is a measure of the intrinsic dimen-
sion of the space. We present numerical illustrations
in Section 7. Finally, we give some concluding remarks
in Section 8. The details of the proofs can be found in
the Supplementary material [Póczos et al., 2013].

2 Related work

Our framework is related to functional data analysis,
which is a new and steadily improving field of statis-
tics. For comprehensive reviews and references, see
Ramsay and Silverman [2005], Ferraty and Vieu [2006].

A popular approach to do machine learning, such as
classification and regression, on the domain of distri-
butions is to embed the distribution to a Hilbert space,
introduce kernels between the distributions, and then
use a traditional kernel machine to solve the learning
problem. There are both parametric and nonparamet-
ric methods proposed in the literature.

Parametric methods, (e.g. Jebara et al. [2004], Moreno
et al. [2004], Jaakkola and Haussler [1998]), usually fit
a parametric family (e.g. Gaussians distributions or ex-
ponential family) to the densities, and using the fitted
parameters they estimate the inner products between
the distributions. The problem with parametric ap-
proaches, however, is that when the true densities do
not belong to the assumed parametric families, then
this method introduces some unavoidable bias during
the estimation of the inner products between the den-
sities.

A couple of nonparametric approaches exist as well.
Since our covariates are represented by finite sets, re-
producing kernel Hilbert space (RKHS) based set ker-
nels can be used in these learning problems. Smola
et al. [2007] proposed to embed the distributions to
an RKHS using the mean map kernels. In this frame-
work, the role of universal kernels have been studied by
Christmann and Steinwart [2010]. Recently, the repre-
senter theorem has also been generalized for the space
of probability distributions [Muandet et al., 2012].
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Kondor and Jebara [2003] introduced Bhattacharyya’s
measure of affinity between finite-dimensional Gaus-
sians in a Hilbert space. In contrast to the previous ap-
proaches, Póczos et al. [2012], Póczos et al. [2011] used
nonparametric Rényi divergence estimators to solve
machine learning problems on the set of distributions.

Although, there are a few algorithms designed for re-
gression on distributions, we know very little about
their theoretical properties. To the best of our knowl-
edge, even the simplest, fundamental questions have
not been studied yet. For example, we do not know
how many training distributions (m) and how many
samples (ni, i = 1, . . . ,m) we need to achieve a target
prediction error. Our paper is providing an answer to
this question.

3 The Kernel-Kernel Estimator

In this section we define an estimator f̂ for the un-
known function f . Let P̂i denote an estimator of Pi
based on Xi, and let X be a sample from a new distri-
bution P = Pm+1. Accordingly, we denote with P̂ an
estimator of P based on X . Our predictor for Ym+1 is

then Ŷm+1 = f̂(P̂m+1).

Given a bandwidth h > 0 and a kernel function K
(whose properties will be specified later), we define

f̂(P̂ ) = f̂(P̂ ; P̂1, . . . , P̂m)

=


∑
i YiK

(
D(P̂i,P̂ )

h

)
∑
iK
(
D(P̂i,P̂ )

h

) if
∑
iK

(
D(P̂i,P̂ )

h

)
> 0

0 otherwise.

To complete the definition, we need to specify P̂i, P̂
and D. We will estimate Pi — or, more precisely, the
density pi of Pi — with a kernel density estimator

p̂i(x) =
1

ni

ni∑
j=1

1

bki
B

(‖x−Xij‖2
bi

)
(3)

where B is an appropriate kernel function (see, e.g.
Tsybakov [2010]) with bandwidth bi > 0. Here ‖x‖2
denotes the Euclidean norm of x ∈ Rk. Accordingly,
P̂i is defined by

P̂i(A) =

∫
A

p̂i(u)du,

for all Borel measurable subsets of Rk. For any two
probabilities in P and Q in D, we take D(P,Q) to be
the L1 distance of their densities: D(P,Q) = ‖p−q‖ =∫
|p(x)− q(x)|dx. Hence,

f̂(P̂ ) = f̂(P̂ ; P̂1, . . . , P̂m) =

∑m
i=1 YiK

(
||p̂−p̂i||

h

)
∑m
i=1K

(
||p̂−p̂i||

h

) (4)

which we call the ‘kernel-kernel estimator’ since it
makes use of two kernels, B and K.

For simplicity, n will denote the size of the sample X ,
and b will be the bandwidth in the estimator of p̂.

In what follows we will make the following assumptions
on f , K, P, µi, and Yi.

Assumptions

• (A1) Hölder continuous functional. The unknown
functional f belongs to the classM =M(L, β,D)
of Hölder continuous functionals on D:

M =

{
f : |f(Pi)− f(Pj)| ≤ LD(Pi, Pj)

β

}
,

for some L > 0 and 0 < β ≤ 1, where D is the
above specified L1 metric on D. In the β = 1
special case this means that f is Lipschitz contin-
uous.

• (A2) Asymmetric boxed and Lipschitz kernel. The
kernel K satisfies the following properties: K :
[0,∞] → R is non-negative and Lipschitz contin-
uous with Lipschitz constant LK . In addition,
there exist constants 0 < K < 1 and 0 < r < R <
∞ such that, for all x > 0, it holds that

KI{x∈B(0,r)} ≤ K(x) ≤ I{x∈B(0,R)}.

• (A3) Hölder class of distributions. The distribu-
tion P is supported on the set of distributions
with densities that are 1-smooth Hölder functions,
as defined in Tsybakov [2010], Rigollet and Vert
[2009] for example.

• (A4) Bounded regression. We will assume that
supP∈P |f(P )| < fmax for some fmax > 0. Also,
µi has mean 0 and P(|Yi| ≤ BY ) = 1 for some
BY <∞.

• (A5) Lower bound on min1≤i≤m+1 ni. Let n =

min1≤i≤m+1 ni. We assume that n
k

2+k ≥ 3 lnm.

• (A6) Requirements on regression kernel bandwidth

h. Assume that C∗n
− 1

2+k ≤ rh/4 where C∗ is
defined in (9), and h ≤ H where H > 0 is a
constant.

• (A7) Requirement on density kernel bandwidths

{bi}mi=1. Assume the bandwidths bi = b := n−
1
k+2 .

4 Upper Bound on Risk

We are concerned with upper bounding the risk

R(m,n) = E
[
|f̂(P̂ ; P̂1, . . . , P̂m)− f(P )|

]
,
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where the expectation is with respect to the joint
distribution of the sample (X1, Y1), . . . , (Xm, Ym), the
new covariate P = Pm+1 and the new observation
Xm+1. Note that the absolute prediction risk is

E|Ŷ − Y | ≤ R(m,n) + c, where c = E(|µ|) is a con-
stant. So bounding the prediction risk is equivalent to
bounding R(m,n), which we call the excess prediction
risk. In what follows, C, c1, c2, . . . represent constants
whose value can be different in different expressions.

Let B(P, h) = {P̃ ∈ D : D(P̃ , P ) ≤ h} denote the L1

ball of distributions around P with radius h. We will
see that the risk depends on the size of the class of
probabilities D. In particular, the risk depends on the
small ball probability

ΦP (h) := P(B(P, h)),

where P is a fixed distribution and ΦP (h) is a function
of P .

Our first result, Theorem 1, provides a general upper
bound on the risk. In our second result (Section 6)
we show that when the effective dimension measured
by the doubling dimension is small, then the risk con-
verges to zero. We also derive an upper bound on the
rate of convergence.

Theorem 1 Suppose that the assumptions (A1)-(A7)
stated above hold. Then

R(m,n) ≤ 1

h
E
[

1

ΦP (rh/2)

]
C1n

− 1
2+k + C2h

β

+ C3

√
1

m

√
E
[

1

ΦP (rh/2)

]
+
C4

m
E
[

1

ΦP (rh/2)

]
+ (m+ 1)e−

1
2n

k
2+k

,

where the constants Ci’s are specified in the proof.

5 Proof of Theorem 1

In this Section we prove our main result, Theorem 1.
The main idea of the proof is to use the triangle in-
equality to write

R(m,n) = E|f̂(P̂ ; P̂1, . . . , P̂m)− f(P )|

≤ E|f̂(P̂ ; P̂1, . . . , P̂m)− f̂(P ;P1, . . . , Pm)| (5)

+ E|f̂(P ;P1, . . . , Pm)− f(P )|. (6)

In Sections 5.2 and 5.3 we will derive upper bounds
for (5) and (6), respectively. Section 5.1 contains a
series of technical results needed in our proofs.

Throughout, we let K̂i = K
(
D(P̂i,P̂ )

h

)
, Ki =

K
(
D(Pi,P )

h

)
and εi = Ki− K̂i, for i = 1, . . . ,m. Note

that, for ease of readability, we have omitted the de-
pendence on h.

5.1 Technical Results

5.1.1 L1 Risk of Density Estimators

In this section we bound E[D(P, P̂ )|P ] = E[
∫
|p−p̂||P ],

the L1 risk of the density estimator p̂ of p, uniformly
over all P in D. To this end, suppose that ni ≥ n for

all i = 1, 2, . . . ,m + 1, and let bi = b = n−
1
k+2 . In

this case, the following lemma provides upper bound
on the L1 risk of the density estimator. Its proof can
be found in the supplementary material.

Lemma 2

E[D(P̂i, Pi)|Pi] ≤ C̄n−
1

2+k , (7)

E[D(P̂i, Pi)] ≤ C̄n−
1

2+k ,

where
C̄ = c0(c1 + c2), (8)

with c0, c1 and c1 constants specified in the proof.

Next, we show that the terms D(P̂i, Pi) are uniformly
bounded by a term of order O(h), with high probabil-
ity.

Lemma 3 With probably no smaller than 1 − (m +

1)e−
1
2n

k
2+k

, D(P̂i, Pi) <
rh
4 for all i = 1, . . . ,m+ 1.

Notice that by Assumption (A5), 1 − (m +

1)e−
1
2n

k
2+k → 1.

Proof. From McDiarmid’s inequality, for any ε > 0
we have that

P(||p̂i − pi||1 − E||p̂i − pi||1 > ε) ≤ e−nε2/2

(see, for example, section 2.4 of Devroye and Lugosi
[2001]). Thus,

P(||p̂i − pi||1 > E||p̂i − pi||1 + n−
1

2+k ) ≤ e− 1
2n

k
2+k

,

since nn−
2

2+k = n
k

2+k . This implies that

P( max
1≤i≤m+1

||p̂i − pi||1 > E||p̂i − pi||1 + n−
1

2+k ))

≤ (m+ 1)e−
1
2n

k
2+k → 0,

by assumption (A5). Therefore,

1− (m+ 1)e−
1
2n

k
2+k

≤ P( max
1≤i≤m+1

||p̂i − pi||1 ≤ E||p̂i − pi||1 + n−
1

2+k ))

≤ P( max
1≤i≤m+1

||p̂i − pi||1 ≤ (1 + c0(c1 + c2))n−
1

2+k ).

This implies that with

C∗ = (1 + c0(c1 + c2)) (9)
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and using assumption (A6), we have that

D(P̂i, Pi) ≤ C∗n−
1
k+2 ≤ rh

4
for all i (10)

on an event Ωm,n, where P(Ωcm,n) ≤ (m+ 1)e−
1
2n

k
2+k

.
Here Ωcm,n denotes the complement of Ωm,n. �

5.1.2 Other Lemmata

Throughout this section we will make use of the con-
stant C̄, defined in (8). In what follows, we will need
a few lemmas that we list below. Their proofs can be
found in the supplementary material.

The following lemma provides an upper bound on
P(
∑m
i=1Ki = 0) with the help of small ball proba-

bilities.

Lemma 4

P
( m∑
i=1

Ki = 0
)
≤ P

( m∑
i=1

Ki < K
)

=
1

em
E
[

1

ΦP (rh)

]
.

We will also need the following lemma.

Lemma 5

E
[

1∑
iKi

I{
∑
iKi≥K}

]
≤ 1 + 1/K

mK
E
[

1

ΦP (rh)

]
.

The following lemma provides an upper bound on |εi|.

Lemma 6 Assume that the kernel function K is Lips-
chitz continuous with Lipschitz constant LK . We have
that

|εi| ≤
LK
h

(D(P, P̂ ) +D(Pi, P̂i)).

By definition, |εi| = |Ki − K̂i| = |K(D(P,Pi)
h ) −

K(D(P̂ ,P̂i)
h )|, which is a deterministic function of ran-

dom variables P , Pi, P̂ , and P̂i. We will denote this
deterministic relationship as εi = εi(P, P̂ , Pi, P̂i). The
following lemma shows that for any κ > 0,

P
(∑

i

|εi(P, P̂ , Pi, P̂i)| < κ|{Pi}mi=1, P
)

can be lower bounded by a non-trivial quantity that
does not depend on P and {Pi}mi=1.

Lemma 7 For any κ > 0 we have that

P(
∑
i

|εi(P, P̂ , Pi, P̂i)| < κ|{Pi}mi=1, P ) ≥ η,

where η = η(κ, n,m) = 1− 2LKmC̄
hκ n−

1
2+k .

The following lemma provides an upper bound on the
expected value of

∑m
i=1 |εi|.

Lemma 8

E

[
m∑
i=1

|εi|
∣∣∣∣P, {Pi}mi=1

]
≤ 2LKC̄m

h
n−

1
2+k .

The next lemma shows that P
(∑m

i=1 K̂i < K
)

can be

upper bounded by a small quantity as well. We assume
that ni = n and bi = b for all i. Define

ζ = ζ(n,m) =
1

em
E

(
1

ΦP
(
rh
2

))+ (m+ 1)e−
1
2n

k
2+k

.

Lemma 9

P
( m∑
i=1

K̂i = 0
)
≤ P

( m∑
i=1

K̂i < K
)
≤ ζ.

5.2 Upper bound on Equation 5

Let ∆f̂ = |f̂(P̂ ; P̂1, . . . , P̂m)− f̂(P ;P1, . . . , Pm)|. Our

goal is to provide an upper bound on E[∆f̂ ].

Introduce the following events: E0 = {∑iKi = 0},
E1 = {0 < ∑

iKi < K}, E2 = {K ≤ ∑iKi}. Sim-

ilarly, Ê0 = {∑i K̂i = 0}, Ê1 = {0 <
∑
i K̂i <

K}, Ê2 = {K ≤ ∑
i K̂i}. Obviously, E[∆f̂ ] =∑2

k=0

∑2
l=0 E[∆f̂ IEkIÊl ].

Based on the sign of
∑
iKi and

∑
K̂i, there are four

different cases. (i) If
∑
iKi > 0 and

∑
i K̂i > 0, then

∆f̂ = |
∑
i YiK̂i∑
i K̂i

−
∑
i YiKi∑
iKi
|. (ii) If

∑
iKi > 0 and∑

i K̂i = 0, then ∆f̂ = |
∑
i YiKi∑
iKi
|. (iii) If

∑
iKi = 0

and
∑
i K̂i > 0, then ∆f̂ = |

∑
i YiK̂i∑
i K̂i
|, and finally (iv)

if
∑
iKi = 0 and

∑
i K̂i = 0, then ∆f̂ = 0. From this

it immediately follows that E[∆f̂ IE0
IÊ0

] = 0.

When
∑
iKi > 0,

∣∣∣∑i
YiKi∑
iKi

∣∣∣ ≤ BY . Therefore,

E

[∣∣∣∣∣∑
i

YiKi∑
iKi

∣∣∣∣∣ IÊ0
(IE1

+ IE2
)

]
≤ BY E

[
I{
∑
iKi>0∧

∑
i K̂i=0}

]
= BY P(

∑
i

Ki > 0,
∑
i

K̂i = 0)

≤ BY P(

m∑
i=1

K̂i = 0) ≤ BY ζ(n,m).

Similarly,

E

[∣∣∣∣∣∑
i

YiK̂i∑
i K̂i

∣∣∣∣∣ IE0
(IÊ1

+ IÊ2
)

]
≤ BY
em

∫
dP(P )

ΦP (rh)
.
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It is also easy to see that

E
[
∆f̂ IE1

(IÊ1
+ IÊ2

)
]

≤ E
[(∣∣∣∣∣∑

i

YiKi∑
iKi

∣∣∣∣∣+
∣∣∣∣∣∑
i

YiK̂i∑
i K̂i

∣∣∣∣∣
)
IE1(IÊ1

+ IÊ2
)

]
≤ E

[
2BY IE1(IÊ1

+ IÊ2
)

]
≤ 2BY E

[
IE1

]
= 2BY P(0 <

m∑
i=1

Ki < K) ≤ 2BY
em

∫
dP(P )

ΦP (rh)
.

Similarly,

E
[
∆f̂ IÊ1

(IE1
+ IE2

)
]
≤ 2BY P(0 <

m∑
i=1

K̂i < K)

≤ 2BY ζ(n,m).

All that left is to upper bound E
[
∆f̂ IE2

IÊ2

]
. The

next lemma provides an upper bound for this.

Lemma 10

E
[
∆f̂ IE2

IÊ2

]
≤ C1

1

h
E
[

1

ΦP (rh)

]
n−

1
2+k .

The proof can be found in the supplementary material.

Finally, putting the pieces together we obtain the fol-
lowing theorem.

Theorem 11

E|f̂(P̂ ; P̂1, . . . , P̂m)− f̂(P ;P1, . . . , Pm)|

≤ C1
1

h
E
[

1

ΦP (rh/2)

]
n−

1
2+k + C2

1

m
E
[

1

ΦP (rh/2)

]
+ (m+ 1)e−

1
2n

k
2+k

.

The proof can be found in the supplementary material.

5.3 Upper bound on Equation 6

In this section we show that under the above specified
conditions E|f̂(P ;P1, . . . , Pm) − f(P )| can be upper
bounded by

C1(hβ) + C2

(√
E
[

1

mΦP (rh/2)

])
+
C3

m
E
[

1

ΦP (rh/2)

]
,

where the expectation is with respect to the random
probability measure P in P.

We have to bound E|f̂(P ;P1, . . . , Pm) − f(P )|. Note
that Yi = f(Pi) + µi, and

E|f̂(P ;P1, . . . , Pm)− f(P )|

= E
∣∣∣∣∑i YiKi∑

iKi
I{∑iKi>0} − f(P )

∣∣∣∣
= E

∣∣∣∣∑i(f(Pi) + µi)Ki∑
iKi

I{∑iKi>0} − f(P )

∣∣∣∣
≤ E

[∣∣∣∣∑i(f(Pi)− f(P ))Ki∑
iKi

+

∑
i µiKi∑
iKi

∣∣∣∣ I{∑iKi>0}

]
+ E

[
|f(P )| I{∑iKi=0}

∣∣
≤ E

[∑
i |f(Pi)− f(P )|Ki∑

iKi
I{∑iKi>0}

]
+ E

[∣∣∣∣∑i µiKi∑
iKi

∣∣∣∣ I{∑iKi>0}

]
+ fmaxP(

∑
i

Ki = 0).

We will bound each of the three terms next. For the
first term, since f is Hölder-β we have

E
[∑

i |f(Pi)− f(P )|Ki∑
iKi

I{
∑
iKi>0}

]
≤ E

[∑
i LD(Pi, P )βKi∑

iKi
I{
∑
iKi>0}

]
≤ L (hR)β ,

where in the last step we used the fact that

D(Pi, P )βKi = D(Pi, P )βK

(
D(Pi, P )

h

)
≤ (hR)βKi,

since supp(K) ⊆ B(0, R).

We now bound the second term.

E
[∣∣∣∣∑i µiKi∑

iKi

∣∣∣∣ I{∑iKi>0}

]
= E

[∣∣∣∣∑i µiKi∑
iKi

∣∣∣∣ I{∑iKi≥K} +

∣∣∣∣∑i µiKi∑
iKi

∣∣∣∣ I{K>
∑
iKi>0}

]
≤ E

[∣∣∣∣∑i µiKi∑
iKi

∣∣∣∣ I{∑iKi≥K}

]
+BY P(K >

∑
i

Ki)

≤ E
[∣∣∣∣∑i µiKi∑

iKi

∣∣∣∣ I{∑iKi≥K}

]
+
BY

em

∫
dP(P )

ΦP (rh)
.

(A4) implies that P(|µi| ≤ BY ) = 1, i.e. BY is
a bound on the noise. The last step follows from
Lemma 4. For the first term in the above expression,
we use the following lemma. Its proof can be found in
the supplementary material.

Lemma 12

E
[∣∣∣∣∑i µiKi∑

iKi

∣∣∣∣ I{∑iKi≥K}

]
≤ BY

√
1 + 1/K

mK

∫
dP(P )

ΦP (rh)
.

Finally, we bound the third term using Lemma 4:

fmaxP(
∑
i

Ki = 0) ≤ fmax

em

∫
dP(P )

ΦP (rh)
.

Putting everything together, we have

E|f̂(P ;P1, . . . , Pm)− f(P )|
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≤ L(hR)β +BY

√
1 + 1/K

mK

∫
dP(P )

ΦP (Rh)

+
BY
em

∫
dP(P )

ΦP (rh)
+
fmax

em

∫
dP(P )

ΦP (rh)

≤ C1h
β + C2

√
1

m
E
[

1

ΦP (rh/2)

]
+
C3

m
E
[

1

ΦP (rh/2)

]
.

Note that ΦP (rh/2) ≤ ΦP (rh) ≤ ΦP (Rh).

6 Doubling Dimension

The upper bound on the risk in Theorem 1 depends

on the quantity E
[

1
ΦP (rh/2)

]
. In future work, we will

show that, without further assumptions, this quantity
can be quite large which leads to very slow rates of
convergence. This is because the covering number of
the class Hk(1) is huge. For this paper, we concentrate
on the more optimistic case where the support of P has
small effective dimension.

One way to measure effective dimension is to use the
doubling dimension. Following Kpotufe [2011], we say
that P is a doubling measure with effective dimension
d if, for every r > 0 and 0 < ε < 1,

P(B(s, r))

P(B(s, εr))
≤
(c
ε

)d
, ∀s. (11)

If d denotes the doubling dimension of measure P, then
the

√
E[1/(mΦP (rh/2))] term in Theorem 1 can be

upper bounded as follows:√
E
[

1

mΦP (rh/2)

]
=

√
E
[

1

m

ΦP (1)

ΦP (rh/2)

1

ΦP (1)

]

≤
√

1

m
C(rh/2)−dE

[
1

ΦP (1)

]
≤ C√

mhd
.

Note also that when mhd ≥ 1, then 1
mhd

≤ 1√
mhd

. In

this case, as a corollary of Theorem 1 and Assumptions
(A5)-(A6), we now have that

R(m,n) ≤ C1

hd+1n1/(k+2)
+ C2h

β + C3

√
1

mhd
, (12)

for appropriate constants C1, C2 and C3.

To derive the rates for the risk, we consider two sep-
arate cases, depending on whether the third term in
the right hand side of (12) dominates the first term or
not.

Thus first assume that√
1

mhd
= Ω

(
C1

hd+1n1/(k+2)

)
, (13)

so that the risk becomes, asymptotically,

O
(
hβ +

√
1

mhd

)
. The optimal choice for h is

then Θ
(
m−1/(2β+d)

)
, yielding a rate for the risk

R(m,n) = O
(
m−β/(2β+d)

)
.

Notice that this choice of h ensures that our assump-
tion (A6) is met, since in this case (13) implies that

n = Ω
(
m

β+d+1
2β+d (k+2)

)
,

from which we obtain that

h = Θ
(
m−

1
2β+d

)
= Ω

(
n−

1
(k+2)(β+d+1)

)
= Ω

(
n−

1
k+2

)
.

This rate is reasonable because if the number of sam-
ples per distribution n is large compared to the number
m of distributions, then the learning rate is limited by
the number of distributions m and is in fact precisely
the same as the rate of learning a standard β-Hölder
smooth regression function in d dimensions. That is,
the effect of not knowing the distributions P1, . . . , Pm
exactly and only having a finite sample from the dis-
tributions is negligible.

For the second case, suppose that√
1

mhd
= O

(
1

hd+1n1/(k+2)

)
. (14)

Then, R(m,n) = O
(

1
hd+1n1/(k+2) + hβ

)
, which im-

plies that the optimal choice for h is h =

Θ
(
n−

1
(k+2)(β+d+1)

)
, giving the rate

R(m,n) = O
(
n−

β
(k+2)(β+d+1)

)
.

Just like before, this choice of h does not violate as-
sumption (A6) since

h = Θ
(
n−

1
(k+2)(β+d+1)

)
= Ω

(
n−

1
k+2

)
.

Notice that, (14) also implies that

m = Ω
(
n

2β+d
(k+2)(β+d+1)

)
.

In this case, the rate is limited by the number of sam-
ples per distribution n, as expected. Notice that the
rate gets worse as the dimensionality of each distribu-
tion k grows and as the smoothness β of the regression
function deteriorates.

Remark. If there is no additive noise, i.e. µi = 0,

similar calculations yield that R(m,n) = O
(
m−

1
β+d

)
when n = Ω

(
m

β+d+1
(β+d)(k+2)

)
, and R(m,n) =

O
(
n−

β
(k+2)(β+d+1)

)
otherwise. While the rates seem

reasonable, establishing optimality of the rates by
demonstrating matching lower bounds is an open ques-
tion that we plan to investigate in future work.
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7 Numerical Illustrations

The following experiments serve as a proof of concept
to demonstrate the applicability of the distribution re-
gression estimator in Section 3. In these experiments,
we used triangle kernels (k(x) = 1− |x| if −1 ≤ x ≤ 1,
and 0 otherwise). We set all the n, n1, . . . , nm set
sizes and b, b1, . . . , bm bandwidths to the same values,
which will be specified below. In the first experiment,
we generated 325 sample sets from Beta(a, 3) distri-
butions where a was varied between [3, 20] randomly.
We constructed m = 250 sample sets for training, 25
for validation, and 50 for testing. Each sample set
contained n = 500 Beta(a, 3) distributed i.i.d. points.
Our task in this experiment was to learn the skewness

of Beta(a, b) distributions, f = 2(b−a)
√
a+b+1

(a+b+2)
√
ab

. We con-

sidered the noiseless case, i.e. µ was set to zero. Our
estimator of course is not aware of that the sample
sets are coming from beta distributions, and it does
not know the skewness function values in the test sets
either; its values are available only in the training and
validation sets.

To find appropriate bandwidths b and h, we sampled
100 i.i.d. randomly and uniformly distributed values
in [0,1], evaluated the MSE performance of the dis-
tribution regression estimator on the validation test
using these bandwidths parameters, and then chose
the bandwidth parameters that lead to the best values
on the validation test. To estimate the L2 distances
between p̂i and p, we calculated their estimated val-
ues in 4096 points on a uniformly distributed grid be-
tween the min and max values in the sample sets, and
then estimated the integral

∫
(p(x)− p̂i(x))2d(x) with

the rectangle method for numerical integration. Fig-
ure 2(a) displays the predicted values for the 50 test
sample sets, and we also show the true values of the
skewness functions. As we can see the true and the
estimated values are very close to each other.

In the next experiment, our task was to learn the en-
tropy of Gaussian distributions. We chose a 2× 2 co-
variance matrix Σ = AAT , where A ∈ R2×2, and Aij
was randomly selected from the uniform distribution
U [0, 1]. Just as in the previous experiments we con-
structed 325 sample sets from {N (0, R(αi)Σ

1/2)}325
i=1.

Where R(αi) is a 2d rotation matrix with rotation
angle αi = iπ/325. From each N (0, R(αi)Σ

1/2) dis-
tribution we sampled 500 2-dimensional i.i.d. points.
Similarly to the previous experiment, 250 points was
used for training, 25 for selecting appropriate band-
width parameters, and 50 for training. Our goal
was to learn the entropy of the first marginal dis-
tribution: f = 1

2 ln(2πeσ2), where σ2 = M1,1 and
M = R(αi)ΣR

T (αi) ∈ R2×2. µ was zero in this ex-
periment as well. Figure 2(b) displays the learned en-

tropies of the 50 test sample sets. The true and the
estimated values are close to each other in this exper-
iment as well.
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Figure 2: (a) Learned skewness of Beta(a, 3) distribu-
tion. Axis x: parameter a in [3, 20]. Axis y: skewness
of Beta(a, 3). (b) Learned entropy of a 1d marginal
distribution of a rotated 2d Gaussian distribution.
Axes x: rotation angle in [0, π]. Axis y: entropy.

8 Discussion and Conclusion

We have presented an estimator for distribution re-
gression which is distribution-free in the sense that the
estimator makes no strong distributional assumptions
on the error variables. We derived upper bounds on
the risk of the estimator and, in particular, we ana-
lyzed the case with a finite doubling dimension.

We note that our rates are faster than the logarith-
mic rates that are sometimes obtained in measurement
error nonparametric regression models as in Fan and
Truong [1993]. The reason is that the logarithmic rates
occur when the measurement error is Gaussian. Our
measurement error corresponds to ||p̂i − pi|| which is
not Gaussian for finite ni and which decreases when ni
increases. In the standard measurement error model,
the error is O(1) and is not decreasing.

In future work, we will prove lower bounds which show
that, without further assumptions (such as assump-
tions about the doubling dimension), the rates can be
very slow. We will also verify if the rates in the dou-
bling dimension setting are tight or not. Also, we plan
to investigate other estimators such as k-nn estimators
and RKHS estimators.
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