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Abstract

Predictive modeling of functional neuroimag-
ing data has become an important tool for
analyzing cognitive structures in the brain.
Brain images are high-dimensional and ex-
hibit large correlations, and imaging experi-
ments provide a limited number of samples.
Therefore, capturing the inherent statistical
properties of the imaging data is critical for
robust inference. Previous methods tackle
this problem by exploiting either spatial spar-
sity or smoothness, which does not fully ex-
ploit the structure in the data. Here we de-
velop a flexible, hierarchical model designed
to simultaneously capture spatial block spar-
sity and smoothness in neuroimaging data.
We exploit a function domain representation
for the high-dimensional small-sample data
and develop efficient inference, parameter es-
timation, and prediction procedures. Em-
pirical results with simulated and real neu-
roimaging data suggest that simultaneously
capturing the block sparsity and smoothness
properties can significantly improve struc-
ture recovery and predictive modeling per-
formance.

1 Introduction

Functional magnetic resonance imaging (fMRI) is an
important tool for non-invasive study of brain activity.
Most fMRI studies involve measurements of blood oxy-
genation (which is sensitive to the amount of local neu-
ronal activity) while the participant is presented with
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a stimulus or cognitive task. Neuroimaging signals are
then analyzed to identify the brain regions that exhibit
a systematic response to the stimulation. This can be
used to infer the functional properties of those brain
regions. Estimating statistically consistent models for
fMRI data is a challenging task. Typical experimen-
tal data consist of brain volumes represented by tens
of thousands of noisy and highly correlated voxels, yet
practical constraints generally limit the number of par-
ticipants to fewer than 100 per experiment.

Predictive modeling (also known as “brain reading” or
“reverse inference”) has become an increasingly popu-
lar approach for studying fMRI data (Norman et al.,
2006; Pereira et al., 2009; Poldrack, 2011). This ap-
proach involves decoding of the stimulus or task us-
ing features extracted from the neuroimaging data.
Many different machine learning techniques have been
applied to predictive modeling of fMRI data, includ-
ing support vector machines (Cox, 2003), Gaussian
naive Bayes (Mitchell et al., 2004) and neural net-
works (Hanson et al., 2004; Poldrack et al., 2009). The
learned model parameters can also be used to infer as-
sociations between groups of voxels conditioned on the
stimulus (Poldrack et al., 2009). Linear models are the
preferred approach in this case, as the model weights
are directly related to the image features (voxels). In-
terpretability and structure estimation are further sim-
plified when the linear model returns sparse weights.

Various sparse regularizers have been applied to func-
tional neuroimaging data to improve structure recov-
ery (Carroll et al., 2009; Varoquaux et al., 2012).
These models have had limited success due to the
small number of samples and the high dimensions of
the data. In particular, L1 regularized models typi-
cally select only a few features (voxels), and the se-
lected subset of voxels can vary widely based on small
changes in the hyperparameters or the data (Carroll
et al., 2009). The high degree of correlation leads to
further degeneration of the structure recovery and pre-
dictive performance. Similar empirical properties have
been observed with other sparse modeling techniques
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(Varoquaux et al., 2012). This observed behavior is
consistent with the theoretical conditions for L1 regu-
larized structure recovery (Zhao and Yu, 2006; Wain-
wright, 2009).

Here we show that statistical regularities in brain im-
ages can be exploited to improve estimation perfor-
mance. Two properties are of particular interest: spa-
tial block sparsity and spatial smoothness. Spatial
sparsity results from the fact that the brain responds
selectively, so that only small regions are activated
during a particular task. Spatial smoothness, on the
other hand, results from the fact that the brain re-
gions activated extend across many (usually tens to
hundreds of) voxels. Sparse blocks may not be located
in close spatial proximity as different tasks or stimuli
may be processed in very different brain regions (Pol-
drack, 2011). Sparse blocks may also be separated due
to bilateral activation patterns for certain tasks. Much
of the prior work in the domain of predictive modeling
has focused on the sparse structure, whereas the spa-
tial smoothness properties have mostly been ignored.

This paper introduces a novel prior distribution to si-
multaneously capture the spatial block sparsity and
spatial smoothness structure of fMRI data. Our ap-
proach follows methods for structured predictive mod-
eling using empirical Bayes (or maximum marginal
likelihood) inference (e.g., Wipf and Nagarajan (2008);
Sahani and Linden (2002); Park and Pillow (2011)).
Our method builds directly on Automatic Locality
Determination (ALD), which has a prior distribution
that simultaneously captures sparsity and smoothness
(Park and Pillow, 2011).

Our work differs from ALD in several respects: (i) we
model several spatial clusters instead of a single spatial
cluster; (ii) we apply the proposed prior model to both
regression and classification problems; (iii) we propose
an efficient representation to scale the model to high
dimensional functional neuroimaging data.

The contributions of this paper are as follows:

• We propose a novel prior that simultaneously cap-
tures spatial block sparsity and smoothness.

• We develop efficient inference, parameter es-
timation, and prediction procedures for high-
dimensional small-sample data.

• We present empirical results on simulated and real
functional neuroimaging data. Our experiments
show the effectiveness of our approach for predic-
tive modeling and structure estimation.

We begin the discussion with an overview of the gener-
ative modeling approach in Section 2 and introduce the

novel prior in Section 3. We discuss inference and pa-
rameter estimation applied to regression in Section 4
and classification in Section 5. Experimental results
on synthetic and real brain data are presented in Sec-
tion 6.

Notation : N
(
µ, σ2

)
represents a Gaussian distribu-

tion with mean µ and variance σ2. We represent matri-
ces by boldface capital letters and vectors by boldface
small letters e.g. M ,m respectively. M = diag(m)
returns a diagonal M matrix with diagonal elements
given by M i,i = mi. The determinant of a matrix M
is given by |M |, and tr(M) represents the trace of the
matrix M .

2 Generative model

We study whole brain images collected from subjects
engaged in a controlled experiment. Let x ∈ RD be a
feature vector representing the whole brain voxel ac-
tivation levels collected into a D dimensional vector.
The stimulus is represented by a variable y. This pa-
per will focus on cases where y is real valued (regres-
sion), or y is discrete (classification). With N training
examples, let X = [x>1 |x>2 | . . . |x>N ]> ∈ RN×D repre-
sent the concatenated feature matrix, and let Θ rep-
resent the model hyperparameters. Predictive mod-
eling involves estimating the conditional distribution
p(y|x,D,Θ) where data is denoted by D.

We assume that the stimuli are generated from a hi-
erarchical Bayesian model. Let the distribution of the
stimuli be given by p(y|w,x, ξ) where ξ are the likeli-
hood model hyperparameters and w ∈ RD is a weight
vector. The functional relationship between the voxel
activations and the stimuli is assumed to be linear.
The weights of this linear function are generated from
a zero mean multivariate Gaussian distribution with
covariance matrix C ∈ RD×D. The linear model and
prior are given by:

f(x) = w>x, p(w|θ) = N (0,C). (1)

where θ represent hyperparameters that determine the
covariance structure. We have suppressed the depen-
dence of C on θ to simplify the notation. Our objec-
tive is to parametrize this covariance matrix to capture
prior smoothness and sparsity assumptions. We refer
to this method as Bayesian structure learning (BSL).
Our approach consists of three main tasks:

1. Hyperparameter estimation using the parametric
empirical Bayes approach.

2. Stimulus prediction for held-out images.

3. Structure estimation using a point estimate of
weight vector.
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Hyperparameter estimation: The set of model hy-
perparameters given by Θ = {ξ,θ} are learned us-
ing the parametric evidence optimization approach
(Casella, 1985; Morris, 1983; Bishop, 2006). Evidence
optimization (also known as type-II maximum likeli-
hood), is a general procedure for estimating the pa-
rameters of the prior distribution in a hierarchical
Bayesian model by maximizing the marginal likelihood
of the observed data. We can compute the evidence by
integrating out the model parameters w as:

p(y|X,Θ) =

∫
p(y|w,X, ξ)p(w|θ)dw.

The resulting maximizer is the maximum likelihood
estimate Θ̂ml.

Stimulus prediction: The accuracy of the predictive
model is estimated by computing predictions of held-
out brain images. We estimate the predictive distri-
bution of the target stimuli given by:

p(y∗|x∗,D,Θ) =

∫
p(y∗|x∗,w, ξ)p(w|θ,D)dw (2)

where p(w|θ,D) is the posterior distribution of the
parameters given the training data D = {y,X}. The
predictive distribution is applied to held-out brain im-
ages. Prediction performance provides evidence of ac-
curate modeling and is generally useful for model val-
idation.

Structure estimation: In addition to an accurate
prediction of the stimuli, the weights of the linear
mapping may be analyzed to infer stimulus dependent
functional associations. This requires an appropriate
point estimate. We compute the maximum a posteri-
ori (MAP) estimate of the weight vector w by max-
imizing its (unnormalized) log posterior distribution

conditioned on the estimated hyperparameters Θ̂ml.
The estimated model parameter also specifies the re-
covered support. Ignoring constants independent of
w, the optimal parameter wmap is computed as the
solution of:

arg min
w

[
− log p(y|w,X, ξ) + 1

2w
>C−1w

]
. (3)

3 Prior covariance design

A smooth signal is characterized by its frequency con-
tent. In particular, the power of a smooth signal is con-
centrated near the zero frequency. We apply this intu-
ition by designing a prior distribution that encourages
low frequency weight vectors. Let x ∈ RD be the three
dimensional tensor containing the brain volume where
D = Dx×Dy×Dz. Each voxel is sampled on a regular
three dimensional grid. Hence, we can measure the fre-
quency content of w ∈ RD using the discrete Fourier

transform (DFT) (Oppenheim and Schafer, 1989). Let
w = DFT(w) represent the three dimensional discrete
Fourier transform of w with the resulting discrete fre-
quency spectrum w ∈ RD. The weight vector w is
considered smooth if the signal power of w = DFT(w)
is concentrated near zero.

Let {el ∈ R3} represent the index locations in the
frequency domain corresponding to the DFT of a three
dimensional spatial signal i.e. el = 0 corresponds to
the zero frequency. As the signal is regularly sampled,
el are on regular three dimensional grid. We encourage
smooth weights with the use of a prior distribution
w ∼ N (0,G). The prior covariance matrixG ∈ RD×D

is diagonal with entries:

Gl,l = exp
(
− 1

2e
>
l Ψ−1el − ρ

)
,

where Ψ ∈ R3×3 is a diagonal scaling matrix and ρ ∈ R
is a scaling parameter. The discrete Fourier transform
of a real signal is symmetric around the origin (Oppen-
heim and Schafer, 1989). We use a diagonal scaling to
ensure that this condition is satisfied. The result is
an dimension-wise independent, symmetric prior dis-
tribution for w where the prior variance decreases ex-
ponentially in proportion to the Mahalanobis distance
of the frequency index from the zero frequency.

The prior assumptions on the frequency domain sig-
nal w correspond to prior assumptions on the spatial
weight vectorw which can be recovered in closed form.
Recall that the DFT is a linear operator (Oppenheim
and Schafer, 1989). Let B ∈ RD×D be the matrix rep-
resentation of the the 3-dimensional discrete Fourier
transform so w = Bw = DFT(w). Similarly, the in-
verse 3-dimensional discrete Fourier transform (IDFT)
operator is given by the Hermitian transpose of B so
may compute w = B>w = IDFT(w). We can com-
pute the marginal distribution of w by integrating out
the prior w ∼ N (0,G). The resulting prior distribu-
tion on the spatial weight vector is given by:

w ∼ N (0,B>GB).

Next, we augment the prior covariance matrix to cap-
ture the block spatial sparsity properties of the signal.
Spatial blocks are modeled using a sum of C spatial
clusters, where each cluster measures spatial locality.
Let {zd} represent the three dimensional sampling grid
so each location d is associated with the corresponding
voxel. Each cluster is defined by proximity to a central
vector κc ∈ R3. The intuition is that voxels near κc

are considered active in the cluster c, while voxels far
away are considered inactive. The sparsity promoting
function for each cluster c at location d is given by:

sc(d) = γc exp
(
− 1

2 (zd − κc)
>Ω−1c (zd − κc)

)
,
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Figure 1: Visualization of spatial block sparsity.
An example of 1-dimensional weight vector w with
estimated spatial prior clusters {sc}. We used four
clusters in the prior. Two of them {sc1, sc2} specify
the support of w, and the rest {sc3, sc4} were pruned
out.

where Ωc ∈ R3×3 is a symmetric positive definite ma-
trix and γc ∈ R+ is a positive weight. The sparsity pro-
moting functions are collected into a vector sc ∈ RD.

The clusters are accumulated into a single spatial spar-
sity promoting function:

s(d) =

C∑
c=1

sc(d)

=

C∑
c=1

γc exp
(
− 1

2 (zd − κc)
>Ω−1c (zd − κc)

)
,

and collected into a vector s ∈ RD. This modeling ap-
proach allows us to capture arbitrarily shaped blocks
as a weighted sum of the elliptical clusters. Blocks
that are not utilized can be identified as blocks with
γc = 0 and pruned. Hence C is an upper bound on
the number of spatial blocks explicitly captured by the
prior. Collectively, {sc} select the support of w (see
Fig. 1). The spatial cluster centers κc are constrained
by the boundaries of the cuboid. We also set s(d) = 0
for all voxels outside the brain volume. This will en-
sure that the estimated weight vector corresponding
to these voxels remains zero.

We now combine the spatial sparsity promoting func-
tions with the prior covariance matrix for spatial
smoothness. We define a diagonal matrix S =
diag(s

1
2 ) ∈ RD×D that imposes locality in space on

the prior covariance. The modified prior covariance
matrix C ∈ RD×D is now given by:

C = SB>GBS. (4)

Our proposed design combines the notions of spatial
block sparsity and spatial smoothness into a single
prior covariance matrix. With a fixed number of clus-

estimated 

estimated in Fourier space

estimated 

Figure 2: Combining spatial block sparsity and
spatial smoothness. Top: The true 2-dimensional
weight vector w (left) and the estimated spatial block
sparsity matrix S (right). Bottom: w = DFT(w) in
Fourier space (left) and the estimated frequency sparse
prior variance G (right). Right: The estimated weight
vector wmap using the proposed prior covariance.

ters C, the covariance matrix is defined by the hyper-
parameters θ = {Ψ, ρ, {γc,κc,Ωc}Cc=1}.

The support of the weight vector w is determined by
the structure of the covariance matrix C through the
sparsity of the matrix S. Elements of the weight vec-
torw with zero prior covariance will remain sparse. To
illustrate this effect, suppose the diagonals of S con-
tain t non-zero elements, then the rows and columns
of C corresponding to the u = D − t sparse indexes
are zero. Without loss of generality, there exists a per-
mutation matrix P ∈ RD×D such that the covariance
matrix can be partitioned as:

P>CP =

(
C̃ 0t×u

0u×t 0u×u

)
,

where C̃ ∈ Rt×t is the non-zero sub-matrix of C, and
0 are all zero matrices of the appropriate size. Hence,
the Gaussian prior on w̃ = P>w used to compute the
MAP estimate Eq. 3 is given as:

w̃>(P>CP )−1w̃ = w̃>

(
C̃
−1

0t×u
0u×t 0−1u×u

)
w̃.

The prior evaluates to infinity unless w = 0 for all in-
dexes corresponding to the zero entries in the diagonal
of S. In practice, this can be implemented by pruning
all the dimensions of w corresponding to zero spatial
weights before the MAP estimation procedure.

Efficient implementation of B operator: Al-
though the discrete Fourier transpose matrix B is a
structured matrix, its storage storage costs are of or-
der O(D2), and transformation to the frequency do-
main using a matrix vector product has a computa-
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tional cost of costs O(D2). This cost may be pro-
hibitive as the DFT transformation is utilized in the
inner loop of the evidence optimization and point es-
timation of the weight vector. These costs can be
significantly reduced by exploiting the equivalence be-
tween theB and the three dimensional discrete Fourier
transform DFT(·). Using this approach, B incurs no
storage costs, and transformation to the frequency do-
main requires computation costs of O(D logD). For
instance, the covariance matrix is involved in hyper-
parameter estimation via quadratic terms of the form
U>CV = U>SB>GBSV . This can implemented
by (i) spatial scaling: spatial scaling: u = diag(S)�U
and v = diag(S)� V , (ii) discrete Fourier transform:
u = DFT(u) and v = DFT(v), and (iii) weighted in-
ner product: u>Gv, where diag(S) �U = SU corre-
sponds to the product of each element of diag(S) with
the corresponding row of U . The result can be com-
puted even more efficiently by using recent algorithms
for sparse fast Fourier transforms (Hassanieh et al.,
2012), exploiting the frequency sparsity recovered by
the covariance matrix. This further extension is left
for future work.

3.1 Efficient representation with high
dimensions

In this high dimensional scenario, the size of w and
C render näıve implementation computationally in-
feasible. On the other hand, typical neuroimaging
datasets contain a relatively small number of sam-
ples. We exploit this small sample property to improve
the computational efficiency of representation and ev-
idence optimization. Recall that that the relationship
between the voxel response and the stimulus is given
by the linear function f(x) = w>x and the weight
vector is drawn from a Gaussian distribution Eq. 1.
Let f = [f(x1), f(x2), . . . , f(xN )]> ∈ RN . The prior
distribution of f can be recovered in closed form by
integrating out the weight vector. This results in an
equivalent representation of the generative model in
the function space:

f ∼ N (0,K), K = XCX>. (5)

The reader may notice the similarity to the Gaus-
sian process prior (c.f. chapter 2.1 of Rasmussen and
Williams (2005)). In fact, Eq. 5 is equivalent to a
Gaussian process prior over linear functions with mean
0 and covariance function K(xi,xj) = x>i Cxj . This
function space representation significantly reduces the
complexity of inference when N � D. For instance,
the computational complexity of inference in regres-
sion is reduced from O(D3) to O(N3), and storage
requirements for the covariance can be reduced from
O(D2) to O(N2).

w

θθ

yn

ξξ

N

xn

f

θθ

yn

ξξ

N

X

Figure 3: Equivalent representations of generative
model in the weight space (left) and the dual function
space (right). θ are parameters of the prior distribu-
tion, and ξ are likelihood model parameters.

4 BSL for regression

The continuous valued stimuli are modeled as inde-
pendent Gaussian distributed variables p(y|x, ξ) =
N (f(x), σ2). Without loss of generality, we will as-
sume that the data is normalized so the stimuli are
zero mean. Hence, the likelihood hyperparameters ξ
represent the observed noise variance σ2. Let y =
[y1, y2, . . . , yN ]> ∈ RN represent the N training stim-
uli collected into a vector. In this section, we summa-
rize the procedures for evidence optimization, stimuli
prediction and weight estimation.

4.1 Hyperparameter estimation

As the prior distribution and the likelihood are both
Gaussian, the prior Eq. 5 can be integrated out in
closed form. The result is the evidence:

p(y|X,Θ) = N (0,Ky).

where Ky = K + σ2I. We estimate the model hyper-
parameters by maximizing the corresponding marginal
log likelihood which is given by:

log p(y|X,Θ) = −1

2
y>K−1y y− 1

2
log |Ky|−

N

2
log 2π.

The log evidence can be optimized efficiently using
gradient based direct optimization techniques (Ras-
mussen and Williams, 2005).

4.2 Predictive distribution

The predictive distribution is computed by marginal-
izing out the model parameters with respect to their
posterior distribution. The posterior distribution of
the noise free response f∗ = f(x∗) can be computed
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in closed form (Rasmussen and Williams, 2005) as:

p(f∗|x∗,D) = N (µ,Σ) (6)

µ = x>∗ CX
>(K + σ2I)−1y

Σ = x>∗ Cx∗ + x>∗ CX
>(K + σ2I)−1XCx∗,

where D = {y,X} represents the training data. We
use the mean of the posterior distribution a point es-
timate of the model prediction.

4.3 Point estimate of weight vector

Given the trained hyperparameters, the point estimate
that maximizes the posterior distribution is equal to
the posterior mean of the weight vector. The posterior
distribution of the weight vector can be computed in
closed form as:

p(w|D,Θ) = N (σ2ΣX>y,Σ) (7)

where Σ = (C−1 + σ2X>X)−1. Note that only the
mean of the posterior distribution is required for the
point estimate. Yet this closed form may be compu-
tationally infeasible with high dimensional data. A
scalable alternative approach is direct maximization of
the (unnormalized) posterior distribution as described
in Eq. 3. Ignoring constant terms, the resulting opti-
mization is given by:

wmap = arg min
w

[
‖y −Xw‖22 + σ2w>C−1w

]
. (8)

This is a regularized least squares problem and can
be solved efficiently using standard optimization tech-
niques.

5 BSL for classification

We employ a classification approach when the target
stimuli consists of a set of discrete items. Let J be
the total number of stimuli classes and let yjn be an
indicator variable with yjn = 1 if the nth image is from
class j, and yjn = 0 otherwise. These are collected
into the vector yj = [yj1, . . . , y

j
N ]>, and the combined

stimuli is given by y = [(y1)>, . . . , (yJ)>]>. We use a
separate linear function for each class so the resulting
weights can be interpreted directly as a discriminative
stimulus signature.

The linear function response for each class is com-
puted as f j = [f j1 , . . . , f

j
N ]> ∈ RN where f jn = f j(xn)

and the combined function vector is given by f =
[(f1)>, . . . , (fJ)>]>. Each class function is drawn
from a multivariate Gaussian prior f j ∼ N (0,Kj)
a with a class specific covariance Kj = XCjX> as
described in Eq. 5. We assume that the prior distri-
butions of the class functions are uncorrelated, Hence,

we can define the prior distribution of the combined
vector as f ∼ N (0,K), where K is a block diagonal
matrix with blocks Kj .

The probability of nth stimulus belonging to jth class
class is defined by the softmax:

p(yjn|{f jn}Jj=1) = πj
n =

exp(f jn)∑J
l=1 exp(f ln)

. (9)

Assuming that each of the N targets {yjn}Jj=1 are con-
ditionally independent, the log-likelihood of the data
is given by:

L(f) = log p(y|f) = yTf −
N∑

n=1

log

(
J∑

l=1

exp(f ln)

)
.

(10)

5.1 Hyperparameter estimation

The evidence function is not available in closed form.
We employ an approximate evidence approach based
on an approximate posterior. The posterior distri-
bution of the latent functions do not have a closed
form expression. We estimate an approximate pos-
terior distribution using the Laplace approximation
(Rasmussen and Williams, 2005; Park et al., 2011)
based on a Gaussian approximation to the posterior
distribution at the mode. The approximate posterior
takes the form:

p(f |D) ≈ N (fmap,Λ
−1) (11)

where fmap is the MAP parameter estimate. The
fmap is computed by maximizing the unnormalized
log-posterior:

Φ(f) = L(f)− 1

2
fTK−1f − 1

2
log |2πK|. (12)

The posterior covariance is given by the Hessian at
fmap computed as:

Λ−1 = ∇∇Φ(f) = −K−1 −H.

where H = − ∂2

∂f2L(f) = diag(π)−ΠΠT , and Π is the

matrix of size Jn×n formed by vertically stacking the
matrices diag(πj).

Finally, we optimize the evidence at f = fmap. This
is given by:

p(y|θ) =
p(y|f)p(f |θ)

p(f |y,θ)
≈

exp
(
L(f)

)
N (f |0,K)

cN(f |fmap,Λ
−1)

.

The resulting evidence optimization follows the ap-
proach outlined in Rasmussen and Williams (2005).
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L2
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Figure 4: 2D simulated example for 3-class classification A: Prediction accuracy, and correlation between
true weight vectors and estimates obtained by L1, L2, elastic net regularization methods, and BSL. B: True
weight vectors for each class, and the estimates obtained by each method using 100 and 400 training data points.
BSL outperforms L1, L2 and elastic net regularized models both in terms of classification accuracy and support
recovery.

5.2 Predictive distribution

The posterior predictive distribution is analytically in-
tractable, so employ the approximate Gaussian poste-
rior Eq. 11. We approximate the posterior predictive
distribution for class j as:

p(f j∗ |x∗,D) = N (µ,Σ) (13)

µ = x>∗ C
jX>(Kj)−1f j

map

Σ = diag(k(x∗,x∗))−Q>∗ (K +H−1)−1Q∗,

where k(x∗,x∗) is the vector of covariances with the
jth element given by x>∗ Cx∗ and Q∗ is the (JN × J)
matrix:

Q∗ =


X>C1x>∗ 0 · · · 0

0 X>C2x>∗ · · · 0
...

...
. . .

...

0 0 · · · X>CJx>∗

 .

Given the predictive distribution Eq. 13, the predictive
class probabilities can be computed using the Monte
Carlo sampling approach as shown in (Rasmussen and
Williams, 2005).

5.3 Point estimate of weight vector

The point estimate of the weight vector is computed as
the vector that maximizes the unnormalized log pos-
terior distribution log p(w|D,Θ). Ignoring constant
terms, the resulting wmap ∈ RDJ is given by:

arg min
w

[
yTf −

N∑
n=1

log

(
J∑

l=1

exp(f ln)

)
+w>C−1w

]
.

(14)
We have retained the linear function representation
of the likelihood for compactness, however, note that

the optimization problem is posed in the weight space.
This optimization corresponds to a regularized gener-
alized linear model and can be solved efficiently using
standard optimization techniques.

6 Experimental results

We present experimental results comparing the pro-
posed Bayesian structured learning (BSL) model to
regularized generalized linear models for predictive
modeling.

Simulated data

We first tested our method on simulated data in a 3-
class classification setting. We generated N random
2-dimensional images where each pixel was generated
independently from the standard normal distribution
N (0, 1). We also generated a set of weight vectors as
shown in Fig. 4B (first column). The stimuli responses
were generated using a multinomial distribution Eq. 9
and hard thresholded into one of three classes. The
dimensionality of each weight vector was 20 by 20, re-
sulting in a D = 1200 parameter space. We first ex-
amined the prediction accuracy of estimates obtained
by L1, L2, elastic net regularization (Zou and Hastie,
2005), and our method (BSL). The average prediction
accuracy (from 10 independent repetitions) is shown
in Fig. 4A (left) as a function of the number of train-
ing samples. The estimated weight vectors from each
method are shown in Fig. 4B, (right) using 100 and
400 data points, respectively. We computed the corre-
lation coefficients between the true weight vector and
estimates obtained by each method to test the support
recovery performance. These are shown in Fig. 4A,
(right). As shown in the presented results, our method
outperforms other methods in terms of prediction ac-
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BSL
(mse: 0.90)

Elastic net
(0.96)

L1
(0.98)

Randomized
ward lasso
(1.19)

Figure 5: Support (in red) of the estimated weights from each method using real fMRI data. Each
row shows slices of the brain from the top of the skull. The magnitude of the weight vector is not shown.
First row: Estimate obtained by BSL. Second row: Estimate obtained by elastic net regularization. Third row:
Estimate obtained by L1 regularization. Fourth row: Estimate obtained by randomized ward lasso. Numbers
in parenthesis are the 10-fold cross validation average mean squared error from each method. BSL outperforms
other methods in terms of mean squared error and recovers an interpretable support.

curacy as well as support recovery.

Functional neuroimaging data

fMRI data were collected from 126 participants while
the subjects performed a stop-signal task (Aron and
Poldrack, 2006). For each subject, contrast images
were computed for “go” trials and successful “stop”
trials using a general linear model with FMRIB Soft-
ware Library (FSL), and these contrast images were
used for regression against estimated stop-signal reac-
tion times. The fMRI data is was down-sampled to
22 × 27 × 22 voxels using the flirt applyXfm tool
(Alpert et al., 1996).

Fig. 5 shows the recovered support from the proposed
BSL, L1 regularized regression, elastic net regularized
regression, and randomized ward lasso using hierar-
chical spatial clustering (Varoquaux et al., 2012). We
tested each method using 10-fold cross-validation and
computed the mean square error (MSE) performance
averaged over the 10 folds. The hyperparameters for
L1, L2, elastic net, and randomized ward lasso were
computed using an inner cross-validation loop. In
BSL, we initialized the hyperparameters from the L2
estimate to avoid some of the issues with local minima.
For spatial sparsity, 20 clusters were assumed based on
domain expertise, and unused blocks were pruned out
automatically during the hyperparameter estimation.

The results from L2 regularized regression are not
shown as the returned weights had full support, hence
direct interpretation of the weight vector was infeasi-
ble. In addition to the presented results, we tested the

relevance vector machine (Tipping, 2001) (6.6%) and
stability selection lasso (Meinshausen and Bhlmann,
2010) (6.7%), relative increase in MSE compared to
BSL are given in parenthesis. The corresponding im-
ages are not shown due to space constraints. We also
tested the special cases of BSL with block sparsity
alone (2.6%) and spatial correlation alone (3.2%).

The regions identified by BSL encompass a set of re-
gions (including right prefrontal cortex, anterior in-
sula, basal ganglia, and lateral temporal cortex) that
have been commonly identified as being involved in
the stop signal task using univariate analyses. In par-
ticular, the right prefrontal region that is detected by
BSL but missed by the other methods has been widely
noted to be involved in this task (Aron et al., 2004).

7 Conclusion

We develop a novel Bayesian model for structured pre-
dictive modeling of functional neuroimaging data, de-
signed to jointly capture the block spatial sparsity and
spatial smoothness properties of the neural signal. We
also propose an efficient model representation for the
small sample high dimensional domain and develop ef-
ficient inference, parameter estimation and prediction
procedures. BSL is applied to simulated data and real
fMRI data, and it is shown to outperform alternative
models that focus on spatial sparsity alone.
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