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Abstract

We consider a reinforcement learning set-
ting where the learner also has to deal
with the problem of finding a suitable state-
representation function from a given set of
models. This has to be done while interact-
ing with the environment in an online fash-
ion (no resets), and the goal is to have small
regret with respect to any Markov model in
the set. For this setting, recently the BLB al-
gorithm has been proposed, which achieves
regret of order T 2/3, provided that the given
set of models is finite. Our first contribu-
tion is to extend this result to a countably
infinite set of models. Moreover, the BLB re-
gret bound suffers from an additive term that
can be exponential in the diameter of the
MDP involved, since the diameter has to be
guessed. The algorithm we propose avoids
guessing the diameter, thus improving the re-
gret bound.

1 Introduction

Motivation. In Reinforcement Learning (RL) an
agent has to learn a task through interactions with
the environment. The most well-studied fundamental
framework for this problem is that of Markov deci-
sion processes (MDP). However, in reality most envi-
ronments are non-Markovian. This poses a challeng-
ing problem: how to construct an efficient and generic
agent that can deal with the non-Markovian property
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of such environments. Recently, [MMR11] introduced
an algorithm called BLB (Best Lower Bound), whose
regret is of order T 2/3 with respect to the optimal
policy on a Markov state representation in the model
set. However, this bound holds only under the as-
sumption that the set of models (or state represen-
tation functions) is finite and contains at least one
Markov model. Note that each model here is a state-
representation function that maps histories to repre-
sentative states; at time t, a model φ maps history ht
to state st = φ(ht); we say φ is a Markov model if
the process (st, rt, at) is Markov for any time t. The
second limitation of BLB lies in its use of a function for
guessing the diameter of Markov models. The restric-
tion to a finite set of models in BLB might hinder its
flexibility in solving interesting RL tasks, while the de-
pendence on the diameter-guessing function costs an
additive term that can be exponential in the diam-
eter in the overall regret. We propose an algorithm
named IBLB (Infinite Best Lower Bound) that over-
comes these two limitations of BLB. IBLB can be seen
as a step towards solving the ultimate challenging con-
tinuous general RL (GRL) problem where observation
and action spaces are continuous, and the environ-
ment’s underlying model and states are both inacces-
sible.

Contributions. The contributions of this work are
as follows: (1) the IBLB algorithm that can deal with
a countably infinite set of models, and (2), unlike BLB,
does not have the additive term that is exponential
in the diameter of the MDP against which the per-
formance of our algorithm is assessed; (3) the regret
bound for IBLB is of order T 2/3 with respect to any
algorithm that knows any of the Markov models. Fi-
nally, (4) we derive two lemmas for (4a) a model gener-

1 This work was done while the second author was working
at Montanuniversität Leoben.
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ation setting where Markov models are available with
some probability, and (4b) a model ordering setting in
which we employ a map selection strategy based on
the Occam’s razor principle [Hut05, LV08].

Related work. Besides [MMR11], there are several
other lines of research that are related to our approach.
Both BLB and IBLB are constructed based on UCRL2

[JOA10], an algorithm that efficiently learns undis-
counted MDPs, and achieves regret of order DT 1/2

for any weakly communicating MDP having diame-
ter D, with respect to the optimal policy on this MDP.
There is a rich literature in RL on the regret bounds
of MDP learning [BT02, SLW+06, BT09, JOA10]. As
already mentioned, the problem we address falls un-
der the challenging GRL setting where both the envi-
ronment dynamics and states are unknown. In GRL,
to the best of our knowledge, Maillard et al’s work
[MMR11] is the first that offers a finite-time perfor-
mance analysis given a set of state representations.
Some other approaches attempting to solve the GRL
problem include ΦMDP [Hut09], context-tree based
methods [McC96, VNH+11, NSH11], predictive state
representations [LSS02, MB05, BG10], and learning to
select from a countably infinite set of arbitrary models
[RH08]. All this previous work offers general schemes
and algorithms for constructing a GRL agent, but does
not analyze the regret bounds with respect to the opti-
mal model. In other words, the data-efficiency analysis
of those methods is missing.

2 Preliminaries

Agent-Environment setup. Suppose that the agent
interacts with some unknown environment. Denote
the spaces of observations, actions, and rewards by
O, A, and R respectively. We assume that A is fi-
nite. At t = 0, the agent gets some initial observa-
tion h0 = o0 ∈ O, then at any time step t > 0, the
agent takes action at ∈ A based on the current history
ht = o0a0o1r1a1o2r2 . . . otrt, and in return, it receives
observation ot+1 ∈ O and reward rt+1 ∈ R from the
environment.

State representation functions (models). A
state-representation function φ, or shortly a model φ,
is a function from the set of histories to a finite state
set S of some (approximate) MDP. Let Sφ be the set
of states induced by model φ and st,φ := φ(ht) the
state derived from φ at time t. In general we use
st := φ(ht) if the associated φ can be inferred from the
context. Context trees [McC96, NSH11], looping suf-
fix trees [HJ06], and probabilistic deterministic finite
automata [VTH+05] can be considered to be model
classes in our sense. A state representation function φ
is called a Markov model of the environment, if the

process (st,φ, at, rt), t ∈ N is an MDP, which will be de-
noted by M(φ). We abbreviate A := |A|, Sφ := |Sφ|,
and Sj := Sφj .

We assume that MDPs induced from Markov models
are weakly communicating [Put93], that is, for any two
states u1 and u2 there is a non-zero probability that
u2 is reachable from u1 after some finite number of
actions. The diameter D of an MDP is defined as
the expected minimum number of time steps needed
to reach any state starting from any other state. The
diameter of a Markov model φ is denoted by D(φ).

2.1 Problem description

Given a countably infinite set Φ = {φ1, φ2, . . . , } of
models which contains at least one Markov model, we
want to construct a strategy that performs as well as
the algorithm that knows any Markov model φj , and
also knows all the parameters (transition probabilities
and rewards) of the MDP corresponding to this model.
Thus, we define the regret of any strategy at time T ,
like in [JOA10, BT09], as

∆(φj , T ) := Tρ?(φj)−
T∑
t=1

rt,

where the rt’s are the rewards received when follow-
ing the proposed strategy and ρ?(φj) is the average
optimal value in the Markov model φj , i.e., ρ?(φj) =

limT→∞
1
T E
[∑T

t=1 rt(π(φj))
]

where rt(π(φj)) are the
rewards received when following the optimal policy
π(φj) for φj . Note that in a weakly communicating
MDP, the average optimal value does not depend on
the initial state. In general, Tρ?(φj) can be replaced
with the expected sum of rewards obtained in T steps
(following the optimal policy) at the expense of an
additional (additive) term upper bounded by the di-
ameter of the underlying MDP.

3 Algorithms

As the UCRL2 algorithm of [JOA10] is an integral part
of the proposed algorithm IBLB, we briefly recall the
main features of UCRL2 first.

3.1 The UCRL2 algorithm

UCRL2 is an efficient algorithm for learning in a finite
MDP M with unknown rewards and transition prob-
abilities. We first define some needed quantities for
the description of UCRL2. Let N(τ, s, a) be the num-
ber of times action a has been taken in state s up to
time τ ; if a has not been chosen in s so far we set
N(τ, s, a) := 1. Denote the empirical state transition
probabilities and empirical mean rewards of M up to
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time τ as p̂τ (·|s, a) and r̂τ (s, a). At time τ , we de-
fineM(τ, δ) as the set of so-called δ-admissible MDPs
(where δ is a confidence parameter) with transition
probabilities p(·|s, a) and mean rewards r(s, a) such
that

‖p(·|s, a)− p̂τ (·|s, a)‖1 6

√
14S log(2Aτ/δ)

N(τ, s, a)
, (1)

|r(s, a)− r̂τ (s, a)| 6

√
7S log(2Aτ/δ)

N(τ, s, a)
. (2)

The algorithm proceeds in periods m = 1, 2, . . .. At
the beginning time τm of each period m, the algo-
rithm finds an optimistic MDP (that is, the one with
the highest expected value) M+

m ∈ M(τm, δ) and a
corresponding optimal policy π+

m using the extended
iteration value (EVI) procedure with precision 1/

√
τm

[JOA10]. Then the policy π+
m is executed until the

number of visits in some action-pair has doubled, that
is, until vm(s, a) = N(τm, s, a) for some (s, a), where
vm(s, a) is the number of times the pair (s, a) has been
visited from τm up to current time τ in period m.

Our own IBLB algorithm will apply UCRL2 given some
model φ. Then τ in the confidence intervals (1) and
(2) will not correspond to the current (absolute) time
step, but to the (relative) time step of playing model φ.
That is, any model φ has an individual counter τφ
counting the number of steps when model φ is used to
choose an action, and UCRL2 will consider the respec-
tive set of δ-admissible MDPs M(φ, τφ, δ).

Value span. In each period m, the EVI procedure
computes approximate state values u+

m(s) for each
state s. We define the empirical value span of the
optimistic MDP M+

m in period m as

sp(u+
m) := max

s∈S
u+
m(s)−min

s∈S
u+
m(s) .

3.2 The IBLB algorithm

Algorithm description. Our IBLB algorithm (given
in detail as Algorithm 1) proceeds in episodes k =
1, 2, . . . (not to be confused with the periods of UCRL2)
each of deterministic length `k := 2k. In each
episode k, the algorithm considers a finite set Φk ⊂ Φ
of Jk := kβ (β := 2) many models by adding models to
the Jk−1 models of the model set Φk−1 of the previous
episode k−1. Each episode starts with an exploration
phase of length `explore

k followed by an exploitation

phase of length `exploit
k , such that `k = `explore

k +`exploit
k .

The exploration phase of episode k consists of Jk runs
of the UCRL2 algorithm, one for each φ ∈ Φk. The
UCRL2 algorithm requires a confidence parameter that
is chosen to be δk := 75

76 ·2
1−kδ where δ is the confidence

Algorithm 1 IBLB

Require: Φ = {φ1, φ2, . . .}, confidence parameter δ.
1: Set parameters: `k := 2k length of episode k,

`explore
k = 2( 1022

3 )1/3`
2/3
k J

1/3
k , `exploit

k := `k −
`explore
k , Jk := kβ (β := 2), δk = 75

76 · 2
1−kδ.

2: Initialize t := 0, Φ0 := ∅.
3: for episodes k = 1, 2, . . . do
4: Φ̃k := {get Jk − Jk−1 models φ from Φ}, Φ :=

Φ\Φ̃k
5: Φk := Φk−1 ∪ Φ̃k

{Exploration phase}
6: Run UCRL2 periods for each φ ∈ Φk, with pa-

rameter δk for `explore
k /Jk time steps.

7: t := t+ `explore
k

{Exploitation phase}
8: q := 0, stop :=false
9: while NOT stop do

10: q := q + 1
{Exploitation run}

11: For each φ ∈ Φk, compute an optimistic MDP
M+
k,q(φ) and its corresponding policy π+

k,q(φ)
using the EVI procedure.

12: Φ′k := Φk
13: while NOT stop AND Φ′k 6= ∅ do

14: φ̂ := argmaxφ∈Φ′k

{
r̂k,<q(φ)−2Bk,q(φ, δk)

}
π̂ := π+

k,q(φ̂)

{Exploitation play}
15: s := st,φ̂
16: while vk,q,t(φ̂, s, π̂(s)) < Nk,<q(φ̂, s, π̂(s))

do
17: Choose action a = π̂(s), get reward r′

and next observation o′.
18: t := t+ 1
19: `exploit

k := `exploit
k − 1

{BLB test}
20: if r̂k,t(φ̂) < r̂k,<q(φ̂)−2Bk,q(φ̂, δk) then

21: Φ′k := Φ′k\{φ̂} {BLB test fails}
22: break {end current play}
23: end if
24: if `exploit

k = 0 then
25: stop := true
26: break {end current episode}
27: end if
28: s := st,φ̂
29: end while
30: if vk,q,t(φ̂, s, π̂(s)) = Nk,<q(φ̂, s, π̂(s))

then
31: break {end current run}
32: end if
33: end while
34: end while
35: end for
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parameter for IBLB. Each of the exploration runs stops
after precisely `explore

k /Jk steps (the same for each of
the models).

The subsequent exploitation phase of episode k is split
into several runs q = 1, 2, . . .. In each run q in
episode k, an optimistic MDP M+

k,q(φ) together with

an associated optimistic policy π+
k,q(φ) is computed for

each φ ∈ Φk based on previous observations. Then,
the algorithm repeatedly chooses a candidate model φ̂
according to line 14, and executes its corresponding
optimistic policy π+

k,q(φ̂) following a modified version
of UCRL2 with additional stopping conditions. The
model φ̂ chosen is the one with the biggest empiri-
cal mean reward received at the beginning of run q in
episode k, and penalized by some quantity accounting
for a confidence interval on the would-be cumulated re-
ward if φ̂ is Markov. Each selection of φ̂ together with
an execution of the policy π̂ is called an (exploitation)
play. A play is terminated when the current collected
average reward is too low (cf. the BLB test in line 20

of the algorithm). Then the current φ̂ is discarded,
and the next best model (line 14) is selected. If the
number of visits of some state-action pair in the cur-
rent run q is equal to the total respective visits from
the beginning of episode k to the beginning of run q
in episode k (lines 16 and 30 of the algorithm), the
current run q stops and the algorithm proceeds to the
next run q + 1 of the same episode k. Finally, a new
episode is started after `k steps (line 24 of the algo-
rithm). Note that a model φ is selected at most once
within an exploitation run, but can be chosen and ex-
ecuted within many different runs in the exploitation
phase of the same episode.

tk tk,m(φ) tk,q t tk+1

exploration phase︷ ︸︸ ︷
UCRL2︷ ︸︸ ︷

exploitation phase︷ ︸︸ ︷
run︷ ︸︸ ︷

play︷︸︸︷φ

φ̂φ̂ φ̂Nk,<qr̂k,<q

vk,tr̂k,t
vk,q,t

test fails

Figure 1: Illustration of some notations used.

Notation. We now introduce some notation needed
for the description of Algorithm 1. We say a model φ is
active at time t if it is the model used to generate the
current action. This happens exactly `explore

k /Jk times
during the exploration phase of episode k, and during
the runs in the exploitation phase when φ is the chosen
model φ̂ (line 14 of IBLB). We write t ∈ {1, . . . , T} for
the current time index, and respectively tk and tk,q
for the beginning time of episode k, and run q in the
exploitation phase of episode k.

We write Nk,<q(φ) :=
∑tk,q−1
t′=tk

I{φ is active at t′}
for the number of times φ is active from the be-
ginning of episode k to the beginning of run q
in the same episode. Furthermore, let vk,t(φ) :=∑t
t′=tk

I{φ is active at t′} be the number of times φ
has been active in episode k up to step t. Similarly,
vk,q,t(φ) :=

∑t
t′=tk,q

I{φ is active at t′} is the num-
ber of times φ has been active in run q of episode k
up to step t. Analogously, we write Nk,<q(φ, s, a),
vk,t(φ, s, a), and vk,q,t(φ, s, a) for the respective num-
ber of time steps when φ was active and action a has
been chosen in state s.

When performing the BLB test in run q to decide
whether the collected rewards are sufficiently high, the
algorithm compares the empirical mean reward of the
current model φ in episode k before the start of run q

r̂k,<q(φ) :=
1

Nk,<q(φ)

tk,q−1∑
t′=tk

rt′ I{φ is active at t′}

to the empirical mean reward in episode k up to the
current time step t

r̂k,t(φ) :=
1

vk,t(φ)

t∑
t′=tk

rt′ I{φ is active at t′} .

Note that when UCRL2 is run in the exploration phase
for some model φ (line 6 of Algorithm 1) in episode k,
UCRL2 uses internal periods m = 1, 2, . . . , and com-
putes for each of these an optimistic value function
u+,explore
k,m (φ) at tk,m(φ), the beginning time of pe-

riod m of UCRL2 where φ is used. Similarly, we write
u+,exploit
k,q (φ) for the optimistic value function in run q

of episode k when φ is active. Then we define the max-
imum span of the optimistic value functions computed
up to time t in episode k as

sp+
k,t(φ) :=

max
{

max
{
sp(u+,explore

k,m (φ)) ; m s.t. tk,m(φ) 6 t
}
,

max
{
sp(u+,exploit

k,q (φ)) ; q s.t. tk,q 6 t
}}

.

The penalization used in line 14 is defined as

Bk,q(φ, δk) := 34sp+
k,tk,q

(φ) Sφ

√
A log (Nk,<q(φ)/δk)

Nk,<q(φ)
.

For convenience, we also introduce the notation

B(φ, `, δ) := 34D(φ)Sφ

√
A log (`/δ)

`
.

4 Performance bounds

The following upper bound on the regret of the IBLB

algorithm is our main result. It shows that IBLB suffers
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regret of order T 2/3 w.r.t the best Markov model in the
given model set.

Theorem 1. Let Φ = {φ1, φ2, . . .} be an infinite set of
state-representation functions containing at least one
Markov model, and assume that in each episode k the
IBLB algorithm chooses Φ̃k := {φ1, . . . , φJk}. Then for
any time horizon T , with probability at least 1− δ, the
regret of the IBLB algorithm w.r.t the optimal policy
on any Markov model φj ∈ Φ, is bounded by

43(1+
√

log( 1
δ ))D(φj)Sj

√
A(log(T+1))4/3T 2/3

+ 27(log(T + 1))2ρ?(φj) + 2b
√
jcρ?(φj) .

Remark. The last term 2K0(φj)ρ?(φj) in the regret
bound of Theorem 1 depends on K0(φj) = bj1/βc,
the first episode when φj appears. In Theorem 1 we
have chosen β = 2. In principle, the rate of taking
new models —which is (log(T ))β for IBLB— can be
increased to a polynomial order T β

′
(0 < β′ < 2/3),

when K0(φj) = log(j)/β′. However, this is at the

expense of increasing the regret to order T 2/3+β′/2.

In the following, we consider two special cases, where
an upper bound on the first episode K0 providing a
Markov model can be given with high probability.

Model generation. First, consider a model genera-
tion setting where the models are generated from an
“infinite source” of models Φ. We assume that this
source Φ has the property that whenever a new model
is taken (at line 4 of IBLB), then with probability at
least α ∈ (0, 1) (w.r.t the source Φ), the presented or
generated model is Markov. That is, the IBLB algo-
rithm is unchanged, but Markov models from Φ are
assumed to be available with probability at least α at
any time. Under this assumption on the source Φ, we
have Lemma 1.

Lemma 1. Given an infinite model source Φ that at
any time step generates a Markov model with proba-
bility at least α (0 < α < 1), with probability at least
1− δ (0 < δ < 1), the first episode in which a Markov
model appears is bounded as

K0 6 2
√

log1−α δ.

Proof. The probability that a Markov model is gen-
erated within n0 generations is lower bounded by
1 − (1 − α)n0 , which is > 1 − δ if n0 > 1

logδ(1−α) .

The lemma follows after some simple derivations.

Model ordering. We now consider a model order-
ing setting where we have access to an initial ordering
of the countably infinite model set Φ = {φ1, φ2, . . .}.
Based on this model ordering, we design a specific

strategy for choosing new models (line 4 of IBLB),
which is based on some descriptional complexity for
models in Φ. Note again that the general working
steps of IBLB are unchanged; thus, at line 4, we still
add Jk − Jk−1 new models but these models are cho-
sen based on our specific selection strategy. We pre-
fer to select φ’s that have low complexity; this strat-
egy is inspired by the Occam’s razor principle [LV08].
Our reason for proposing this strategy is that among
all Markov models in Φ, the ones with short descrip-
tion length are likely to be selected first; and these
small Markov models will help the IBLB algorithm
early achieve small regret as IBLB is competitive to
any Markov models in the current considered set. The
interested reader is referred to [LV08] and [Grü07] for
detailed treatment of description theory. Assume that
the description method for all models φ ∈ Φ gives
prefix-free codes with code length CL(φ); and sup-
pose that models in Φ are enumerated as φ1, φ2, . . . , .
Denote ηi =

∑i
i′=1 2−CL(φi′ ). Then since ηi < 1 (by

Kraft’s inequality [CT91, LV08]) and ηi is increasing
in i, there exists a finite constant η = limi→∞ ηi =∑
φ∈Φ 2−CL(φ) (0 < η 6 1).

Our model selection strategy here attempts to choose
any state representation φ in Φ = {φ1, φ2, . . .} with
probability at least pφ := 2−CL(φ)/η where η =∑
φ∈Φ 2−CL(φ) is assumed to be known. We describe

how this model selection (sampling) process is exe-
cuted based on the proposed distribution pφ. The
first model φ′ is selected as follows. First gener-
ate a random number u in (0, η], then incremen-

tally construct intervals (
∑i
h=0 pφh ,

∑i+1
h=0 pφh ] (i =

0, 1, . . . and adding a fictitious model φ0 and suppress-
ing pφ0

= 0) until u falls within the current inter-

val (
∑i
h=0 pφh ,

∑i+1
h=0 pφh ]. So the model selected is

φ′ = φi+1; and this happens with probability pφ′ . The
selection process for subsequent models is repeated
with η := η − 2−CL(φ′), and Φ := Φ\{φ′}. With this
so-called “simplicity-biased” strategy, the IBLB algo-
rithm gives the following result.

Lemma 2. Let Φ be a countably infinite set of models.
Then for time horizon T , with probability at least 1−δ
(0 < δ < 1), the first episode in which the Markov
model φ appears is bounded as

K0(φ) 6 2

√
log1−pφ

δ
,

where pφ = 2−CL(φ)/η is a constant with η =∑
φ′∈Φ 2−CL(φ′).

Proof. The first model φ′ is chosen with probabil-
ity pφ′ . After φ′ is selected, the probability of choos-
ing any other model φ ∈ Φ \ {φ′} in the next
step increases as the new normalizing constant η′ =
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∑
φ∈Φ\{φ′} 2−CL(φ) < η. This process is repeated for

all other subsequent models. Hence, at any time the
probability to select any model φ is at least pφ. So the
probability that any Markov model φ is selected after
n0 model selections from Φ is Pn0

> 1− (1− 1
ηpφ)n0 .

It can be verified that with n0 > 1
logδ(1−pφ) , Pn0

>

1− (1− pφ)n0 > 1− δ. Now the claimed result follows
similarly as Lemma 1.

Lemma 2 shows the potential of a selection strategy
based on the Occam’s razor principle. If there exists
a Markov model that has a short description length
compared to other models, then the IBLB algorithm is
likely to perform well w.r.t this model.

Getting tight and explicit bounds on K0 that depend
on the characteristics of the underlying MDPs induced
from Markov models is an interesting open question.
One direction to attack it is to use notions of com-
plexity introduced in [Hut09] that take into account
characteristics of state representation functions, the
resulting MDPs, and previous histories.

5 Proof of Theorem 1

Overview. Let φj be an arbitrary Markov model.
First, we express the total regret ∆ w.r.t φj by the
regret ∆k suffered in episodes k. Each ∆k then is fur-
ther divided into the regret of models only active in
the exploration phases, denoted by Φexplore

k , and the
regret of models active in the exploitation phase, de-
noted by Φexploit

k . In general, models in Φexplore
k \{φj}

are assumed to suffer the worst case regret since we do
not know whether they are Markov. When analyzing
the regret suffered in the exploitation phases, we dis-
tinguish between “good” and “bad” models in Φexploit

k .
Good models are those better than φj according to
the criterion in line 14 of IBLB, while all other mod-
els in Φexploit

k \{φj} are classified as bad. We show
that with high probability any Markov model will pass
the BLB test; hence it is highly probable that we only
models at least as good as φj are active. This crucial
fact allows to achieve a bound on the regret for each
episode.

5.1 Performance guarantee for Markov
models

Understanding the behavior of Markov models in IBLB

is essential in our regret analysis. Lemma 3 below
shows that at any time when a Markov model φj is
active, its associated MDP M(φj) is admissible (cf.
equations (1) and (2)) with high probability. Further-
more, Lemma 4 provides an episode-wise regret bound
for the regret incurred when a Markov model φj is ac-

tive.

Lemma 3. For any Markov model φj ∈ Φk, any 0 <

δ′ < 1, with probability at least 1 − δ′

75 , for all time
steps t it holds that M(φj) ∈ M(φj , vt(φj), δ

′), where
vt(φ) denotes the number of times model φ has been
active up to time t. Hence, with probability 1 − δk
we have sp+

k,t(φj) 6 D(φj) for all time steps t in any
episode k.

Proof sketch. Lemma 17 in Appendix C.1 of [JOA10]
shows that M(φj) ∈M(φj , vt(φj), δ

′) with probability

1 − δ′

v6 under the assumption that vt(φj) = v. Then
a union bound over all possible values of vt(φj) =
1, 2, . . . , t gives the claimed result. That the diame-
ter D(φj) bounds the optimistic value span sp+

k,t(φj)
can be looked up in Section 4.3 of [JOA10].

Lemma 4. For any episode k, any Markov model φj
and any 0 < δ′ < 1: With probability at least 1 − δ′,
for all time steps t in episode k with vk,t(φj) > 1, the
empirical average r̂k,t(φj) of the rewards collected from
the beginning of episode k up to time t when model φj
is active satisfies

vk,t(φj)
∣∣∣ρ?(φj)− r̂k,t(φj)∣∣∣ 6

34 sp+
k,t(φj) Sj

√
Avk,t(φj) log(vk,t(φj)/δ′) .

Proof sketch. The basic idea is to consider only those
time steps when model φj is active and repeat the orig-
inal UCRL2 analysis given in Section 4 of [JOA10], but
replacing D(φj) with sp+

k,t(φj), and adding absolute
values where needed. There are two potential prob-
lems with this approach: First, since, in general, other
models will be employed between phases in which φj
is active, unlike in the original UCRL2 setting, it will
not be the case that each period starts in the state
in which the previous period has terminated. Second,
UCRL2 periods within IBLB may be terminated prema-
turely (i.e., not because of the original UCRL2 criterion
that visits in some state-action pair have doubled, cf.
lines 16 and 30 in IBLB).

However, neither of these two issues is crucial to our
analysis. First, the regret analysis of UCRL2 does not
make any assumptions on the initial state of each pe-
riod and hence also holds when each period starts
at any arbitrary state (what is important, however,
is that the same model is consistently used within
one period). Second, the analysis for UCRL2 can be
adapted to the case when original UCRL2periods are
terminated prematurely: one only has to take into
account a bound on the total number of periods (as
given for UCRL2 in Proposition 18 in Appendix 2 of
[JOA10]). It is straightforward to see that there will
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be at most one additional period in our analysis, which
can be shown not to damage the regret bounds given
in [JOA10]. Indeed, the only premature termination of
a UCRL2 period that may cause another period is when
the exploration phase of φj ends. If a play in which
φj is active is terminated because the BLB test fails,
or since the total number of exploitation steps in the
current episode has been reached, then the model φj is
not active in the rest of the episode and hence cannot
cause another UCRL2 period in which φj is active.

Summarizing, adapting the UCRL2 analysis as indi-
cated above results in that, analogous to the original
regret bounds for UCRL2, for each episode k with prob-
ability 1 − δ′, the claimed regret bound holds for all
time steps t (i.e., for all possible values of vk,t(φj)).

5.2 Regret analysis

For any Markov model φj ∈ Φ, the cumulative regret
∆(φj , T ) of the IBLB algorithm w.r.t the best strategy
in the model φj can be decomposed into

∆(φj , T ) =
∑

k<K0(φj)

∆k +
∑

k>K0(φj)

∆k ,

where K0(φj) is the index of the first episode in which
φj appears (φj /∈ ΦK0(φj)−1 and φj ∈ ΦK0(φj)), and
∆k is the total regret suffered in episode k.

5.2.1 Regret in episodes k < K0(φj)

When φj has not been selected yet (i.e., φj /∈ Φk), we
consider the worst case regret. Since the time when

φj first appears is 1 +
∑K0(φj)−1
k=1 2k = 2K0(φj) − 1,

the respective regret
∑
k<K0(φj)

∆k is upper bounded

by (2K0(φj) − 2)ρ?(φj). As φj first appears in episode
K0(φj), its index j satisfies JK0(φj)−1 < j 6 JK0(φj).

Since Jk = kβ , j satisfies (K0(φj)−1) < j1/β 6 K0(φj)
and we have j1/β 6 K0(φj) < j1/β + 1 and conse-
quently K0(φj) = bj1/βc. It follows that∑

k<K0(φj)

∆k 6 (2bj
1/βc − 2)ρ?(φj). (3)

5.2.2 Regret in episodes k > K0(φj)

Let us define in run q of episode k the set of good
models with respect to model φj as

Gk,q(φj) :=
{
φ ∈ Φk\{φj} : r̂k,<q(φ)− 2Bk,q(φ, δk)

> r̂k,<q(φj)− 2Bk,q(φj , δk)
}
.

All other models in Φk\{φj} will be considered as bad.

Let Φexploit
k be the set of all models active in the ex-

ploitation phase of episode k.

For Φ̃ ⊂ Φk let ∆k(Φ̃) be the total regret resulting
when a φ ∈ Φ̃ is active in episode k, and set ∆k(φj) :=
∆k({φj}). Then we can decompose the regret ∆k in
episode k into three components:

∆k(Φk) = ∆k(Φexploit
k \{φj}) + ∆k(φj)

+ ∆k(Φ\(Φexploit
k ∪ {φj})) , (4)

the regret term corresponding to the exploited mod-
els without the comparative model φj , the regret for
model φj itself, and the remaining models that are
explored but not exploited in episode k.

Bad models. We prove that with high probability,
there are no bad models active in any exploitation run,
that is, Φexploit

k is a subset of
⋃
q Gk,q(φj). More pre-

cisely, we will show that a Markov model φj will pass
all BLB tests with high probability, so that each model
active in an exploitation run q must be at least as good
as φj and consequently in Gk,q(φj).

Indeed, let t be a time step in episode k and run q.
Then Nk,t(φj) > Nk,<q(φj) and also sp+

k,t(φj) =

sp+
k,tk,q

(φj) > sp+
k,tk,q−1(φj). Applying Lemma 4

twice it follows that with probability at least 1 − δk
for all time steps t in episode k,

r̂k,t(φj)− r̂k,<q(φj)

=
(
r̂k,t(φj)− ρ?(φj)

)
+
(
ρ?(φj)− r̂k,<q(φj)

)
> −34 sp+

k,t(φj) Sj

√
A log(Nk,t(φj)/δk)

Nk,t(φj)

−34 sp+
k,tk,q−1(φj) Sj

√
A log(Nk,<q(φj)/δk)

Nk,<q(φj)

> −2Bk,q(φj , δk) . (5)

This means that in any episode k the Markov model φj
passes the BLB test in any exploitation play with prob-
ability 1− δk.

Good models. Let vk(φ) be the total number of
times φ ∈ Φk is active in episode k. Then the regret
of exploited models in episode k (except φj) can be
expressed as

∆k(Φexploit
k \{φj})

=
∑

φ∈Φexploit
k \{φj}

vk(φ)
(
ρ?(φj)− r̂k(φ)

)
, (6)

writing r̂k(φ) := r̂k,tk+1−1(φ) for the average reward
collected in episode k when φ was active. In the follow-
ing, we also use r̂′k(φ) to denote the respective average
reward when ignoring the last time step when φ was
active in episode k. Then, using that φ passed the BLB

test before the last step when φ was active (in some
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run q′), and since only good models are active,

vk(φ)
(
ρ?(φj)− r̂k(φ)

)
6 (vk(φ)− 1)

(
ρ?(φj)− r̂′k(φ)

)
+ ρ?(φj)

6 (vk(φ)− 1)
(
ρ?(φj)− r̂k,<q′(φ) + 2Bk,q′(φ, δk)

)
+ρ?(φj)

6 (vk(φ)− 1)
(
ρ?(φj)− r̂k,<q′(φj) + 2Bk,q′(φj , δk)

)
+ρ?(φj)

6 3
(
vk(φ)− 1

)
Bk,q′(φj , δk) + ρ?(φj)

6 3
(
vk(φ)− 1

)
B(φj , `

explore
k /Jk, δk) + ρ?(φj), (7)

using Lemma 4, Lemma 3, and Nk,<q′(φ) > `explore
k /Jk

in the final two steps.

Comparative Markov model φj. If vk(φj) > 1 for
the considered Markov model φj , then by Lemmas 3

and 4 and the fact that `explore
k /Jk 6 vk(φj), we have

∆k(φj) = vk(φj)
(
ρ?(φj)− r̂k(φj)

)
6 34 spk,tk+1−1(φj) Sj

√
Avk(φj) log(vk(φj)/δk)

6 34D(φj)vk(φj)Sj

√
A log(vk(φj)/δk)

vk(φj)

6 vk(φj)B(φj , `
explore
k /Jk, δk)

with probability at least 1− 76
75δk. On the other hand,

if vk(φj) = 1, then ∆k(φj) 6 ρ?(φj) holds trivially
and it follows that with probability at least 1− 76

75δk,

∆k(φj) 6 vk(φj)B(φj , `
explore
k /Jk, δk) + ρ?(φj) . (8)

Remaining models. Finally, let us consider the
models which are not active in the exploitation phase
of episode k. We have

∆k(Φk\(Φexploit
k ∪ {φj}))

6
∑

φ∈(Φk\(Φexploit
k ∪{φj})

ρ?(φj) `
explore
k /Jk . (9)

5.3 Summary and fine-tuning of parameters

Summarizing, and noting that
∑
φ vk(φ) = `k, we get

from equations (3), (4), (6), (7), (8), and (9), by a
union bound over the Jk models of episode k that
with probability at least 1 − 76

75δk, the total regret in
episode k satisfies

∆k(Φk) 6 3`kB(φj , `
explore
k /Jk, δk)

+(Jk − 1) ρ?(φj) `
explore
k /Jk + Jk ρ

?(φj)

6 3`kB(φj , `
explore
k /Jk, δk) + (`explore

k + Jk)ρ?(φj)

= 102`k(`explore
k )−1/2D(φj)Sj

√
AJk log(

`explorek

Jkδk
)

+(`explore
k + Jk)ρ?(φj) . (10)

Note that considering the error probability of Lemma 3
and Lemma 4 once is sufficient, as the claims of both
Lemma 3 and Lemma 4 hold with the given error prob-
ability for all time steps t in each episode k.

Recall that parameters for IBLB (line 1 of the algo-

rithm) are chosen as follows: `k = 2k, `explore
k =

2( 1022

3 )1/3`
2/3
k J

1/3
k , Jk = k2 (β = 2), δk = 75

76 · 2
1−kδ.

Actually, `explore
k is tuned to get the best possible re-

gret bound of the form aT bJck. Denoting the episode at

time T of IBLB by kT , it can be seen that
∑kT−1
k=1 `k =∑kT−1

k=1 2k = 2kT − 1 6 T ; hence, kT 6 log(T + 1).
With all of these notes, we deduce that with probabil-
ity at least 1− δ

∆(φj , T ) =

kT∑
k=1

∆k(Φk)

6 43(log(T + 1))4/3T 2/3D(φj)Sj
√
A
(
1 +

√
log( 1

δ )
)

+27(log(T + 1))2ρ?(φj) + 2b
√
jcρ?(φj).

6 Outlook

A natural direction for future research is to develop
an algorithm that has regret of the optimal order

√
T

(as in the case of learning an MDP), without losing on
the order of other factors in the regret. A first step in
this direction is the recent work [MNOR], where regret
bounds of order

√
T are achieved for the case of a fi-

nite set of models, yet with a worse dependence on the
state space. Another important direction, both chal-
lenging and of practical interest, is the extension to
continuous state-action domains, using, for instance,
discretization or aggregation maps as candidate mod-
els. Finally, an important assumption that we would
like to relax (or to get rid of) is that the model set
contains a true Markov model; instead, we would like
to assume that we only have some approximation of
such a model.
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