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Abstract

Deterministic and near-deterministic rela-
tionships among subsets of random variables
in multivariate systems are known to cause
serious problems for Monte Carlo algorithms.
We examine the case in which the relation-
ship Z = f(X1, . . . , Xk) holds, where each
Xi has a continuous prior pdf and we wish
to obtain samples from the conditional dis-
tribution P (X1, . . . , Xk | Z = s). When f is
addition, the problem is NP-hard even when
the Xi are independent. In more restricted
cases—for example, i.i.d. Boolean or categor-
ical Xi—efficient exact samplers have been
obtained previously. For the general continu-
ous case, we propose a dynamic scaling algo-
rithm (DYSC), and prove that it has O(k) ex-
pected running time and finite variance. We
discuss generalizations of DYSC to functions
f described by binary operation trees. We
evaluate the algorithm on several examples.

1 Introduction

Monte Carlo methods for inference are among the most
useful tools in machine learning and computational
statistics models. For example, posterior marginals
in Bayesian networks can be approximated by rejec-
tion sampling [15], importance sampling [12, 23], or
Markov chain Monte Carlo [20].

For these standard sampling algorithms, deterministic
or near-deterministic relationships—which are ubiq-
uitous in real-world applications (e.g., models from
physics, chemistry, systems biology, economics, com-
puter vision) —cause serious problems. In MCMC, the
problem occurs regardless of whether the constraint
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variables are observed, for their values will be set
by sampling. Standard convergence proofs fail with
deterministic variables, while near-deterministic rela-
tionships cause approximation bounds to become ar-
bitrarily large and MCMC mixing rates to become ar-
bitrarily slow. These difficulties were noted by Chin
and Cooper [5] among others; their proposed solu-
tions involve transforming the network to eliminate
the offending variable. Unfortunately, such transfor-
mations can render the network intractably large and
can themselves be computationally infeasible to carry
out. Thus, the problem remains important in practice.

In this paper, we take a different approach by devel-
oping local samplers that remain efficient despite the
presence of deterministic constraints. The core prob-
lem we consider is shown in Fig. 1(a): a variable Z
depends deterministically on parents X1, . . . , Xk via
Z=f(X1, . . . , Xk). Independent priors Pi(xi) and the
fixed value Z = s are given, and we wish to sample
from the posterior P (x1, . . . , xk | Z = s). As well as
being of independent interest, such a local sampler can
be used as a component within an overall MCMC ar-
chitecture to resample the entire parent set of a deter-
ministic variable or to sample any subset of its parents
given values for the others. In the more general case
(Fig. 1(b)), the parent variables may be dependent and
the entire fragment may be embedded within a larger
network.

For most of the paper, we focus on the case where the
deterministic function f is addition, i.e., we wish to
sample a set of variables conditioned on their sum:

Problem 1 (Sampling from posterior given sum).
Given s, and k independent random variables
X1, . . . , Xk, such that Xi ∼ Pi(x), sample from the

posterior distribution P (x1, . . . , xk |
∑k
i=1 xi = s).

This simple problem arises in many applications, in-
cluding unusual event discovery [19], system compo-
nent failure detection [16], estimating Internet topol-
ogy [10, 18], multitarget tracking [24, 28], sybil at-
tack [9], and image segmentation [25].

We describe relevant prior work in Sec. 2, including
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(b)

Figure 1: (a) A simple Bayesian network with one ob-
served child that depends deterministically on k in-
dependent parents. (b) A more general setting with
dependent parents and additional network context.

some known special cases that are efficiently solved; for
example, the binary case can be solved using dynamic
programming [4] or belief propagation with FFT [26].
We show in Sec. 3 that the general cases for both dis-
crete and continuous variables are NP-hard. Sec. 4
describes DYSC, an importance sampling algorithm
for the general case; we prove that DYSC generates
samples satisfying the deterministic constraint in time
linear in k, and show that it works well in practice.
Sec. 6 shows that the same algorithmic scheme may
be applied to any deterministic function that is de-
scribed by a binary operation tree with computable
inverses for its nodes.

2 Background and Previous
Approaches

Tierney [27] summarizes the MCMC approach to sam-
pling from posterior distributions; the basic conver-
gence theory requires connectedness of the state space,
but, with deterministic constraints on variables, the
required conditions may be absent when variables are
sampled individually. Connectedness may be restored
by sampling subsets of variables jointly, which is ex-
actly the problem studied in this paper.

Importance sampling and its resampling variant SIR
[21] are often used as an alternative to MCMC. They
rely heavily on the choice of a “good” proposal distri-
bution; moreover, with deterministic evidence on con-
tinuous variables (such as the given value s in Prob-
lem 1), importance sampling can degenrate to rejection
sampling with a 100% probability of rejection. Fung

and del Favero [13] propose a backward simulation
method that can sample from the posterior distribu-
tion given evidence; its efficiency relies, however, on a
complete tabulation of the conditional distributions—
in our case, P (Z | X1, . . . , Xk)—which would be ex-
ponentially large for discrete variables and impossible
for continuous variables.

Gogate and Dechter [14] handle sampling with de-
terministic evidence with a backtracking search algo-
rithm, i.e. through searching for samples consistent
with the given evidence constraints. However, their
algorithm does not work for continuous variables.

For the case of summation evidence, there have been
several solutions that assume special forms for the
prior distributions. In particular, one can sample ex-
actly from the posterior distribution on a set of k
Bernoulli variables, given their sum s, using dynamic
programming [16]. The complexity is O(s2 + sk), or
O(sk) if weights can be pre-computed. The algo-
rithm is the same as the maximum entropy method [4].
When s < k, the posterior may be computed
even more efficiently (O(k log2 k)) by using the sum–
product algorithm with FFT [26]. This FFT method
can be extended to categorical random variables [11].
However, the same approach does not apply to contin-
uous variables with general densities.

For discrete variables, contingency table sampling pro-
vides an alternative approach to sample from posterior
distributions [7, 8]. For i.i.d. Bernoulli variables, the
problem reduces to that of choosing s of k variables
uniformly without replacement [2].

The rare-event literature [3, 1] considers the problem of
accurately estimating the probabilities of events with
low, but nonzero probability. These works are philo-
sophically related to ours. However, it is not clear
how to apply algorithms from this literature to solve
Problem 1, because the constrained distributions we
consider have zero prior probability.

3 How Hard is the Problem?

Before describing our sampling algorithm, we first an-
alyze the hardness of our inference problem. It is
straightforward to show that Problem 1 is NP-hard
in general. The proof follows from the NP-hardness of
the restricted additive constraint problem where each
variable has a categorical distribution over integer val-
ues. We consequently prove hardness results for two
refined versions of Problem 1. The first version proves
that drawing samples from the posterior distribution
is NP-hard when the Xi are discrete. The second ver-
sion proves that drawing high quality samples from
the posterior distribution is NP-hard when the Xi are
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real-valued.

Problem 2 (Posterior for integer-valued variables).
Given s, and k independent random variables
X1, . . . , Xk with finite support over the non-negative
integers such that Pi(Xi = j) = pji (pji can be repre-
sented using finite bits), the goal is to generate samples

P (X1, . . . , Xk |
∑k
i=1Xi = s) with posterior probabil-

ity greater than zero.

Theorem 1. Problem 2 is NP-hard.

Proof. The proof is by reduction from the SUBSET-
SUM problem, which is known to be NP-complete [6].
An instance of the SUBSET-SUM problem is to select
a subset A from {a1, a2, . . . , ak} such that the sum of
the set is s, where ai are positive integers. We con-
struct an corresponding instance of Problem 2 as fol-
lows: Pi(xi = ai) = 1/2, Pi(xi = 0) = 1/2. We only
need log ai bits and one additional bit to represent Pi.
Note we do not represent any values with zero prob-
ability. Hence the reduced problem has a polynomial
size compared to the original SUBSET-SUM problem.
Clearly, if we could obtain any consistent sample, say
x̂1, x̂2, . . . x̂k such that x̂1 + x̂2 + · · · + x̂k = s, we
could then get a solution to the original SUBSET-
SUM problem A = {x̂i : x̂i > 0}. SUBSET-SUM
is NP-complete, therefore Problem 2 is NP-hard.

In contrast, for variables with continuous support, it
is often easy to generate joint samples that satisfy the
sum constraint. On the other hand, sampling from
the posterior distribution, rather than just producing
any old values satisfying the sum constraint, may be
harder. The following is a definition of the problem of
generating “good” samples.

Problem 3 (Posterior with bounded non-negative
continuous variables). Let s be a target sum, ε be a
bounded-precision positive number, and X1, . . . , Xk be
independent real-valued random variables, such that
Xi ∼ pi(x). Assume that pi(x) > 0 for x ∈ [0,∞) and
that pi(·) is defined by finitely many bounded-precision
parameters. The goal is to find a sample (xi) from the

posterior probability density p(X1, . . . , Xk |
∑k
i=1Xi =

s) such that
∑k
i=1Xi = s and the un-normalized prob-

ability density of the sample satisfies

p(X1 = x1) · p(X2 = x2) · · · · p(Xk = xk) > ε . (1)

If such an (xi) does not exist, failure must be reported.

Theorem 2. Problem 3 is NP-hard.

Proof sketch (full details in the supplementary mate-
rial): The proof is again by reduction from SUBSET-
SUM. We start with an instance in SUBSET-SUM,
with a set of nonzero integers {a1, . . . , ak} and the tar-
get sum s. The strategy will be to define pi to be a

continuous bimodal density with almost all mass close
to ai and 0, such that any valid solution to SUBSET-
SUM leads to a solution to the sampling problem with
prior pi, and vice versa. The prior densities are care-
fully chosen with compact representation in terms of
bits:

pi(x) =
I(x ≥ 0)

ci

(
1

2
N (0, δ2) +

1

2
N (ai, δ

2)

)
where I is the indicator function and N (·, ·) is the
normal distribution density and δ = 1

8k . ci is a
normalizing constant given by 1

4 + 1
2φ(−aiδ ), where

φ is CDF of the standard normal distribution. Let
c = p(

∑k
i=1Xi = s) > 0, and we set

ε =
1∏
i ci
· 1

(2δ
√

2π)k

∏
i

(
1 + exp(−a

2
i

δ2
)

)
· η

where η = 2e−16 < 1. Here we assume that real values
δ, ε, η, ci can be represented with a constant number of
bits.

Suppose that there exists such a subset A ⊆
{a1, . . . , ak} satisfying

∑
a∈A a = s. This subset will

certainly lead to a valid sample, i.e., Xi = ai if ai ∈ A
and Xi = 0 otherwise. It is then straightforward to
verify that the sample satisfies Eq. (1).

Conversely, suppose there is a sample x1, . . . , xk sat-
isfying Eq. (1) and

∑
i xi = s. We claim |xi| < 1

2k or
|xi − ai| < 1

2k for each i = 1 . . . k. We can select the
set A = {ai | |xi − ai| < 1

2k} with sum s.

Easy cases In some special cases, there exist fast
algorithms to sample exactly from the posterior distri-
bution.

Example 1. k i.i.d. binary rv with target sum s.
The posterior is uniform among

(
s
k

)
configurations [16]

which can be generated in polynomial time.

Example 2. k i.i.d. rv from exponential priors, with
the target sum s. The posterior is uniformly dis-
tributed in the k−1 simplex. There is a simple and fast
algorithm (Alg. 3.23 in [17]) to generate such samples:
first draw k values independently from the prior expo-
nential distribution, and then normalize accordingly.

4 DYSC: Proposed Method for
Continuous Variables

For Problem 1 with continuous variables, we propose
a sequential importance sampling algorithm called
DYSC (DYnamic SCaling). For simplicity of expo-
sition, this section assumes that the Xis are i.i.d. with
prior density p(· | θ), where θ is the mean. These
restrictions are not essential.
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The basic intuition for the algorithm can be obtained
by considering the failure modes of a naive method,
i.e., sampling from the prior for X1, . . . , Xk−1 and then
setting Xk to the value required such that the sum is s.
Clearly, if s is much larger than kθ, Xk will probably
have a very large value and samples generated in this
way will be highly asymmetric and have mostly very
small weights. Conversely, if s is small, the sum of
the first few values may exceed s and the sample must
be rejected (or have all the remaining values set to 0).
DYSC tries to avoid these problems by dynamically
scaling a parameterized proposal distribution qi(·|ηi)
for each Xi so that its mean ηi equals the amount
needed per remaining variable such that the desired
total s is reached.

The proposal distributions qi are designed in one-to-
one correspondence with the terms in the factorized
form of the posterior distribution:

P (x1, . . . , xk |
k∑
i=1

xi = s) =

k∏
i=1

P (xi | x1, . . . , xi−1,
k∑
j=i

xj = s−
i−1∑
k=1

xi) (2)

We set q(X1, . . . , Xk|s) = q1(X1|s) · q2(X2|s, x1) · · ·
qk(Xk|s, x1, . . . , xk−1).

The proposal distributions qi are subject only to the
usual conditions for importance sampling; but the sim-
plest idea is to rescale the prior to have the desired
mean, so we can set qi to be a suitably truncated ver-
sion of p(· | ηi):

ηi =
s−

∑i−1
j=1 xj

k − i+ 1
(3)

qi(Xi|ηi) =


p(Xi|ηi)I(0≤Xi≤S−

∑i−1
j=1 xj)∫ S−

∑i−1
j=1

xj

0 p(y|ηi)dy
if

i−1∑
j=1

xj < s

δ(0) otherwise

(4)

qk(Xk) = δ(Xk = s− x1 − · · · − xk−1) (5)

where I(·) is the indicator function and p(· | ηi) is the
prior of Xi with parameter ηi. Therefore, the impor-
tance weight can be calculated as

w =
p(x1, . . . , xk, S)

q(x1, . . . , xk, S)

= p(S −
k−1∑
j=1

xj | θ) ·
k−1∏
i=1

(
p(xi | θ)
qi(xi|ηi)

)
(6)

The whole algorithm is described in Alg. 1; notice that
truncation is achieved by rejection sampling in line 8
and the proposal q̃ is non-truncated. The following
sections develop a per-sample runtime analysis.

Algorithm 1: DYSC: sampling posterior for con-
tinuous variables
Input: s: the target sum; k: the number of

variables; Xi ∼ p(·|θ); q̃(·|η): a family of
importance distributions parameterized by
mean η, with c(· | η) its cumulative
function;

Output: A sample for X1, . . . , Xk with weight w
1 initialize all Xi ← 0, R← s, w ← 1;
2 for i← 1 to k − 1 do
3 if R = 0 then
4 Xi ← 0; w ← w · p(0|θ);
5 else
6 ηi ← R

k−i+1 ;

7 construct proposal q̃i(·) = q̃(·|ηi) ;
8 repeat sample Xi ∼ q̃i(·) until

Xi ∈ [0, R] ;

9 w ← w · (ci(R|ηi)− ci(0|ηi)) · p(Xi|θ)
q̃(Xi)

;

10 R← R−Xi;

11 Xk ← R; w ← w · p(R);

4.1 Basic assumptions

For the purposes of this analysis, we will make the
following assumptions.

1. The random variables Xi are independent and
identically distributed.

2. Xi has continuous probability density function pi
with respect to Lebesgue measure.

3. Importance distributions qi(·|ηi) are nonzero con-
tinuous probability density functions on [0,∞).
These distributions vary continuously in parame-
ter ηi. qi has a positive continuous lower bound
function fi that does not depend on choice of ηi.

The independence assumption in (1) is not strictly re-
quired but gives a nice form to the importance weights.
Assumption (2) could be weakened slightly, but doing
so would complicate our proofs. Assumption (3) has
some subtleties. Let q denote the distribution that
DYSC actually samples from (the aggregate of the qi).
For DYSC to have finite variance, we will need q to be
lower bounded regardless of the ηi chosen. Assump-
tion (3) forces this lower bound. Note on the other
hand that q need not be upper bounded. Consider
the exponential distribution f(x;λ) = λe−λx, where
µ = 1

λ is the mean. As µ → 0, λ → ∞, so f grows
unboundedly near x = 0 with shrinking µ. If qi has
distribution f , then q may grow unboundedly as well.
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4.2 Geometry of the simplex

We begin our analysis by building some geometric in-
tuition about the space we seek to sample from. For
brevity, we only provide proof sketches in the sequel.
Complete proofs may be found in the supplementary
material.

Definition 1. Let x be any positive real number. A
standard k-simplex of value x is a subset of Rk+1 given
by

∆k
x = {(t0, · · · , tk) ∈ (R)k+1 |

k∑
i=0

ti = x, ∀i ti ≥ 0}

We will use the following two facts about the geometry
of ∆k−1

S to study Alg. 1.

Lemma 1. ∆k
x is compact.

Lemma 2. Let f be a continuous real-valued function
defined on compact set X. Then f is bounded on X.

Recall that the support of a random variable indicates
the set of values it can assume with positive probabil-
ity. When defining the support for real-valued random
variables with continuous density, the following defini-
tion suffices

Definition 2. Let X be a random variable taking val-
ues in Rn with continuous pdf f .

supp(X) = {e ∈ R n | f(e) > 0}

Lemma 3. The target joint distribution
X1, . . . , Xk,

∑k
i=1Xi = S has continuous probability

density function p on Rk with support containing the
standard k − 1 simplex of value S. That is,

supp(X1, . . . , Xk,

k∑
i=1

Xi = S) ⊇ ∆k−1
S .

Let DYSC(S, k,Xi, qi) denote the (x1, . . . , xk) sampled
in Rk by Alg. 1. We analyze the behavior of this ran-
dom variable. We start by using Markov’s inequality
to prove an important property of the dynamic scaling.

Lemma 4. If S −
∑i−1
j=1 xj > 0 then

Pqi(·|ηi)(0 ≤ Xi ≤ S −
i−1∑
j=1

xj) ≥
1

2

Proof sketch: The bound can be derived from the
equation

E qi(·|ηi)[Xi] =

∫
xiqi(xi|ηi)dxi = ηi =

S −
∑i−1
j=1 xj

k − i+ 1

Lemma 5. DYSC(S, k,Xi, qi) has nonzero probabil-
ity density function q on Rk with support equal to the
standard k − 1 simplex of value S

supp(DYSC(S, k,Xi, qi)) = ∆k−1
S

q is continuous in the interior of ∆k−1
S , int(∆k−1

S ), and

is lower bounded on ∆k−1
S by some c > 0.

Proof sketch: We prove this result by constructing an
explicit formula for q on Rk, and by exploiting As-
sumption (3).

Lemma 6. Let W (x) = p(x)
q(x) . Then W is a bounded

function on ∆k−1
S that is continuous on int(∆k−1

S )

Proof. From lemma 3, p(x) is positive and continuous
on ∆k−1

S , and from lemma 5, q(x) is lower bounded on

∆k−1
S by c > 0 and continuous on int(∆k−1

S ). Hence

W is nonzero and bounded on ∆k−1
S and continuous

on int(∆k−1
S ).

4.3 Correctness Proofs

Theorem 3. Let E be any measurable subset of the
k − 1 simplex. Let pE denote the probability that
the true joint takes values in E. Suppose we draw
N times from variable DYSC(S, k,Xi, qi) and obtain
Y1, . . . , YN taking values in ∆k−1

S . Then the following
equation provides an unbiased estimator of pE:

p̂E =
1

N

N∑
i=1

I(Yi ∈ E)W (Yi)

Proof sketch: The proof is the standard correctness
proof for importance samplers.

E q[p̂E ] =
1

N

N∑
i=1

E q[I(Yi ∈ E)W (Yi)]

=
1

N

N∑
i=1

∫
q(y)I(y ∈ E)

p(y)

q(y)
dy = pE

Theorem 4. p̂E has finite variance that shrinks to 0
as the number of samples N goes to infinity.

Proof sketch: Recall that the Yi are independent sam-
ples from DYSC(S, k,Xi, qi)

Var q[p̂E ] =
1

N2

n∑
i=1

Var q[I(Yi ∈ E)W (Yi)]

=
1

N2

n∑
i=1

(∫
p(y)I(y ∈ E)W (y)dy − p2E

)
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To simplify this equation note that by lemmas 6 and
3, W and p are bounded on ∆k−1

S . Then there exists

C > 0 that upper bounds p(x)W (x) on ∆k−1
S . Hence∫

p(y)I(y ∈ E)W (y)dy < Cµ(E) <∞

where µ is the Lebesgue measure. Thus we can write

Var q[p̂E ] =
1

N2

n∑
i=1

(∫
p(y)I(y ∈ E)W (y)dy − p2E

)

<
1

N2

N∑
i=1

(
Cµ(E)− p2E

)
=
Cµ(E)− p2E

N
→ 0

4.4 Runtime Bounds

We now analyze the expected runtime of Alg. 1. We
start by recalling some basic facts about Geometric
random variables.

Definition 3. Geom(p) denotes a geometric random
variable and counts the number of tails seen before
heads in a sequence of Bernoulli(p) coin tosses. The
following are basic facts about Geom(p)

E[Geom(p)] =
1− p
p

Var[Geom(p)] =
1− p
p2

Since line 8 contains a rejection sampling step, the
runtime is itself a random variable.

Definition 4. Let RDYSC(S, k,Xi, qi) denote the total
number of failed rejection sampling steps in a run of
Alg. 1. Let TDYSC(S, k,Xi, qi) denote the total number
of rejection sampling steps in a run of Alg. 1.

Recall from lemma 4 that

Pqi(·|ηi)(0 ≤ Xi ≤ S −
i−1∑
j=1

xj) ≥
1

2

Consequently, the probability that a rejection sam-
pling step will fail is upper bounded by 1

2 .

Lemma 7.

E[RDYSC(S, k,Xi, qi)] ≤ k − 1

Proof sketch: The number of failed rejection sampling
steps in iteration i at line 8 is geometrically distributed
with some probability pi ≥ 1/2. Thus, we obtain

E[RDYSC(S, k,Xi, qi)] =

k−1∑
i=1

E[Geom(pi)]

≤
k−1∑
i=1

E[Geom(
1

2
)] =

k−1∑
i=1

1− 1
2

1
2

= k − 1

Lemma 8.

Var[RDYSC(S, k,Xi, qi)] ≤ 2k − 2

Proof sketch:

Var[RDYSC(S, k,Xi, qi)] = Var[

k−1∑
i=1

Geom(pi)]

=

k−1∑
i=1

Var[Geom(pi)] ≤
k−1∑
i=1

Var[Geom(
1

2
)] = 2k − 2

Lemma 9.

P (TDYSC(S, k,Xi, qi) ≥ 4k − 3) ≤ 1

2k − 2

Proof sketch: Apply Chebyshev’s inequality to lem-
mas 7 and 8.

5 Experiments

We have performed experiments on several cases to
test both the efficiency and sample quality of our al-
gorithm. In particular, we would like to analyze the
effects of dynamic scaling of proposal distributions. To
this end, the base method is importance sampling with
the same proposal distributions as DYSC but with-
out scaling (IS for short in the following). For IS, we
employ for each variable Xi the same rejection-based
method as DYSC.

5.1 Effectiveness of DYSC

To evaluate the quality of DYSC, we set the prior dis-
tribution to be discrete in order to exactly calculate
the true posterior distribution (The DYSC algorithm
can be extended in a straightforward manner to dis-
crete random variables). In our first experiment, we
adopt the following example.

Case 1 k i.i.d. variables Xi ∼ p(X) = Poisson(λ)

such that
∑k
i=1Xi = s.

We show the figures for the first example with various
setting of k, s and λ. Fig 2(a) shows the marginal
conditional distribution of X5 for k = 5, s = 100, and
λ = 5. The histograms are produced by generating
10,000 samples using each method.

Note the importance sampling without dynamic scal-
ing of proposals produces empirical distribution far
away from the true posterior. Fig. 2(b) shows the dif-
ference (measured by Kolmogorov–Smirnov score) of
sampled x5 from the true posterior as we draw more
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Figure 2: (a): Histogram of 10,000 (weighted) samples for x5 (k = 5, s = 100, xi ∼ Poisson(λ) and λ = 5). Note
importance sampling without dynamic scaling (IS) differs significantly from the true posterior. (b): Kolmogorov–
Smirnov score for empirical distribution of x5 against the true posterior, with the same setting as (a). Note DYSC
quickly converges to zero (ideal) with more samples drawn. (c): Wall clock time for increasing number of samples
(k = 5, s = 50, λ = 10 and λ = 25).
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Figure 3: Wall clock time as a function of the number
of variables (s = 50, xi ∼ Poisson(λ), and λ = 20);
100 samples per run, averaged over 10 runs. Note the
IS does not finish on large cases.

samples (s = 100, k = 5 and λ = 5). Note DYSC
quickly converges to zero (ideal) with more samples
drawn while IS shows no clear sign of converging.

Fig. 2(c) shows the running time for k = 5, s = 50, λ =
10, and λ = 25. Note in both cases, DYSC has almost
the same running time for different prior parameters,
while IS varies drastically and does not finish in some
cases. Fig. 5.1 shows the running time for varying
number of variables (s = 50 and λ = 20). Note the
IS method quickly consumes exponential time, while
DYSC has linear time complexity in k.

5.2 Modeling phone calls

Mobile operators often want to predict consumer be-
havior by simulating the number of phone calls for
each customer. It is observed that heavy-tailed dis-
tributions (e.g., LogNormal) model phone calls well in
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Figure 4: Wall clock time as a function of the number
of variables (s = 100, xi ∼ LogNormal(0, 1)); 100 sam-
ples per run, averaged over 10 runs. Note the linear
scalability of DYSC. In contrast, importance sampling
without dynamic scaling (IS) can only finish when k
is small.

practice [22]. We will simulate numbers of phone calls
for k customers with a given total sum.

Case 2 k i.i.d. variables Xi ∼ p(X) =

LogNormal(µ, σ) such that
∑k
i=1Xi = s.

In our experiment, we test the running time of both
importance sampling with and without dynamic scal-
ing. DYSC can sample efficiently even with k =
300, 000 and takes approximately 20 minutes to draw
100 samples in this case. DYSC scales linearly with in-
creasing number of variables as shown in Fig. 4, while
IS explodes when sampling more than ten variables.
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6 Discussion and Generalization

Stability: DYSC can be viewed as a sequential im-
portance sampler (SIS). In some cases, SIS methods di-
verge exponentially as the number of variables grows.
DYSC modifies its proposal distribution in a forward
looking way after each variable is sampled, so its be-
havior may be more robust than naive SIS on deter-
ministic evidence.

Resampling: The success of sequential importance
resampling (SIR) methods may suggest the addition
of resampling during each step of DYSC. SIR meth-
ods are effective when we can calculate the conditional
marginal distributions (e.g. p(x1|s), p(x2|x1, s), . . . ).
However, with deterministic evidence these conditional
marginal distributions do not in general have closed
form solutions.

Generalization: The approach of dynamically scal-
ing proposal distributions can be extended to ev-
idence involving other deterministic functions, e.g.,
weighted summation and multiplication, logical func-
tions like AND, OR, XOR over Boolean values. In
general, suppose the observed evidence is a function
Z = f(X1, . . . , Xk), where each variable has its own
prior distribution. Again, the goal is to generate
samples with respect to the posterior distribution of
P (X1, . . . , Xk|f(X1, . . . , Xk) = s). We can extend our
DYSC algorithm to a class of functions that can be
represented as binary operation trees with certain ad-
ditional conditions.

When f is multiplication, a solution can be obtained
using logarithms to reduce the problem to a summa-
tion constraint that DYSC can handle. When such
tricks are not possible, a more general approach can be
developed. We require that the “input variables” (vari-
ables with prior distribution) appear only once in the
tree and that each binary operation be argument-wise
invertible—that is, for each binary function gi(x, y)
there should exist efficiently computable functions
h1i (z, y) and h2i (z, x) such that gi(h

1
i (z, y), y) = z and

gi(x, h
2
i (z, x)) = z. Proofs of the runtime properties of

DYSC on trees remain to be derived.

Another direction for future work is extending the al-
gorithm to dependent random variables. The DYSC
algorithm in this paper only considers cases with in-
dependent prior distributions. In the dependent cases
(e.g., Fig. 1(b)), we can still decompose the expected
sums into parts by linearity of expectation. We do not
yet know how to scale the proposal properly to match
the posterior expectation.

7 Conclusion

Standard sampling algorithms for Bayes nets often fail
in the presence of deterministic constraints. In this
paper, we propose a fast algorithm, DYSC, to han-
dle such determinism, and demonstrate our solution
for summation evidence over continuous random vari-
ables. We show that in general it is NP-hard to gen-
erate high quality samples from the posterior distri-
bution conditioned on the target sum by reducing the
corresponding decision problem to SUBSET-SUM. We
discuss generalizations of our approach that handle a
larger class of deterministic functions defined by bi-
nary operation trees. Our algorithms can serve as
building blocks for the general inference problem in
Bayesian networks; we envisage MCMC systems with
large libraries of such “expert” sub-model samplers.

References

[1] Z. I. Botev and D. P. Kroese. An efficient algorithm for
rare-event probability estimation, combinatorial opti-
mization, and counting. Methodology and Computing
in Applied Probability, 10(4):471–505, 2008.

[2] G. Broström and L. Nilsson. Acceptance-rejection
Sampling from the Conditional Distribution of Inde-
pendent Discrete Random Variables, given their Sum.
Statistics, 34(3):247–257, Jan. 2000.

[3] F. Cérou, P. Del Moral, T. Furon, and A. Guyader. Se-
quential Monte Carlo for rare event estimation. Statis-
tics and Computing, 22(3):795–808, 2012.

[4] X. H. Chen, A. P. Dempster, and J. S. Liu.
Weighted finite population sampling to maximize en-
tropy. Biometrika, 81(3), 1994.

[5] H. Chin and G. Cooper. Bayesian belief network in-
ference using simulation. In Uncertainty in Artificial
Intelligence 3 Annual Conference on Uncertainty in
Artificial Intelligence (UAI-87), pages 129–147, Ams-
terdam, NL, 1987. Elsevier Science.

[6] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiser-
son. Introduction to Algorithms. McGraw-Hill Higher
Education, 2nd edition, 2001.

[7] P. Diaconis and B. Sturmfels. Algebraic algorithms for
sampling from conditional distributions. The Annals
of Statistics, 26(1), 1998.

[8] A. Dobra, C. Tebaldi, and M. West. Data aug-
mentation in multi-way contingency tables with fixed
marginal totals. Journal of Statistical Planning and
Inference, 136(2):355–372, 2006.

[9] J. R. Douceur. The sybil attack. In Revised Pa-
pers from the First International Workshop on Peer-
to-Peer Systems, IPTPS ’01, pages 251–260, London,
UK, UK, 2002. Springer-Verlag.

[10] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
SIGCOMM ’99, pages 251–262, New York, NY, USA,
1999. ACM.



     405

Lei Li, Bharath Ramsundar, Stuart Russell

[11] P. Felzenszwalb, D. Huttenlocher, and J. Kleinberg.
Fast algorithms for large state space HMMs with ap-
plications to web usage analysis. In Advances in Neu-
ral Information Processing Systems, 2003.

[12] R. Fung and K.-C. Chang. Weighing and integrat-
ing evidence for stochastic simulation in Bayesian net-
works. In Proceedings of the Fifth Conference Annual
Conference on Uncertainty in Artificial Intelligence
(UAI-89), pages 112–117, New York, NY, 1989. El-
sevier Science.

[13] R. M. Fung and B. D. Favero. Backward simulation
in Bayesian networks. In UAI, pages 227–234, 1994.

[14] V. Gogate and R. Dechter. Samplesearch: Importance
sampling in presence of determinism. Artif. Intell.,
175(2):694–729, Feb. 2011.

[15] M. Henrion. Propagating uncertainty in Bayesian net-
works by probabilistic logic sampling. In UAI, pages
149–164, 1986.

[16] A. B. Huseby, M. Naustdal, and I. D. Varli. System
reliability evaluation using conditional Monte Carlo
methods. in Statistical Res. Rep, 2:0806–3842, 2004.

[17] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook
of Monte Carlo Methods. Wiley, 2011.

[18] S. Lawrence and C. L. Giles. Searching the world wide
web. Science, 280(5360):98–100, 1998.

[19] I. B. Mugtussids. Flight Data Processing Techniques
to Identify Unusual Events. PhD thesis, Virginia Tech,
2000.

[20] J. Pearl. Evidential reasoning using stochastic simula-
tion of causal models. Artificial Intelligence, 32:247–
257, 1987.

[21] D. B. Rubin. The calculation of posterior distribu-
tions by data augmentation: Comment: A noniter-
ative sampling/importance resampling alternative to
the data augmentation algorithm for creating a few
imputations when fractions of missing information are
modest: The SIR algorithm. Journal of the American
Statistical Association, 82(398):pp. 543–546, 1987.

[22] M. Seshadri, S. Machiraju, A. Sridharan, J. Bolot,
C. Faloutsos, and J. Leskove. Mobile call graphs: be-
yond power-law and lognormal distributions. In KDD
’08, pages 596–604, New York, NY, USA, 2008. ACM.

[23] R. D. Shachter and M. A. Peot. Simulation approaches
to general probabilistic inference on belief networks.
In M. Henrion, R. D. Shachter, L. N. Kanal, and J. F.
Lemmer, editors, UAI, pages 221–234. North-Holland,
1989.

[24] R. W. Sittler. An optimal data association problem
in surveillance theory. IEEE Transactions on Military
Electronics, 8(2):125 –139, 1964.

[25] E. B. Sudderth and M. I. Jordan. Shared segmenta-
tion of natural scenes using dependent Pitman–Yor
processes. In NIPS, pages 1585–1592, 2008.

[26] D. Tarlow, K. Swersky, R. S. Zemel, R. P. Adams,
and B. J. Frey. Fast exact inference for recursive car-
dinality models. In N. de Freitas and K. P. Murphy,
editors, UAI, pages 825–834. AUAI Press, 2012.

[27] L. Tierney. Markov chains for exploring posterior dis-
tributions. The Annals of Statistics, 22(4):1701–1728,
1994.

[28] J. Vermaak, S. J. Godsill, and P. Perez. Monte Carlo
filtering for multi-target tracking and data associa-
tion. IEEE Transactions on Aerospace and Electronic
Systems, 41:309–332, 2005.


