LEARNING MIXED GRAPHICAL MODELS

Appendix A. Proof of Convexity

Proposition 1.The negative log pseudolikelihood in (9) is jointly convex in all the param-
eters {Bss, Bsts s, Orj, psj } over the region Bss > 0.

Proof To verify the convexity of £(©|z,y), it suffices to check that each term is con-
vex. —logp(yr|y\,,x;©) is jointly convex in p and ¢ since it is a multiclass logistic re-
gression. We now check that —logp(zs|z\s,y;©) is convex. —% log Bss is a convex func-

(s 2
tion. To establish that % (ﬁ +3; p”ii“) =D it gi Xy — ms) is convex, we use the fact

that f(u,v) = 5(% —¢)? is convex. Let v = fBos, u = a5 + 225 Psi(¥) = Doizs Bt
and ¢ = z,. Notice that x4, s, y;, and x; are fixed quantities and u is affinely re-
lated to B and psj. A convex function composed with an affine map is still convex, thus

Bes (s +>° Lj(yj)—z Bst gy — 2isconvex
2 683 ] 685 t#'s 683 t S :
1 (u—cv)?

To finish the proof, we verify that f(u,v) = 5(% — ¢)* = =L is convex over v > 0.
The epigraph of a convex function is a convex set iff the function is convex. Thus we estab-

lish that the set C' = {(u,v,t)]%M < t,v > 0} is convex. Let A = v -
Y u—cv t

N2
The Schur complement criterion of positive definiteness says A > 0iff v > 0 and ¢ > w

The condition A > 0 is a linear matrix inequality and thus convex in the entries of A. The
entries of A are linearly related to u and v, so A > 0 is also convex in v and v. Therefore

v>0and ¢t > (=)’

—— is a convex set. |

Appendix B. Sampling From The Joint Distribution

In this section we discuss how to draw samples (x,y) ~ p(x,y). Using the property that

p(z,y) = p(y)p(z|y), we see that if y ~ p(y) and & ~ p(z|y) then (z,y) ~ p(z,y). We have
that

p(v) 5 exp (3 b wr3) + 50()" B~ p(a) (21)

T?j

(p(y))s = Z Ps;(Y;) (28)

p(zly) = No(B~'(a+ p(y)), B~ (29)

The difficult part is to sample y ~ p(y) since this involves the partition function of the
discrete MRF. This can be done with MCMC for larger models and junction tree algorithm
or exact sampling for small models.

Appendix C. Maximum Likelihood

The difficulty in MLE is that in each gradient step we have to compute T'(z, y)—Epe) [T(,v)],

the difference between the empirical sufficient statistic T(ac,y) and the expected sufficient
statistic. In both continuous and discrete graphical models the computationally expensive
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step is evaluating E,e) [T'(x,y)]. In discrete problems, this involves a sum over the discrete
state space and in continuous problem, this requires matrix inversion. For both discrete
and continuous models, there has been much work on addressing these difficulties. For dis-
crete models, the junction tree algorithm is an exact method for evaluating marginals and
is suitable for models with low tree width. Variational methods such as belief propagation
and tree reweighted belief propagation work by optimizing a surrogate likelihood function
by approximating the partition function Z(©) by a tractable surrogate Z(©) (Wainwright
and Jordan, 2008). In the case of a large discrete state space, these methods can be used
to approximate p(y) and do approximate maximum likelihood estimation for the discrete
model. Approximate maximum likelihood estimation can also be done via Monte Carlo esti-
mates of the gradients T'(z, y) — Epe)(T(z,y)). For continuous Gaussian graphical models,
efficient algorithms based on block coordinate descent (Friedman et al., 2008b; Banerjee
et al., 2008) have been developed, that do not require matrix inversion.
The joint distribution and loglikelihood are:

p(z,y;©) —exp(—§a:TBa:+(a+p To 4+ 6ri(yrv5))/2(0)
(r.g)

1
ﬁ(@) = 5:1:TB:L’ - (a + p Ty — Z ¢rj yryyg)
(r.3)

+ log Z/dxexp ——m TBx + (a + p(v/')Tx) exp Z(bm yr,y] )))
(r.4)

The derivative is

aB 2" Z(©)
_ 1 T 1 T /.
= oo+ [ S (-geaTpla.y/:0)
Yy
1 T 1 T /. !
= goa” + 3 [ ~gea"plaly’: i)
Yy

ST DY / 5 (B 4 B ot pl))(a + o)) B ply))
.

o0 1 o . [dz(3,, —52aT exp(—52" Bz + (o + p(y)) Tz + > ) ri (W, 93)))

The primary cost is to compute B~! and the sum over the discrete states .
The computation for the derivatives of ¢(©) with respect to ps; and ¢,; are similar.

or

qu(ab) —1(yr = a,y; = b) —i—Z/d:I;lyr—ay]b) (x,9';0)

~Lyr = a,y; =b) + > _ 1y, = a,9; = b)p(y))
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The gradient requires summing over all discrete states.
Similarly for psj(a):
or
psj(a)

—1(y; = a)rs + Z/dw(l(yg =a)zs)p(a’,y'; ©)

=—1(y; = a)zs + /d:vzwsp(wly’\j,y§ = a)p(y;, ¥} = a)
v
MLE estimation requires summing over the discrete states to compute the expected sufficient
statistics. This may be approximated using using samples (x,y) ~ p(x,y; ©). The method

in the previous section shows that sampling is efficient if y ~ p(y) is efficient. This allows
us to use MCMC methods developed for discrete MREF’s such as Gibbs sampling.

Appendix D. Choosing the Weights

We first show how to compute ws;. The gradient of the pseudo-likelihood with respect to
a parameter p,;(a) is given below

ol - ‘ , o o
Dps;(a) - Zl —2x1 [y; = a]ay + By (1ly; = a]:z:s|y<j,azz) + Epp (1]y; = a]wsll”\s,y’)
=Y —2x 1[y} = a]al + aip(y; = a) + 1]y} = o s
i=1
=Y 1y = a] (s — 2l) + 2l (p(y; = a) — 1[y} = d])
=1
Zn |
=D (1y; = a] = p(y; = ) (fss — 25) + (2 — 1) (By; = @) — 1]y = a])
i=1
(30)
n
=21y = ] — Bly; = @) (i — 21) (31)
i=1
Since the subgradient condition includes a variable if H H > )\, we compute F H H
By independence,
2
L[y; = a] = p(y; = @)) (f1s — ) (32)
=4nkEp, <H ]l[y; = a} —ply; = a)H2> Epp ( s — xi’HQ) (33)

= 4(n —1)p(y; = a)(1 - p(y; = )0} (34)
The last line is an equality if we replace the sample means p and i with the true values p and

2
. Thus for the entire vector py; we have £, % H =4(n—1) (>, ply; = a)(1 — p(y; = a)) o2.
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If we let the vector z be the indicator vector of the categorical variable y;, and let the vector
=12
p =p(y; = a), then E,, % ‘ =4(n—1)Y,pa(l — pa)o? = 4(n — 1)tr(cov(z))var(z)

and ws; = \/>_, Pa(l — pa)o?.
We repeat the computation for G.

o0 I o N
55 = O 2w+ By (il ) + By (elailoy . v)
s i=1

n

= Z —22tah + sl + gt
i=1
n . . -

= > ailds — 2i) + 2k — xf)
i=1

= Z(x;‘ = fu)(fis — @) + (2 — fis) (fie — )

372k — ) s — )
i=1

Thus
n . . 2
> 2 — ) (s — )
i=1
— 4By, |lw: — fit])? Epp |75 — sl
PF L pr [|[Ts — Ms
= 4(n —1)o20?
ol 2
Thus E,, mH = 4(n — 1)o20? and taking square-roots gives us ws; = 0s0%.
We repeat the same computation for ¢,;. Let p, = Pr(y, = a) and ¢, = Pr(y; =b).
8—57 = zn:—ll[yi = a] Il[yli = b] + E (1]y, = a]l]y; = bl|y\ z)
a¢rj(a7 b) — T J J T

+E (ll[yr = a]lly; = blly;, z)

_Z [y = a] 1 [y} = 0] +pal[y; = 0] + @ 1[y; = af
= 1[y; = b](Pa — L[y} = a]) + L[y} = a] (& — 1[y; = b])
i=1
—Z [} = ] = @) (Pa — 1y} = a]) + (L[ = a] — $u)(@ — 1[5 = b])

—22 [} = 0] = @) (Pa — L[y = a])
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Thus we compute

n 2

> 2(1fys =] — @)(pa — L[y; = a])
i=1

- 4nEpF H(jb - H[yj - b]HQEPF ”pa - ]l[yr = a]||2
=4(n—1)ag(1 — g)pa(l — pa)

ol

E -
pr 8gbm~(a, b)

=F

ol
8¢rj

\/Zﬁil Sy a(1 — a)pa(l — pa).

2 _
From this, we see that E,, = 25;1 5;1 4(n —1)gp(1 — gp)pa(l — pe) and wy; =
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