A Parallel, Block Greedy Method for Sparse Inverse Covariance
Estimation for Ultra-high Dimensions

Prabhanjan Kambadur
IBM T.J. Watson Research Center
pkambadu@us.ibm.com

Abstract

Discovering the graph structure of a Gaus-
sian Markov Random Field is an important
problem in application areas such as com-
putational biology and atmospheric sciences.
This task, which translates to estimating the
sparsity pattern of the inverse covariance ma-
trix, has been extensively studied in the lit-
erature. However, the existing approaches
are unable to handle ultra-high dimensional
datasets and there is a crucial need to de-
velop methods that are both highly scal-
able and memory-efficient. In this paper, we
present GINCO, a blocked greedy method
for sparse inverse covariance matrix estima-
tion. We also present detailed description of
a highly-scalable and memory-efficient imple-
mentation of GINCO, which is able to oper-
ate on both shared- and distributed-memory
architectures. Our implementation is able re-
cover the sparsity pattern of 25,000 vertex
random and chain graphs with 87% and 84%
accuracy in < 5 minutes using < 10GB of
memory on a single 8-core machine. Fur-
thermore, our method is statistically consis-
tent in recovering the sparsity pattern of the
inverse covariance matrix, which we demon-
strate through extensive empirical studies.

1 Introduction

Estimating the network structure of a Gaussian
Markov random field (GMRF) is a key building block
in many modern applications such as biological net-
work discovery and climate modeling. Given its ap-
plications, this task has become a classical problem
in high dimensional statistics, machine learning, and
optimization. Estimating the network structure of

Appearing in Proceedings of the 16" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2013, Scottsdale, AZ, USA. Volume 31 of JMLR: W&CP
31. Copyright 2013 by the authors.

351

Aurélie Lozano
IBM T.J. Watson Research Center
aclozano@us.ibm.com

GMREF is equivalent to estimating the inverse covari-
ance matrix of a multivariate Gaussian distribution
given some independently drawn samples; in short, the
non-zero entries of the inverse covariance matrix map
to the underlying graph structure of the GMRF.

A popular approach to estimating sparse inverse co-
variance matrices is the ¢1-penalized maximum like-
lihood formulation, which results in log-determinant
optimization problems. Solutions to the ¢i-penalized
maximum likelihood formulation include block co-
ordinate descent [3, 13], greedy coordinate de-
scent [15], projected subgradient [2], alternating lin-
earization [14], second order methods including an
inexact interior point method [8], and a quadratic
approximation-based method (QUIC) [4]. Of these so-
lutions, QUIC has been reported to be significantly
faster than the rest. QUIC achieves economy of com-
putation by using an inner coordinate relaxation iter-
ation to compute the Newton step and exploiting the
properties of this relaxation on a function that is the
sum of a convex quadratic and an ¢; term.

Recently, greedy selection methods have received con-
siderable attention as an alternative to f;-penalized
methods. Greedy methods are iterative procedures
that perform forward greedy feature selection steps
and optional backward greedy removal steps; each step
is followed by a re-estimation of the model parame-
ters. The most popular greedy method is Orthogo-
nal Matching Pursuit (OMP) [10], which originated
from the signal-processing community. Strong the-
oretical performance guarantees and empirical sup-
port for greedy methods’ variable selection and esti-
mation accuracy have been provided under the linear
model [17, 9]. Recently, these guarantees have been
extended to the multiple kernel learning setting [16].
The most striking result for greedy methods pertains
to sparse inverse covariance estimation: greedy meth-
ods need significantly fewer samples than their /;-
penalized counterparts — O(dlog(p)) vs O(d*log(p))
— to recover the true network structure with high
probability, where d is the maximum degree in the true
inverse covariance matrix and p its dimensionality [6].

A Parallel, Block Greedy Method for Sparse Inverse Covariance Estimation for Ultra-high Dimensions

In addition, restricted eigenvalue and smoothness re-
quirements are much weaker for greedy methods when
compared to their /i-penalized counterparts.

The focus of the current paper is to tackle the inverse
covariance estimation problem for ultra-high dimen-
sions, which is a setting that is increasingly preva-
lent in applications domains such as next generation
sequencing and ultra-high resolution climatology. In
such settings, in addition to fast convergence, algo-
rithms need to be highly scalable and memory ef-
ficient. The ¢; penalty does not provide a “firm”
control over the sparsity of the intermediate solu-
tions. Consequently, ¢1-penalized approaches, though
efficient in terms of optimization convergence, may
reach dense intermediate solutions, which are unac-
ceptable memory-wise when dealing with > 10000 di-
mensions. In addition, ultra-high dimensional prob-
lems have a low ratio of sample size (m) to dimension-
ality (m << p); greedy methods require fewer sam-
ples than ¢;-penalized approaches. Therefore, we be-
lieve that greedy methods are better-suited to tackle
the problem of sparse inverse covariance estimation for
ultra-high dimensional datasets. Till now, the sequen-
tial nature of the forward and backward steps in the
greedy methods remained a bottleneck to their scala-
bility. In this paper we propose to mitigate this bot-
tleneck by introducing blocking and efficient compu-
tational techniques borrowed from high performance
computing. Our approach, titled Greedy Inverse Co-
variance estimation, or GINCO, is able to recover the
sparsity pattern of 25,000 vertex random and chain
graphs with 87% and 84% accuracy in < 5 minutes
using < 10G B of main memory on a single 8-core ma-
chine. The key contributions of this paper are:

e Blocking: We extend traditional greedy methods
to select multiple candidates in both the forward
and backward phases. Blocking results in significant
speedups with little or no loss in accuracy.

e Theoretical guarantees: We show that GINCO is
statistically consistent in recovering the sparsity
pattern of the inverse covariance matrix. In par-
ticular, we prove that GINCO preserves the signif-
icant improvement on the sample size requirements
that is enjoyed by the traditional (unit block) greedy
methods over ¢q-penalized counterparts.

e Parallelization: We exposit the procedure for ef-
ficient parallelization of GINCO, which results in
a highly-scalable and memory-efficient implementa-
tion that can exploit both shared- and distributed-
memory architectures simultaneously.

o Empirical studies: To demonstrate the accuracy and
efficiency of GINCO, we present extensive and de-
tailed small-scale and large-scale experiments.

2 Method

Algorithm 1: GreedyInverseCovariance

Input: S: sample covariance, 7: max number of
predictors, by: forward step block size, by:
backward step block size, €;: min forward gain, €:
backward stop factor. e,: refitting tolerance.

Output: W: inverse covariance, X: covariance, L:

maximum likelihood estimate.

1 W=1Ipp =1 L= 1trS;

2 while true do

bs =Min(bys, (T—NNZ(W)));

M =ForwardEvaluator(S, X, W, L, bs);

if M == () then break;

(Wy, Xy, Ly) =Update(M, S, W, 3, L);

(Wy, 2y, Ly) =Refit(Wy, X5, Ly, S, €r);

o = % if 6y < ey then break;

(W, %, L) = (Wy, 5y, Ly);

10 | while true do

11 bs =Min(by,NNZ(W));

12 M =BackwardEvaluator(S, X, W, L, bs);

13 if M == () then break;

14 (Wy, X, Ly) =Update(M, S, W, %, L);

15 (Wh, 2, Ly) =Refit(Wy, Xp, Ly, S, €);

16 | |6 = Ehpf if 6, > rey then break;

17 (W7E7L) - (Wb,Eb,Lb);

18 | return (W, %, L);

© 0 N0 U W

Let X(p,m) be the matrix of observations that are as-
sumed to be generated from a zero-mean Gaussian vec-
tor. Let S be the sample covariance matrix, which is
defined as S = Lxm XHF(XE)T Let W*, £* be
the true covariance and inverse covariance matrices,
respectively (W* = ¥*~1). Then, the inverse covari-
ance matrix can be estimated by greedy minimization
of the Gaussian log-likelihood loss

L= mwi/n[tr WS — log det W] (1)

A forward-backward algorithm to compute W greedily
was given in [6]. In our work, we extend this method to
handle block additions and deletions to the iterate W
and exposit the procedure that we followed in detail.
Our method, GreedylnverseCovariance() or GINCO, is
outlined in Algorithm 1. Traditionally by and by, the
block sizes for forward and backward phases, are 1,
which indicates picking just one candidate to make
non-zero at each iteration; note that 0 < 7 < ”QT_”
and (bf,by) < 7, where 7 is the maximum number of
candidates to select. In the first phase, we initialize all
the required variables; W and ¥ are initialized to be
the identity (I, ,), and L, the objective is initialized
to be the trace of S. GINCO alternates between for-
ward (Algorithm 1, lines 3 — 9) and backward phases
(Algorithm 1, lines 11—17), which are similar in flavor.

In each phase, we first compute the block size
(by/bp), which determines the number of candi-

352

Prabhanjan Kambadur, Aurélie Lozano

dates to select for addition/deletion. The next step
is to select the required number of candidates by
sweeping through the list of potential candidates
(ForwardEvaluator()/BackwardEvaluator()) . In the
forward phase, the list of potential candidates con-
sists of all zero entries in W, whereas in the back-
ward phase, this list consists of all non-zero entries in
W the procedure for selecting the candidates is out-
lined in Section 2.1. Once the set of candidates (M,
set of (4,7, ;j)) are selected, matrices W, 3, and the
likelihood estimate L are updated (Update()). The
update to W consists of setting the chosen positions
to the computed values for those positions. However,
efficient updates to ¥ and L require care and are dis-
cussed in Section 2.2 and Section 2.3 respectively. Af-
ter updating the required values, we re-estimate the
value of the model parameters (W, %, L) to propagate
the selection/removal of the current set of candidates
(Refit ()). Refitting is done using coordinate descent
by iteratively re-estimating one position of W in each
iteration; the procedure stops when the change in L is
smaller than €,, the tolerance for refitting. Note that
we only need to refit those entries in W that share a
common row or column with any of the chosen candi-
dates. Next, the gain/loss from adding/removing the
chosen set of candidates is evaluated for significance.
In the forward phase, the gain from adding the can-
didates is expected to be at least €f; in the backward
phase, the maximum loss that we can tolerate due to
removal of the chosen set of candidates is the forward
gain times €, the backward stop factor. If we have
sufficient gain or minimal loss, the new set of candi-
dates is accepted and the process is repeated. The
forward phase terminates either if the maximum num-
ber of candidates (1) are selected or if the gain from
adding the current set of candidates is insufficient. The
backward phase terminates either if there are no more
candidates or loss from removing the current set of
candidates is too high.

2.1 Candidate Selection

A key part of the greedy procedure to estimate W is
to select the best candidates to add given the previ-
ous candidates; that is, we need to find a;; such that
L(W + A;;) is minimized, where A;; = ayj;(e;; + eji).
From Equation 1, we have:

L(W‘FA”) = tr (W + Aij)S—logdet (W + Aw) (2)

To get an equation in c«yj, first, consider the term
tr (W + A;;)S; this can be expanded as tr WS +
tr A;;S. Furthermore, given the structure of A;j,
tr Ay; S is simply 2a;j5s;;. Similarly, from the prop-
erty of determinants, we know that det (W + A;;) =

!See supplementary material for ForwardEvaluator(),
BackwardEvaluator(), Update(), and Refit ().

Algorithm 2: ComputeAlpha

Input: S: sample covariance matrix, 3: current estimate
of covariance, (7,j): position

Output: «: the value at position (i, j)

1 p =000y Y = 0 — 0605 = 5o

if |si]-7\ < 0 then

N

Sij—0%ij .

a | if (14 aaij)Q — 0620'1‘2‘0']‘]‘ > 0 then return ¢;
5 else
6 |¢p=0"+ 5
7 |if ¢ > 0 then
8 (aminyamax):d_ %i\/a;

S T
9 (ﬂmin: /Bmax) = my
10 if s;; > 0and v > 0 then oo = amaaz;
11 else if s;; > 0 and v < 0 then o = ain;
12 else if s;; <0 and v > 0 then a = amin;
13 else if s;; <0 and v <0 then o = amaq;
14 gif Bmin < @ < Bmaz then return o;

15 return oo

(dCt W)[(l + aijaij)Q
in Equation 2, we get:

— a;04045]. Substituting these
L(W + Az]) =trWS + 20&87;3' — (3)
log det W — log [(1 + avjoi;)° — ai;0ii055]

Rearranging the terms and substituting L(W) =
tr WS —logdet W, we get:

LW + As;) = L(W) 4 2a;58:5 — (4)
log [(1 4 vjoij)” — af;0ii0 5]

We see that the effect of adding A;; to W on L(W)

can be expressed as a function of a;:

— a;04i045] (5)

F(aij) = 204555 — log [(1 + ayjoy;)?
The value(s) of o;, which minimize(s) F(c;;) also min-
imize(s) L(W +A;;). To find this a;;*, we set the first
derivate of F with respect to a;; to 0 giving us:

5F — 9. — 20ij(1 + aijgij) — QOéjjO'iz'Ujj

=0 (6
—OzZ-UZ‘Z'O'jj ()

dai; i

Equation 6 is quadratic in a;;, which can be rewritten
and solved to get the roots:

[sij (0% — oiioij)lai; + (7)

(25401 — 03 + 0ii0jlaij + [si; — 03] = 0

0ii0j;

N 1 Oij 1
aij—%“mi\/%+w (8)
Equation 8 gives the unconstrained solution for agj.
To decide which of the two roots to choose requires
setting the second derivative of F(«) to 0. There are
two additional conditions that need to be checked to
ensure numerical stability. First, for many (4, j), the

353

A Parallel, Block Greedy Method for Sparse Inverse Covariance Estimation for Ultra-high Dimensions

value «; is infeasible. To ensure this, it is important to

ij
: SF 2_ 2
analyze the denominator of 5~ — (1+aoy;)° —a’0y;05;

— as well. This denominator can be rewritten as
(1 + a;j0i5)* — (0uj\/Fii0;;)?, which has the roots:
v = #;T“ In short, for an af; to be a valid

candidate for addition, it should lie between the two
values of ;. Second, for an a;; to be considered a can-
didate, we must test that W + A;; is positive-definite.
Algorithm 2 shows the procedure of computing « tak-
ing all the above factors into account. Note that Algo-
rithm 2 first tries to compute o;; as a linear approx-
imation if sij(a,?j — 040;;) is very small, which stems
from Equation 7. Algorithm 1 selects bs candidates at
a time. This is achieved by keeping the top-bs of all
the candidates available for section in both the forward
and the backward phases.

2.2 Updating ¥

When A;; = (ayj(e;j + e5;)) is added to W, S(W™1)
also needs to be updated. Because of the special struc-
ture of A;;, we use the following (Sherman-Morrison-
Woodbury) formula to update 3:

»—

a(l + aijoiy)(ZiX] + 3557 n
(1+ @ijoij)? — af;0ii05;
ag(aijiZlT +0'ii217'2?)

2
(1 + aijois)? — af; 005,

Ynew = (9)

The above equation shows us that when A;; is added
to W, S((W + A;;)7 ') receives a symmetric rank-2
update, which consists of the following (scaled) sym-
metric rank-1 matrices ZAE?—FE?) and Zj(2;+§)}“),

2.3 Updating Likelihood

When Aij = (aij(eij + eji)) is added to W, the new
likelihood (L(W +A4;;)) is computed using Equation 4.

2.4 Theoretical Analysis

We extend the analysis in [5] and show that GINCO
recovers the true structure of the inverse covariance
matrix. In particular, GINCO enjoys similar advan-
tage as its unit-block version proposed in [6] over ¢;-
penalized approaches. The impact of the block size
appears on the condition pertaining to the restricted
eigenvalue property. For ease of analysis, we consider
a variant of GINCO, where the foward step breaks if
6f = sup(; jyem L — (L + o jei j) < e, where L is the
log likelihood loss on entry to ForwardEvaluator() and
M are the candidates selected by it. Similarly, assume
that the backward step breaks if 6, = inf(; j)enr(L —
a; je; ;) — L > €,0f, where L is the log likelihood loss
on entry to BackwardEvaluator() and M are the candi-
dates selected for removal. We consider ¢, = 1/2.

354

Own
P1
P1
P1
P1
P2

Figure 1: The candidate matrix on the left with num-
bered candidates appearing in the upper triangle. The cen-

Rep

P2

(10N \V]
o O W
8 8

4
7
9

S O B

SO O O 8

—_

0

| | wof po| | HT

ter matrix shows how these candidates are sub-divided if
there were 2 processors P1 and P2 — candidates [1 — 5] are
evaluated by P1(z) and [6, 10] are evaluated by P2(0). The
corresponding row-ownership table is depicted on the right.
Notice that row 2 is needed by both P1 and P2; P1, being
higher numbered, is given ownership of row 2, but row 2 is
replicated (Rep) on P2 to minimize communication.

Assumptions Following [5], let p > 1 denote a con-
stant. Let A be a p X p sparse, symmetric ma-
trix with at most nd non-zero entries per row/col-

umn, where n > 2 + 4p2(\/L;p)b + v/2)2. The

population covariance matrix X* is assumed to sat-
isfy the restricted eigenvalue property: CrinlAllr <
(X%, A)) < pCpinl|Allp , where, || - || denotes the
Frobenius norm. The following theorem states the
sparsistency of GINCO.

Theorem 1 Suppose GINCO is run with block
sizes by by b, stopping threshold ey >
(2¢2n/p?)dlog(p)/m , where, d is the mazimum node
degree in the graphical model, and the true parame-
ters W* with support S* satisfy ming jes+ [W;| >
V/8er/p?, and that the sample size m > Kdlog(p)
for some constant K. Then, with probability at least
1 — ¢y exp(—cam), we have no false exclusion and no
false inclusions of entries, with c1,co > 0 constants.

3 Parallelization

To solve ultra-high dimensional problems, it is nec-
essary to efficiently parallelize Algorithm 1. Our
goals were: (1) achieve near-linear speedup in running
time as the number of processors/threads increase, (2)
maintain a near-flat memory profile as the number of
processors/threads increase, and (3) minimize memory
requirements by partitioning and exploiting sparsity
when possible. In this section, we give a brief descrip-
tion of key ideas that were used to achieve these goals.

3.1 Candidate Selection

Computationally, the most expensive step in Algo-
rithm 1 is the evaluation of candidates in the forward
phase (see Section 2.1). In this step, each unselected
element from the upper triangle of W is evaluated as
a potential candidate for addition. This 2-dimensional
forward evaluation space can be flattened and parti-

Prabhanjan Kambadur, Aurélie Lozano

P1
P1
P2
P2

Figure 2: An example of accumulation of row 4 from Fig-
ure 1. Processor P2 owns row 4, but it does not have all
the elements as we store only the upper triangle. Instead,
row 4 is formed by both P1 and P2 using Algorithm 3.

tioned amongst all the processing elements. For ex-
ample, consider the W5 5 matrix shown on the left in
Figure 1: the evaluation space in this case is [1, 10].
If this space were to be divided between processors
P1 and P2, each processor would get 5 elements each,
which is shown in the center of Figure 1. P1 and P2
can now independently choose their top candidates for
inclusion into W. Following this, a global reduction
of the top candidates across all processors gives us the
global list of top candidates. Parallelization of the
backward phase is similar; at each step, we need to
choose the top candidates for removal from our model
from the list of selected candidates, which constitutes
the backward evaluation space. However, as ¥ and S
are partitioned (see Section 3.2), candidates for evalua-
tion are assigned to processors based on the ownership
of relevant rows. In Figure 1, candidate 9 can only be
evaluated by P2, whereas candidates 5,6, and 7 can be
evaluated by either P1 or P2.

3.2 Partitioning S and ¥

To evaluate a candidate in position (7,), we need ac-
cess to Xj;, X5, X;; and S;; (see Algorithm 2). That
is, in Figure 1, apart from the diagonal of 3, processors
P1 and P2 only require access to rows [1,2] and [2, 5]
of ¥ and S, respectively. Therefore, both ¥ and S can
be partitioned by rows (with some overlap) and stored
across processors to conserve space; the ownership ta-
ble for the W5 5 example is shown in the far-right of
Figure 1; row 2, which is needed by both P1 and P2,
is replicated. As ¥ is both read and written, repli-
cated partitioning requires us to carefully update X to
avoid inconsistencies; therefore, we assign ownership
of each row to a distinct processor. In Figure 1, al-
though row 2 is replicated, ownership is assigned to
higher numbered P1; there are no strict rules to de-
termine ownership of replicated rows. Note that the
diagonal of ¥ is fully replicated on all processors.

3.3 Updating X

Update to ¥ requires the rows X; and ¥; (see Equa-
tion 9); as we partition and store only the upper tri-
angle of X, this step requires global participation. For

355

Algorithm 3: AccumulateRow

Input: 3. local portion of X, OW N: row ownership
(id — (first,last)), r: row to be accumulated,
id: ID of the current process.

Output: R: The accumulated row of %

1 Rpa,rt = @;

for i € OWN(id) do

if ¢ > r then break;
LAppend(Rpm«t, Siali,r));

if r € OWN(id) then Append(Rpart, Xici(r,:));
AllGatherV(Rpart, | Rpart|, R);
return R

W N

o

example, the elements needed to form >, are shown
in Figure 2. In this example, row 4 belongs to P2;
however, P2 needs values from P1 to complete row 4.
In GINCO, Algorithm 3 is used to form a row; each
processor owns a portion of X, which we refer to as
Y- To form row r, we traverse down column 7 and
then traverse across row r upon hitting the entry %,.,..
The first loop (line 2 in Algorithm 3) traverses along
the column; the next check ensures that we turn upon
reaching the diagonal and is encountered only on the
processor that owns row r. At this point, the process
that owns row r fills in rest of the entries of r. Finally,
all the processors send their portion of ¥,., which is
gathered and redistributed using AllGatherV() [11, 12].

Exploiting Sparsity ¥ starts out being hyper-
sparse (Ip,,) and it gradually becomes more dense.
The number of non-zeros added by an update to X
depends on the non-zero structure in ¥; and »;. For
sparse, structured problems such as chain graphs, we
can exploit sparsity to speed up these updates to X.

Block Update As discussed in Section 2.2, updates
to X are rank-2 updates, which have low compute-to-
memory ratio; consequently, the update operation is
memory bandwidth bound. In GINCO, we parallelize
this rank-2 update by partitioning 3 by rows, both at
thread- and processor-levels. When the block size, bs,
is > 2, one of three strategies can be followed to make
efficient updates to X; the choice of strategy is dictated
by the block size. First, we can apply the bs rank-2 up-
dates to ¥ one at a time, where each individual update
is parallelized as discussed above. This is the strategy
currently implemented in GINCO, and it is efficient
for small block sizes. Second, for medium-sized blocks,
we can update X in a tree-like fashion. That is, we can
separately prepare the bs rank-2 update matrices in
parallel and merge them using an n-ary tree till we are
left with a single rank-2 update matrix, which is used
to update . This strategy reduces the time complex-
ity of updating ¥ by a logarithmic factor at the cost of
increasing the memory consumption. Third, when the
block sizes are large — O(NNZ) — it is more efficient

A Parallel, Block Greedy Method for Sparse Inverse Covariance Estimation for Ultra-high Dimensions

GINCO
Case best worst QUIC
block | 1% | block | F1%
100-R 40 89.01 99 82.91 | 76.56
100-C 2 80.95 31 78.79 | 77.52
1K-R | 700 | 92.83 | 300 | 86.48 | 78.83
1K-C 10 86.13 | 999 | 79.72 | 77.68

Table 1: The mean accuracy (F1%) achieved by GINCO
(best and worst) and QUIC (100 simulated datasets per
case); for GINCO, we also list the block size at which
the reported mean accuracy was obtained. GINCO was
run with varying block sizes and for each block size, 100
simulations were run. For standard errors, see Figure 3.

to explicitly invert W using methods such as Cholesky
factorization to get the updated ¥ instead of using
Equation 9. This approach has the added benefit that
it allows us to use high-quality, parallel packages such
as ScaLAPACK [1] to compute X.

4 Results

To empirically determine the behavior of GINCO, we
conducted several small- and large-scale experiments.
Specifically, we wanted to answer three questions. (1)
Is GINCO as accurate as its f¢i-penalized counter-
parts? (2) How does block size affect accuracy and
running time? (3) Is GINCO scalable and if so, what
are the scaling characteristics? In this section, we pro-
vide detailed results and analyses of our experiments.

Throughout this section, we will use the Fj score,
which is the harmonic mean of precision and recall,
as the measure of accuracy. Following [4], we use
chain and random graphs in our experiments. Briefly,
chain graphs are tri-diagonal having 1 on the princi-
ple diagonal and 0.5 on the off-diagonal. For random
graphs, we first generate a sparse matrix X with ran-
domly chosen nonzero elements equal to +1 and then
set W* =T+ XTX; I is added to ensure that W is
positive definite. We control the number of non-zeros
in X so that the resulting W* has approximately 2p
nonzero elements. S is generated using § samples.

4.1 Small-scale Experiments

We designed small-scale experiments to study the im-
pact of blocking on the accuracy of GINCO, and to
compare GINCO to QUIC, its state-of-the art £;-
penalized counterpart. For GINCO, we used a MAT-
LAB prototype; for QUIC, we downloaded the mex
code, as suggested in [6]. Both experiments were run
on a single node of the oxygen cluster (Section 4.2)
using MATLAB (version number 7.6.0.324).

For QUIC, we set the subgradient tolerance threshold
to 1075, the maximum Newton iterations to 10p, and

356

100 100
CIOF T T Re—
o o,
S sof -
(]
D
o
g of 17
60 | 100-R === 1 60
100-C sessmsnnsn
IK-R
1K-C =
50 : : 50
0.001 0.01 0.1 1

Block Size (% of dimension)

Figure 3: Accuracy (F1%) of GINCO with varying block
sizes for 100-R, 100-C, 1K-R, and 1K-C. For each block
size, experiments were run on 100 different simulated
datasets — mean and standard deviation are provided.
Block sizes are reported on the z-axis as a % of the di-
mension of the graph; for example, for 100-R, multiply the
z-axis by 100 to get the actual block size.

the regularization parameter A to clog p, respectively;
¢ is a tuning constant selected by 10-fold cross valida-
tion. For GINCO, we set by = b, = b, and vary b. We
set ef = %, where d is the maximum degree of
the graph, ¢ is a tuning parameter selected by 10—fold
cross-validation, ¢, = 0.5 and ¢, = 1075, Finally, we
used 100 and 1000 vertex (p = 100, 1000) random (100-
R, 1K-R) and chain (100-C, 1K-C) graphs.

We first generated 100 simulated datasets for each
of the 4 graphs mentioned above and ran QUIC and
GINCO using the settings described above on these
datasets; for GINCO, this meant running 100 experi-
ments for each block size. We then computed the mean
and standard deviation of Fj scores (per block size
for GINCO) for each graph. Table 1 summarizes the
results of our accuracy studies with both QUIC and
GINCO. For GINCO, as we ran experiments with
multiple block sizes, Table 1 reports the block sizes at
which the best and the worst average F scores (mean
over 100 runs) were obtained. For example, for graph
100-R, GINCO at block size 99 had the worst mean F}
score when averaged over the 100 simulated datasets.
Figure 3 shows the mean and standard deviations of
F scores of GINCO for each block size. When taken
together, Table 1 and Figure 3 show that GINCO,
for any block size, outperforms QUIC consistently in
terms of selection accuracy.

4.2 Large-scale Experiments

We implemented a shared- and distributed-memory
parallel version of GINCO in C++. For shared-
memory parallelism, we use PFunc [7], a lightweight

Prabhanjan Kambadur, Aurélie Lozano

Name Type NNZ QUIC
time %
1K-R | Random | 2074 6.23 78.83
1K-C Chain 2996 6.03 77.68
4K-R | Random | 7900 | 264.72 | 78.59
4K-C Chain 11996 | 123.23 | 76.67
10K-R | Random | 20516 | 4913.78 | 80.55
10K-C | Chain | 29996 | 2997.24 | 79.67

Table 2: Characteristics of the graphs used in Section 4.2.
“K” stands for kilo; for example, 1K-R is a 1000 vertex
graph. We also list the running times (in seconds) and
F1% for QUIC on these graphs — the settings with which
these numbers were obtained are given in Section 4.1.

and portable library that provides C and C++ APIs
to express task parallelism. For distributed-memory
parallelism, we use MPI [11, 12], a popular library
specification for message-passing that is used exten-
sively in high-performance computing. We ran scal-
ability experiments on oxygen, a six-node cluster of
dual-socket, quad-core Intel® Xeon™ E5410 machine
with 32GB of RAM per-node running Linux Ker-
nel 2.6.31-23 (total 48 cores). For compilation, we
used GCC 4.4.1 with: “-03 -fomit-frame-pointer
-funroll-loops” in addition to PFunc 1.02 and
OpenMPI 1.4.5. All the graphs used in this sec-
tion were generated using the model specified in Sec-
tion 4.1. Table 2 gives detailed information about each
graph used in our experiments. Note that the number
of vertices discovered in each experiment is equal to the
number of non-zeros (NNZ) in the graph. Finally, all
the numbers reported were averaged over three runs.

Parallel Scaling Figure 4 depicts results of the scal-
ing studies conducted on the six graphs listed in Ta-
ble 2 2. In both the pure PFunc (multi-threaded) and
pure MPI case, we get near-linear speedup for all the
graphs (Figures 4(a) and 4(b)). Of these, 1K-C and
1K-R are lower performing as they do not have suffi-
cient computation to sustain linear speedups when the
number of threads/processes is > 4. For example, 4K-
C, 4K-R, 10K-C, and 10K-R all achieve >7.5x speedup
over 8 threads (Figure 4(a)), whereas 1K-C and 1K-R
only achieve 6.2x and 6.8x speedup. Another factor
in not achieving linear speedup is that the updates to
3 have a low compute-to-memory ratio and require
global communication (Section 3.3). Although global
communication can be avoided by replicating ¥ on all
the nodes, it is not advised as memory quickly becomes
a bottleneck as graph sizes increase. For example, a
100K vertex graph needs 100GB of memory per-node
if the matrices are not partitioned. Figure 4(c) shows
the speedups when running both PFunc and MPIT si-

?Baseline time for Figures 4(a) and 4(b) is the sequential
running time, whereas for Figure 4(c), the baseline time is
the 8-thread running time.

357

Name Block=NNZ Block=best
Time | £y (%) | Time | F1(%) | size
1K-R .03 93.62 0.03 | 93.62 | NNZ
1K-C .03 80.61 5.3 86.51 4
4K-R .28 98.23 4.5 98.27 128
4K-C .29 83.95 8.4 87.31 128
10K-R | 4.0 98.05 4.0 98.05 | NNZ
10K-C 1.6 84.65 34.3 89.6 512

Table 3: Accuracy (F1%) and running times for (in sec-
onds, 1 MPI process and 8 threads per-process) candidate
selection of using NNZ as the block-size is compared to the
best accuracy obtained for the same graphs.

multaneously. For 4K-C, 4K-R, 10K-C, and 10K-R,
we achieve speedups > 3.5 over 6 nodes (48 cores),
whereas 1K-C and 1K-R achieve lower speedups due
to the small problem size. Hybrid speedups are slightly
lower than the PFunc-only and MPI-only speedups be-
cause of Amdahl’s Law — all of the MPI communica-
tion happens in a single thread, which affects speedup.
This is a temporary restriction as, going forward, many
MPI implementations will start offering increased sup-
port for multi-threading. Note that hybridization is
necessary (as opposed to running MPI everywhere) to
fully exploit multi-core machines and to reduce the
communication between processes, which is expensive.
Finally, as the problem size increases, the sequential
portions of GINCO take up a smaller portion of the
overall time, which mainly consists of the O(p?) candi-
date evaluations; therefore, 4K-R, 4K-C, 10K-R, and
10K-C consistently achieve good speedups.

Memory scaling Our implementation, keeps only
one partitioned copy of 3 and S in memory — W is
fully replicated, but as it is sparse, we store it as (4, j, v)
triplets, which takes up little space. Therefore, the to-
tal memory needed by GINCO is almost independent
of the number of nodes and threads; as more nodes
are added, the memory usage per-node decreases along
with the partition size of S and ¥. The total mem-
ory usage (over all processes/threads) for the graphs
in Table 2 is: 1K-R and 1K-C(7MB), 4K-R and 4K-
C (100MB), and 10K-R and 10K-C (700MB), which
demonstrates the memory scalability of GINCO.

Block Scaling Block selection of candidates, either
in the forward phase or the backward phase, has the
same effect on running time of GINCO as paralleliza-
tion, modulo the accuracy of estimation. To charac-
terize the effect of block selection, we conducted ex-
periments on the graphs listed in Table 2 — these re-
sults are summarized in Figure 5. We used increasing
powers of 2 as the block sizes for the forward phase
(from 1 to 512) — the backward phase block size was
set to 1. All experiments were conducted on a single
node of oxygen with 8 threads; the times reported are

A Parallel, Block Greedy Method for Sparse Inverse Covariance Estimation for Ultra-high Dimensions

SR — 4 52 1K-R —— & M T g—
7t 1K-C = '5 1K-C weeeeedleeeees 35 | 1K-C ot
6| AKR e AK-R b 4K-R - -
a 4K-C e o 451 4K-C m- a 31 4K-C - i S
2 5} 10K-R 2 4 1 10K-R 3 y
b 10K-C & 357 10K-C I
& & 3 &
3t 25 o
“",m‘ 2 o
2T .,""\h“ 15 .»"yy &
11— : : : : : 1@ : : : : e : : : :
1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3 4 5 6
PFunc Threads (MPI Processes = 1) MPI Processes (PFunc Threads = 1) MPI Processes (PFunc Threads = 8)
(a) Multi-threaded (b) MPI (¢) Hybrid

Figure 4: Speedups of GINCO for the six different graphs described in Table 2 are shown in 4(a), 4(b), and 4(c).
1K-R and 1K-C were run with block size 1, 4K-R and 4K-C with block size 4, and 10K-R and 10K-C with block size
32. The baseline times (in seconds) for Figures 4(a), 4(b), and 4(c) are: 1K-R (66,66,9.6), 1K-C (120,120,19.4), 4K-R
(1039,1039,136.7), 4K-C (2032,2032,269.6), 10K-R, (2527,2527,333.6), and 10K-C (4219,4219,563.8), respectively.

af
“uwwawmﬂuwmﬂwWu\uwwa‘u‘k
100 80
o —~
2 60 X
3 =
UqJ- P -
10 ¢ e
lag
=
15 ‘
1 10

Block Size

Figure 5: Performance of GINCO with varying block sizes
for graphs listed in Table 2. Speedup is depicted on the left
y-axis and accuracy of estimation is depicted on the right
y-azis. Baseline times (in seconds, 1 MPI process and 8
threads per-process) are: 1K-R (9.8), 1K-C (18), 4K-R
(538), 4K-C (1046), 10K-R(10232), and 10K-C(17150).

only for candidate selection not the total running time.
The best accuracy listed is for the highest block size at
which that accuracy was achieved. For all the graphs,
as we increase the block size, we see a linear speedup
in candidate selection at the cost of little or no loss in
accuracy of estimation. For speedups, the only outlier
is 1K-R, whose speedup for block sizes 256 and 512 is
sub-linear as there are only 537 non-zeros. For ran-
dom graphs, we saw nearly no loss in accuracy as the
block sizes were increased; for chain graphs, the loss in
accuracy was at most 1%. This result shows us that
it is possible to use GINCO to solve high-dimensional
problems with large block sizes relatively quickly. Ta-
ble 3 compares the running times and accuracies ob-
tained when the block size is set to NNZ of each graph
with the best accuracies for that graph. Notice that
1K-R and 10K-R incur no loss in accuracy when the
block size is NNZ; the chain graphs incur < 6% loss
when compared to the best accuracy. However, the

improvement in running times when the block size is
NNZ is significant — we are able to obtain two orders
of magnitude speedup over smaller block sizes at the
cost of little or no loss in accuracy. The only outlier is
10K-R, which takes 6 seconds as using NNZ as block
size triggered multiple backward phases. Interestingly,
even when block size is set to NNZ, GINCO achieves
better accuracy than QUIC (see Table 2), while run-
ning to completion significantly faster than QUIC. For
example, GINCO, when run sequentially with block
size of NNZ, requires 42.38 and 58.2 seconds to run
to completion for 10K-R and 10K-C; QUIC requires
4913.3 and 2997.24 seconds, respectively.

5 Conclusion and Future Work

In this paper, we presented GINCO, a parallel, block
greedy method for sparse inverse covariance estima-
tion. Through extensive empirical analysis, we have
demonstrated that GINCO is able to best the accu-
racy and running times of its competing ¢;-penalized
counterparts. We have also demonstrated that by
using blocking, we significantly reduced the running
time GINCO at the cost of little or no loss in accu-
racy. Finally, we have presented the detailed design of
our massively-parallel version of GINCO that is able
to exploit both shared- and distributed-memory ma-
chines. Our parallel implementation is able to discover
the network structure of random and chain graphs
with 25,000 dimensions in < 5 minutes using < 10GB
of main memory with high accuracy on a single 8-core
machine — solutions to a problem of this ultra-high
dimension have not been reported in literature.

GINCO currently implements a serialized version of
block updates to X; this strategy is not optimal for
medium or large block sizes. In the future, we would
like to evaluate the alternative strategies to update X
(see Section 3.3) to further improve the performance
of GINCO for medium and large block sizes.

358

Prabhanjan Kambadur, Aurélie Lozano

References

[1]

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-
ling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK Users’ Guide.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1997.

J. Duchi, S. Gould, and D. Koller. Projected sub-
gradient methods for learning sparse gaussians.
In Proceedings of the Twenty-fourth Conference
on Uncertainty in AI (UAI), 2008.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse
inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432-441, 2008.

Cho-Jui Hsieh, Matyas A. Sustik, Inderjit S.
Dhillon, and Pradeep Ravikumar. Sparse inverse
covariance matrix estimation using quadratic ap-
proximation. In J. Shawe-Taylor, R.S. Zemel,
P. Bartlett, F.C.N. Pereira, and K.Q. Weinberger,
editors, Advances in Neural Information Process-
ing Systems 24, pages 2330-2338. http://nips.cc/,
2011.

Ali Jalali, Christopher C. Johnson, and
Pradeep D. Ravikumar. On learning dis-
crete graphical models using greedy methods.
Advances in Neural Information Processing
Systems (NIPS) and extended arxziv version,
2011.

Christopher C. Johnson, Ali Jalali, and
Pradeep D. Ravikumar. High-dimensional
sparse inverse covariance estimation using greedy
methods. Journal of Machine Learning Research
- Proceedings Track, 22:574-582, 2012.

P. Kambadur, A. Gupta, A. Ghoting, H. Avron,
and A. Lumsdaine. PFunc: Modern Task Par-
allelism For Modern High Performance Comput-
ing. In ACM/IEEE conference on Supercomput-
ing, 2009.

Lu Li and Kim chuan Toh. An inexact interior
point method for 11-regularized sparse covariance
selection. Technical report, National University
Of Singapore, 2010.

A.C Lozano, G Swirszcz, and N Abe. Group or-
thogonal matching pursuit for variable selection

and prediction. Neural Information Processing
Systems Conference (NIPS), 22, 2009.

S.G Mallat and Zhang. Z. Matching pusuits with
time-frequency dictionaries. IEEE Transcations
on Signal Processing, 41:3397-3415, 1993.
Message Passing Interface Forum. MPI, June
1995. http://www.mpi-forum.org/.

Message Passing Interface Forum. MPI-2, July
1997. http://www.mpi-forum.org/.

359

[13]

[14]

[15]

[16]

[17]

O.Banerjee, L. El Ghaoui, and A. d’Aspremont.
Model selection through sparse maximum likeli-
hood estimation for multivariate gaussian or bi-
nary data. Journal of Machine Learning Re-
search, 9:485-516, March 2008.

Katya Scheinberg, Shigian Ma, and Donald
Goldfarb. Sparse inverse covariance selection
via alternating linearization methods. CoRR,
abs/1011.0097, 2010.

Katya Scheinberg and Irina Rish. Learning sparse
gaussian markov networks using a greedy coor-
dinate ascent approach. In Proceedings of the
2010 FEuropean conference on Machine learning
and knowledge discovery in databases: Part III,
ECML PKDD’10, pages 196212, Berlin, Heidel-
berg, 2010. Springer-Verlag.

V. Sindhwani and A.C. Lozano. Non-parametric
group orthogonal matching pursuit for sparse
learning with multiple kernels. Neural Infor-
mation Processing Systems Conference (NIPS),
2011.

T. Zhang. Adaptive forward-backward greedy al-
gorithm for sparse learning with linear models.
Neural Information Processing Systems (NIPS),
21, 2008.

