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Abstract

Bayesian classification commonly relies on
probit models, with data augmentation al-
gorithms used for posterior computation.
By imputing latent Gaussian variables, one
can often trivially adapt computational ap-
proaches used in Gaussian models. How-
ever, MCMC for multinomial probit (MNP)
models can be inefficient in practice due
to high posterior dependence between latent
variables and parameters, and to difficulties
in efficiently sampling latent variables when
there are more than two categories. To ad-
dress these problems, we propose a new class
of diagonal orthant (DO) multinomial mod-
els. The key characteristics of these models
include conditional independence of the la-
tent variables given model parameters, avoid-
ance of arbitrary identifiability restrictions,
and simple expressions for category probabil-
ities. We show substantially improved com-
putational efficiency and comparable predic-
tive performance to MNP.

1 Introduction

This work is motivated by the search for an alterna-
tive to the multinomial logit (MNL) and multinomial
probit (MNP) models that is more amenable to effi-
cient Bayesian computation, while maintaining flexi-
bility. Historically, the MNP has been preferred for
Bayesian inference in polychotomous regression, since
the data augmentation approach of Albert and Chib
[1993] leads to straightforward Gibbs sampling. Ef-
ficient methods for Bayesian inference in the MNL
are a more recent development. A series of pro-
posed data-augmentation methods for Bayesian in-
ference in the MNL dates at least to O’Brien and
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Dunson [2004], who use a student ¢ data augmen-
tation scheme with the latent ¢ variables expressed
as scale mixtures of Gaussians. The scale and de-
grees of freedom in the ¢ are chosen to provide a near
exact approximation to the logistic density. Holmes
and Held [2006] represent the logistic distribution as a
scale-mixture of normals where the scales are a trans-
formation of Kolmogorov-Smirnov random variables.
citet fruhwirth2009improved propose an alternative
data-augmentation scheme which approximates a log-
Gamma distribution with a mixture of normals, result-
ing in conditionally-conjugate updates for regression
coefficients. Polson et al. [2012] develop a novel data-
augmented representation of the likelihood in a lo-
gistic regression using Polya-Gamma latent variables.
With a normal prior, the regression coefficients have
conditionally-conjugate posteriors. Their method has
the advantage that the latent variables can be sampled
directly via an efficient rejection algorithm without the
need to rely on additional auxiliary variables.

Although the work outlined above has opened MNL
to Gibbs sampling, the distributions of the latent vari-
ables are either exotic or complex scale-mixtures of
normals for which multivariate analogues are not sim-
ple to work with. As such, the extension to analysis of
multivariate unordered categorical data, nonparamet-
ric regression, and other more complex situations is not
straightforward. In contrast, the multinomial probit
(MNP) model is trivially represented by a set of Gaus-
sian latent variables, allowing access to a wide range of
methods developed for Gaussian models. MNP is also
a natural choice for Bayesian estimation because of the
fully-conjugate updates for model parameters and la-
tent variables. However, because the latent Gaussians
are not conditionally independent given regression pa-
rameters, mixing is poor and computation does not
scale well.

Three characteristics of the multinomial probit model
lead to challenging computation and render it of lim-
ited use in complex problems: the need for identifying
restrictions, the specification of non-diagonal covari-
ance matrices for the residuals when it is not well-
motivated, and high dependence between latent vari-
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ables. Because our proposed method addresses all
three of these issues, we review each of them here and
summarize the pertinent literature.

1.1 Identifying Restrictions

Many choices of identifying restrictions for the MNP
have been suggested, and the choice of identifying re-
strictions has important implications for Bayesian in-
ference (Burgette and Nordheim [2012]). Consider the
standard multinomial probit, where here we assume a
setting where covariates are constant across levels of
the response (i.e. a classification application):

yi = < uiy =\ vk
k

uij = 3, + €
€; ~ N(O, 2)

where \/ is the max function. The u;;’s are referred
to as latent utilities, after the common economic in-
terpretation of them as unobserved levels of welfare
in choice models. We make the distinction between a
classification application as presented above and the
choice model common to the economics literature in
which each category has its own set of covariates (i.e.
u;j = @i;3 + €;;). A common approach to identifying
the model is to choose a base category and take differ-
ences. Suppose we select category 1 as the base. We
then have the equivalent model:

ail == 0
Ui = zi(B; — By) + €5 — €n

The u’s are a linear transformation M of the original
latent utilities, 5o @; 2.7 ~ N (2;(Bq.;,—3,), M T M).
Early approaches to Bayesian computation in the
MNP placed a prior on > = MTSM. Even this
parametrization is not fully identified, and requires
that one of the variances be fixed (usually to one)
to fully identify the model. McCulloch and Rossi
[1994] ignored this issue and adopted a parameter-
expanded Gibbs sampling approach by placing an
inverse-Wishart prior on X. McCulloch et al. [2000]
developed a prior specification on covariance matrices
with the upper left element restricted to one. Imai and
Van Dyk [2005] use a working parameter that is resam-
pled at each step of the Gibbs sampler to transform be-
tween identified and unidentified parameters, with im-
proved mixing, though the resulting full conditionals
are complex and the sampling requires twice the num-
ber of steps as the original McCullough and Rossi sam-
pler. Zhang et al. [2006] used a parameter-expanded
Metropolis-Hastings algorithm to obtain samples from
a correlation matrix, resulting in an identified model
that restricts the scales of the utilities to be the same.
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Zhang et al. [2008] extended their algorithm to multi-
variate multinomial probit models.

Whatever prior specification and computational ap-
proach is used, the selection of an arbitrary base cate-
gory is an important modeling decision that may have
serious implications for mixing (Burgette and Hahn
[2010]). The class probabilities in the MNP are linked
to the model parameters by integrating over subsets of
R”. The choice of one category as base results in these
regions having different geometries, causing an asym-
metry in the effect of translations of the elliptical mul-
tivariate normal density on the resulting class proba-
bilities. To address this issue, Burgette and Nordheim
[2012] and Burgette and Hahn [2010] rely on an alter-
native identifying restriction, circumventing the need
to select an arbitrary base category. Although mixing
is improved and the model has an appealing symme-
try in the representation of categorical probabilities as
a function of latent variables, it does not address the
issue of high dependence between latent variables, and
the proposed Gibbs sampler is quite complex (though
computationally no slower than simpler algorithms).

1.2 Dependence in Idiosyncratic Errors

The multinomial probit model arose initially in the
econometrics literature (see e.g. Hausman and Wise
[1978]), where dependence between the errors in the
linear utility models is often considered desirable. In
econometrics and marketing, interest often centers on
predicting the effects of changes in product prices on
product shares. If the errors have a diagonal covari-
ance matrix, the model has the “independence of irrel-
evant alternatives” (ITA) property (see Train [2003]),
which is often considered too restrictive for character-
izing the substitution patterns between products in a
market. Because early applications for the MNP were
largely of the marketing and econometrics flavor, it has
become standard to specify a model with dependence
in the errors without much attention to whether it is
scientifically motivated. We find little compelling rea-
son for this assumption for most applications outside
of economics and marketing. If the application does
not motivate dependence in errors, the resulting model
will certainly have higher variance than a model with
independent errors, and the additional dependence be-
tween latent variables will negatively impact mixing.
In this case, the applications we have in mind are not
specifically economics/marketing applications, and as
such we will generally assume that the errors are con-
ditionally independent given regression parameters.
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1.3 Dependence Between Latent Variables

Except in the special case of marketing applications
where there are covariates that differ with the level
of the response variable (such as the product price),
an identified MNP must have J — 1 sets of regression
coefficients, with one set restricted to be zero. If we
assume B, = 0 and an identity covariance matrix, we
can actually sample all J latent variables for each ob-
servation ¢. Note this is equivalent to setting one class
to have utility that is identically zero and sampling
the remaining utility differences from the transformed
distribution described in section 2.1; however, the in-
tractability of the high dependence between utilities is
much clearer using this alternative parametrization.

To implement data augmentation MCMC, we must
sample the latent utilities conditional on regression
coefficients from a multivariate normal distribution re-
stricted to the space where w; ,, = \/k w;,. Albert and
Chib [1993] suggest rejection sampling; but this tends
to be extremely inefficient, particularly as J grows. All
subsequent algorithms have sampled w;; | u;,—; in se-
quence. With an identity covariance matrix for latent
utilities conditional on regression parameters, we can
reduce this to a two-step process:

N[b1°°)(‘riﬂyi’ 1)'

2. Sample wuj; j ~ N(,ooyu[w'
dently for all j # y;. ’

Sample af,,) ~

] (243,57, 1) indepen-

Even in simple cases, mixing tends to be poor because
the truncation region for each latent Gaussian depends
on the current value in the Markov chain for the other
latent Gaussians, resulting in high dependence. We
reiterate that this issue is not simply a consequence
of the choice of a non-diagonal covariance matrix; it
is true for any choice of covariance matrix for the €’s.
While recent work on developing a Hamiltonian MC
scheme for jointly sampling from truncated multivari-
ate normal distributions appears promising as an alter-
native to the standard Gibbs sampling approach (Pak-
man and Paninski [2012]), the need to update each
latent variable conditional on the others has histori-
cally been a substantial contibutor to the inefficiency
of Bayesian computation for MNP.

In this paper we propose Diagonal Orthant Multino-
mial models (DO models), a novel class of models for
unordered categorical response data that admits la-
tent variable representations (including a Gaussian la-
tent variable representation for the DO-probit model),
does not require the selection of a base category, and
in which the latent variables are conditionally inde-
pendent given regression parameters and thus may be
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updated in a block, greatly improving mixing and com-
putational scaling. The remainder of the paper is orga-
nized as follows. In section 2, we introduce DO models,
and show that a unique solution to the likelihood equa-
tions can be obtained from independent binary regres-
sions. We also illustrate the relationship of DO-logistic
to MNL and DO-probit to MNP. We give several in-
terpretations for regression coefficients in DO models,
and explain why the model parameters are often easier
to interpret than in the MNP. In section 3, we outline
a simple algorithm for Bayesian computation in the
DO-probit and discuss extensions to the basic regres-
sion setting. In section 4, we compare the DO-probit,
MNP, and MNL in simulation studies. In section 5,
we apply both methods to a real dataset and show
that they are virtually indistinguishable in prediction.
In section 6 we conclude and discuss potential future
directions for this work.

2 The Diagonal Orthant Multinomial
Model

The Diagonal Orthant Multinomial (DO) class of mod-
els represent an unordered categorical variable as a set
of binary variables. Let y be unordered categorical
with J levels and suppose 7. are independent bi-
nary variables. Define y = j & {y; = 1} U {%
0 V k # j}. Binary variables have a well-known la-
tent variable representation. Let z; ~ f(uj,0) where
f is a location-scale density with location parameter
p; and common scale o, and set v; = 1 & z; > 0.
However, for our purposes, we must ensure that only
one v; is one, and thus we restrict the z’s to belong to
the set:

J
Q:U{ZERJ:zj>O,zk<0,k7éj}

j=1

By the Radon-Nikodym theorem, the joint distribution
of the z’s is:

Wz e )T, f(z —ny)

762) -
/ 1(z€Q)Hf(zj—uj)dz
RY e

If we let f = ¢(-), where ¢(-) is the univariate normal
pdf, the result is a probit analogue that we refer to as
DO-Probit.

The joint probability density of z’s in DO-probit is
that of a J-variate normal distribution with identity
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covariance that is restricted to the regions of R with
one sign positive and the others negative. This is easy
to visualize in R?, where the density is a bivariate nor-
mal with correlation zero and unit variance restricted
to the second and fourth quadrants.

The density in the two dimensional case is shown in
Figure 1. In higher dimensions, the restriction will
define orthants over which the density is nonzero. The
marginal distribution of any two latent variables will
always be restricted to orthants that are diagonally
apposed rather than adjacent, hence the designation
Diagonal Orthant Multinomial model.

Figure 1: The joint density of the z’s in the DO-probit for
the 2-category case with zero means (left panel). The right
panel shows approximate semispherical regions covering 95
percent of the total probability in the 3-category case with
zero means for all categories.

The probability measure for z induces a probability
measure on y. The categorical probabilities are easily
calculated as:

(= Fp) T F ()
ST (U= F(—15)) Ty F(— 1)
= wj(/u’l,"'a,uﬂ])

where F'(-) is the CDF corresponding to f. Clearly, if
f = ¢, then F = ®(-) is the standard normal CDF.
While strictly speaking, the DO model with a full set of
J category-specific intercepts and J X p regression coef-
ficients is not identified, in the next section we suggest
a simple identifying restriction that, critically, allows
the parameters for the DO-model to be estimated via
independent binary regressions, providing substantial
computational advantages.

2.1 Interpretation of Regression Coefficients
and Relationship to Multinomial Logit

In a regression context, DO models define an alterna-
tive link function in a GLM for unordered categori-
cal/multinomial data, where:

y; ~ Categorical(p,)
p; = (wl(l‘%ﬁ[l:.]])? 1/)2(931‘7 B[l:J])’ cee 7¢J(m’i7 ﬁ[l:J]))
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The conditional class probabilities in the DO mod-
els have a useful correspondence with the multinomial
logit. The class probabilities in the regression prob-
lem, Pr(y; = j | i, Bp.y) = ¥j(2i, Bp.y)), are given
by:

(1 = F(=2if;)) [1,; F(=w:B)
S0 (1= F(=2iBs)) [Tz F(—2if)

The ratio of probabilities for two classes j and k is
therefore:

[(17F(7wi6j)) Hl;ﬁ]‘ F(*Iiﬂl)]
[ ;]:1(1_F(_Iq‘ﬂs)) Hl;ﬁs F(_ziﬂl)]
[(1_F(—$i/3k')) Hz#k F(—xlﬁl))]
[/ A =F(=:B:)) [Tz, F(xiB1)]

The denominators and all but one of the terms in the
products in the numerators cancel, leaving:

Y@, Buey) _ (1~ F(—wi;)) F(~ify)
V(i Bp.yy) (1= F(=2iBk)) F(2:55)
(A=F(=zi8;))/F(~=:8;)
= 0 F(-2:B0)/F(—:80)

which is a function of only 3; and . Recall that for
the multinomial logit model, the ratio of class proba-
bilities for classes j and k also depends only on 3; and
B and is given by:

log (Pr(yi =)

J
Pr(y; = k)

In DO-probit, F(-) = ®(-), so the log relative class

probability, log (Pr(yi:j)), is:

O(—wif;) )

Pr(y;=k)
tog (1 = @(—mim) ~log (

While not as convenient as the linear expression
arising from the multinomial logit, this quantity is
nonetheless easily calculated and provides a direct re-
lationship between the coefficients in the multinomial
logit and those in the DO-probit. This is a substantial
advantage over the multinomial probit model, in which
the class probabilities do not have a closed form.

> =x:05 — TPk

O(—zi k)
1—®(—:Bk)

The more interesting case arises when we choose a lo-
gistic distribution for the z;’s in the DO model, giving

the DO-logistic model. Here, F(t) = 1-&-% is the lo-
gistic CDF, and the log probability ratio for two cate-
gories is:
@ T e
log <pz-k>> — log (ka) ~log <1+11>
b; 1= 1+e®iPk - 14e®iP)
1 eZifi
1+e%iPr 14e%iP)
= log (1 N ) (1)
1+exiﬁj 1+e%iPk
=8 — 2P
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where p{/) = Pr(y; = j). This is identical to the
log probability ratios in the multinomial logit. Evi-
dently, the DO-logistic is an alternative form of the
MNL. In the next section, we suggest an identifying
restriction for the DO model that is much more con-
venient than the use of an arbitrary base category in
MNL models and treats all of the categories identically.
We also note that using the approach in O’Brien and
Dunson [2004] one can easily do computation for the
DO-logistic model by introducing a scale parameter for
the latent variables that is mixed over a Gamma den-
sity. This immediately suggests an alternative Gibbs
sampling algorithm for an MNL-like model that in-
volves only one additional sampling step relative to
the DO-probit.

2.2 Identification

Closer inspection of (1) reveals something rather strik-
ing about the representation of category probabilities
in DO models. Consider (1) in an intercepts-only

model:
) 1 et
DP; 1+elk 14efi
log ( lk)> = log <+f : ;Lek] )
b; 1+eFi 1+elk
As presented thus far, DO is an under-identified gen-
eralized linear model, and thus there will be multiple
sets of parameters p1,...,u; that maximize the like-
lihood (inifinitely many, in fact). However, all of the

solutions to the likelihood equations jiy, ..., iy must
satisfy:

for any j, k € {1,...,J}, asimple consequence of MLE
invariance. Yet (1) suggests that we might identify the
model and obtain a very useful approach to estimation
simply by recognizing the connection with binary lo-
gistic regression. Consider an intercept-only binary
logistic regression with response 171‘(] ) = 1(y; = j) and
let pr) = Pr(g; = 1). We have that:

~(B)
oo | 2 _ B
g 1— (B) - /’LJ

p;
and so for two independent logistic regressions of §;
and g on an intercept, we get:

~(B ~(B

log <P§ (1 - p} ))> _ B
(B ~(B Y] k
21—
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But since
2B
e’
A(.B) (B
J _ 14eJ
(B) I
1-— p; ) (B)
14-¢"3
we have that:
~(B)
1 el'i
el 14+ as? (B) (B)
ek e’ ~ ~
log —B) =My T My
1 etk
(B) B
1+eti  1+efk
. (B (B .
Therefore the collection ,ug ), . ,,ug ) . that is,

the MLEs from independent binary regressions on
Y1,--.,4J - is a valid solution to the likelihood equa-
tions for the DO model. Since the MLEs ﬂE-B) for any
j are unique, this solution is also unique, and is in fact
identical to the solution that results from imposing
the restriction Z'jjzl p; = 1 in the DO logistic model.
A similar argument goes through for the general DO
model. This further hints at the strategy we employ
for Bayesian computation, which is identical to that
used for J independent binary regressions. Of course,
this was by construction; DO models were conceived
of and designed expressly to allow for Bayesian com-
putation using a set of J independent latent variables.

Note that while this is conceptually similar to the
derivation of the multinomial logit model from inde-
pendent binary regressions, in that case the response

for each binary regression is defined by ggj ) =1 if

y; = j and z]fj) = 0 if y; = b, where b is the base cate-

gory, and thus the binary regressions are on a subset of
the observations and defined against an arbitrary base
category. For DO models, we perform binary regres-
sions on all of the observations and do not require a
base category. We also have the advantage of an addi-
tional interpretation for the estimated parameters as
relating to the marginal probability of each category.

2.3 Relationship of DO-probit to
Multinomial Probit

Both MNP and DO-probit link probability vectors to
latent Gaussian variables by integrating multivariate
normal densities over particular regions. For reasons
discussed earlier, we consider only cases in which the
latent Gaussian variables are conditionally indepen-
dent given parameters. To simplify the exposition, we
consider an intercepts-only MNP and a corresponding
DO-probit model with J category-specific mean pa-
rameters and the identifying restriction presented in
the previous section. Suppose we have an MNP with
identity covariance and restrict the mean of the first
utility to be zero. If we take us = —0.75, the result-
ing category probabilities for the trivial two-category
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model are (0.7115,0.2885). The equivalent DO-probit
model will have parameters p; = ®71(0.7115) =
0.5578 and ps = ®71(0.2885) = —0.5578. The two
models give identical category probabilities, but they
arrive at them differently. Figure 2 shows the con-
tours of the bivariate normal distribution for the la-
tent utilities in the MNP (left panel) and the trun-
cated bivariate normal distribution in the DO-probit
(right panel). The MNP integrates above and below
the line y = « (shown on the figure) to calculate prob-
abilities, whereas DO-probit integrates over the second
and fourth quadrants.

e

Figure 2: Contours and integration regions for equivalent
two-category MNP and DO-probit models with category
probabilities (0.7115,0.2885).

Of course, we can define a 1-1 function between MNPs
with J categories, an identity covariance matrix, and
1 = 0 and DO-probit with the marginal MLE restric-
tion outlined in the previous section. The MNP prob-
abilities for such a model are defined by the intractable
integrals:

pj =Pr(y=j) = /_OO ?(z5 — p1)

X |:/] ¢(ZJ_MJ)dZJ/Q ¢(zl>dzl} dzj

for j =1,...,J. The integral has no analytic form. As
such, marginalizing over the latent variables in MNP
is computationally costly, and thus the latent variables
are usually conditioned on in MCMC algorithms rather
than integrating them out. This leads to high depen-
dence and inefficient computation. In contrast, one
can marginalize out the latent variables in DO-probit
and obtain analytic expressions for the category prob-
abilities, a significant benefit of our approach.

One can approximate the MNP integrals by quadra-
ture or simulation, giving a set of probabilities
P1,---,pJ- We can then find the equivalent parameters
of a DO-probit by simply inverting the probabilities,
ie. p; = ®'(p;) for all j. Note that while cate-
gory probabilities are increasing in p for both models,
the MNP does not have the simple interpretation of
the regression parameters as relating to the marginal
category probabilities, and cannot be estimated from
independent binary regressions as can the DO-probit.

3 Computation

Bayesian computation for the DO-probit is very
straightforward. With a N(0,cI), ¢ € R prior on the
regression coefficients, the entire algorithm consists of
Gibbs steps:

1. Sample z;,, | By ~ Ni(zl'By,,1) and z ) ~
N_ (2 Bk, 1) for k # y;, where N, and N_ repre-
sents a normal distribution truncated below and
above by zero, respectively.

2. Sample By, | z ~ N(ji, S) with S = (xTz+1/cI)~!
and i=alz jforkel,... K.

Moreover, because of the latent Gaussian data aug-
mentation scheme used to estimate the model, there
are many alternatives to normal priors on regression
coeflicients. In classification problems with p covari-
ates, the dimension of the parameter space is J X p
(or J x (p—1) in the MNL and MNP), where .J is the
number of possible values of y. Also, the larger the J,
the less information is provided by observing y; = j.
Thus, even with modest p and fairly large n, one should
consider priors on regression coefficients with robust
shrinkage properties, particularly when prediction is
an important goal. The local-global family of shrink-
age priors have the scale-mixture representation:

ﬁjl ~ N(0772 31)

where we have adapted the notation to the regres-
sion classification context with j € {1,...,J} and
le{l,...,p}. Here, 7 is a global shrinkage parameter
and ¢;; are local shrinkage parameters corresponding
to Bj. There is a substantial literature on priors for 7
and the ¢;;’s that favor aggressively shrinking most of
the coefficients toward zero while retaining the sparse
signals. For example, choosing independent C(0,1)
priors on 7 and the ¢;;’s gives the horseshoe prior
(Carvalho et al. [2010]), where C1(0,1) is a standard
half-Cauchy distribution. Local-global priors can be
employed in our model, with the only additional com-
putational burden relative to the continuous response
case being the imputation of the latent variables.

It is equally straightforward to apply other priors on
regression parameters. Bayesian variable selection and
model averaging can be performed by specifying point-
mass mixture priors on 3;; and employing a stochastic
search variable selection algorithm (see Hoeting et al.
[1999] for an overview of these methods). A nonpara-
metric prior on regression parameters can be obtained
by specifying Gaussian process (GP) priors on the la-
tent variables. The simplest approach is to specify J
independent GP’s corresponding to the J sets of la-
tent variables (one for each possible value of y). In
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MNP, this leads to difficult computation, and thus it
is often necessary to use posterior approximations to
make computation tractable (see Girolami and Rogers
[2006]). The superior computational properties of DO-
probit suggest that exact posterior computation using
MCMC may be feasible with GP priors for problems
of meaningful scale.

4 Simulation Studies

We conducted a series of simulation studies to assess
the performance and properties of DO-probit and to
compare it with MNP. We first simulated data from
a MNP with n x p design matrix & with identity co-
variance matrix. We used n = 2000, p =2, and J =5
levels of the response. The (J—1) category-specific in-
tercepts were sampled from N(0,.5) and the (J — 1)p
coefficients were sampled from N(0,1). We then fit
either MNP or DO-probit by Gibbs sampling. The
chains were run for 10,000 iterations each, in every
case starting from 8 = 0. We repeated the simulation
and subsequent fitting 10 times. Note that the param-
eter expansion algorithms designed to improve mixing
are irrelevant for fitting this MNP model since we do
not need to sample a covariance matrix. We choose
category 1 as the base category for fitting.

Figure 3 shows histograms of lag-10, lag-25, and lag-
100 autocorrelations for the Markov chains for 3 from
MNP and DO-probit across the 10 simulations. Au-
tocorrelations are much lower at all three lag lengths.
This is a critical aspect of the performance of Bayesian
stochastic algorithms. Higher autocorrelations require
much longer run times to achieve the same effective
sample sizes. In more complex models, the autocor-
relations for MNP can be prohibitively high. In the
following section, we show that lower autocorrelations
are a feature of the DO-probit that persists in real ap-
plications with more complex priors on the coefficients.

Table 1 shows the mean in-sample misclassification
rate (using the posterior mode as the prediction) from
each of the ten simulations. The results are quite com-
parable for the two models, suggesting that DO-probit
and MNP are exchangeable in regard to their perfor-
mance as classifiers.

5 Applications

We consider the glass identification data from the UCI
machine learning website (Frank and Asuncion [2010]).
There are 214 observations in the data and the re-
sponse (class of the glass sample) is unordered cate-
gorical with seven possible levels, of which six are ob-
served. There are nine continuous covariates. Thus
a DO-probit classifier has sixty parameters (6 x 9 re-

35
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Figure 3: Distribution of Lag-10, -25, and -100 autocorre-
lations across all simulations and parameters for DO-probit
(top) and MNP (bottom)

Simulation MNP  DO-probit
1 0.30 0.30
2 0.36 0.37
3 0.51 0.51
4 0.32 0.32
5 0.42 0.42
6 0.49 0.49
7 0.49 0.48
8 0.36 0.37
9 0.42 0.42
10 0.45 0.45

Table 1: Comparison of misclassification rates for each of
10 simulated data sets.

gression coefficients and 6 intercepts). Because n is
not large relative to p in this case, we use a Horseshoe
shrinkage prior on the s (see Carvalho et al. [2010]
and the discussion in section 3).

A boxplot of posterior samples for § is shown in the
left panel of figure 4, and a corresponding plot for the
MNP with identity covariance matrix is presented in
the right panel. Red colored boxes indicate parameters
that are considered nonzero on the basis of the crite-
ria suggested in Carvalho et al. (let K, = 1/(1-72¢%,),
and consider (3 nonzero if &, the posterior mean
of Kji, is > 0.5). Recent work has shown that this
inclusion criterion has optimal properties under a 0-1
loss function (Datta and Ghosh [2012]). Note that of
the 60 coefficients in the DO-probit, 56 are effectively
shrunk to zero, whereas of the 50 coefficients in the
MNP, 39 of them are effectively shrunk to zero. In
addition, of the 9 covariates, 6 of them have all 6 coef-
ficients shrunk to zero in the DO-probit, which is the
equivalent of excluding that covariate entirely. In the
MNP, 5 of these 6 covariates also have all 5 coefficients
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effectively shrunk to zero.

DO-Probit

-10

MNP

CoeaaeasEE

a-e-ae_g_eaa i
aah i
B
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Figure 4: Boxplots of posterior samples for By, for MNP
and DO-probit. Red boxes indicate that the coefficient is
considered nonzero by the criterion described above.

Figure 5 shows boxplots of the lag 1 through lag 50
posterior autocorrelations in the Markov chains for 3
from the DO-probit and MNP models. The boxes
show the interquartile range and the black dots the
medians. This confirms that much lower autocorre-
lations in the DO-probit persist in real applications
with larger number of parameters and more complex
hierarchical modeling structures. Note that the resid-
ual autocorrelation for DO-probit is due mainly to the
Metropolis-Hastings steps used to sample the scale pa-
rameters for the horseshoe prior, and that parameter
expansion or slice sampling could improve the mixing,
see Scott [2010]. Table 2 shows quantiles of the ef-
fective sample size for DO-probit and MNP estimated
on the glass data. The median effective sample size
for DO-probit is 3.85 times that for MNP, even in this
relatively simple modeling context. The run time per
iteration for DO-probit was 1.06 times that of MNP, a
difference that is entirely due to the larger number of
parameters for DO-probit.

twenty
10% 25% 50% 75% 90%
DO probit 101 250 1204 3176 6085
MNP 78 128 216 464 835

Table 2: Quantiles of effective sample sizes for 3 parame-
ters from DO-probit and MNP using 15,000 MCMC itera-
tions with 1000 iteration burn-in.

We assessed out-of-sample prediction on the dataset
by randomly holding out 10 percent of observations
and estimating the model on the remaining 90 per-
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cent, a process that was repeated twenty times. We
formed out of sample predictions by taking the poste-
rior mode of the predicted class for each observation
in the test set. The full set of 60 (50) coefficients were
used for prediction in the DO-probit (MNP) models,
which is standard practice for shrinkage priors. Table
3 shows the best, median, and worst misclassification
rates for the two models. The results show that the
two classifiers are equivalent. Note that for over half
of the test datasets, the misclassification rates for the
two models were identical.

best median worst
Probit 0.22 0.38 0.58
DO-Probit  0.22 0.37 0.60

Table 3: Summary of misclassification rates for 20 random
holdouts of glass identification data.

DO-Probit

MNP

04 0.6 0.8 1.0

0.2

0.0

I I
1 8 16 25 34 43 1 8 16 25 34 43

Figure 5: Boxplots of lag-1 through lag-50 autocorrela-
tions for MCMC samples of 3y, from MNP and DO-probit.

6 Discussion

The DO-probit model provides an attractive alterna-
tive to the multinomial logit and multinomial pro-
bit models that overcomes the major limitations of
each while retaining many of their attractive proper-
ties. Like MNP, DO-probit admits a Gaussian latent
variable representation, allowing for simple conjugate
updates for regression parameters and application of
numerous methods designed for multivariate Gaussian
data, a feature that MNL lacks. However, our model
does not suffer from the poor mixing and high auto-
correlations in MCMC samples that make MNP prac-
tically infeasible for use in high-dimensional applica-
tions. Unlike MNP and MNL, our model does not re-
quire a base category for identification. However, class
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probabilities for DO-probit marginal of latent variables
are easily calculated, and relative class probabilities
are functions only of the regression parameters corre-
sponding to the compared classes, an attractive feature
shared with MNL.

The DO-probit link provides a number of possible
avenues for future work. The Gaussian latent vari-
able representation of the model allows for extension
to nonparametric regression via specifying a Gaussian
process prior on the latent variables. Another interest-
ing possibility would be to explore a novel class of dis-
crete choice models by allowing dependence between
latent variables, the analogue of a non-diagonal co-
variance matrix in the MNP. Multivariate unordered
categorical response data with covariates is a particu-
larly challenging context in which to develop compu-
tationally tractable Bayesian methods. One could po-
tentially allow for dependence in multivariate cases by
specifying a prior on structured covariance matrices for
the latent Gaussian variables. Another possible appli-
cation would be to time series of polychotomous vari-
ables by specifying AR models on the latent variables.
In complex modeling situations such as these, fully
Bayesian estimation using DO-probit may be straight-
forward, whereas the computational challenges of the
MNP make these extensions, while theoretically pos-
sible, practically infeasible.
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