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Abstract

Many automatic visualization methods have
been proposed. However, a visualization that
is automatically generated might be different
to how a user wants to arrange the objects in
visualization space. By allowing users to re-
locate objects in the embedding space of the
visualization, they can adjust the visualiza-
tion to their preference. We propose an active
learning framework for interactive visualiza-
tion which selects objects for the user to re-
locate so that they can obtain their desired
visualization by re-locating as few as possi-
ble. The framework is based on an informa-
tion theoretic criterion, which favors objects
that reduce the uncertainty of the visualiza-
tion. We present a concrete application of the
proposed framework to the Laplacian eigen-
map visualization method. We demonstrate
experimentally that the proposed framework
yields the desired visualization with fewer
user interactions than existing methods.

1 Introduction

With the emergence of large and high dimensional
data sets, the task of data visualization has become
increasingly important in both machine learning and
data mining. Visualization is helpful for analyzing and
exploring large-scale complex data; it allows one to
combine human abilities, such as visual perception,
creativity and general knowledge, with the abilities of
machines, that is large memories and fast calculation,
to the task of understanding data (Keim et al., 2002).
One application of visualization is in information re-
trieval, where users can search objects intuitively in
the visualization space (Venna et al., 2010).
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A large number of visualization methods have been
proposed, such as multi-dimensional scaling (Torger-
son, 1958), Isomap (Tenenbaum et al., 2000), locally
linear embedding (Roweis and Saul, 2000), stochas-
tic neighbor embedding (Hinton and Roweis, 2002),
and Laplacian eigenmap (Belkin and Niyogi, 2003).
These algorithms map objects from a high dimen-
sional observation space to a low dimensional ‘visu-
alization space’. They find an embedding such that
objects in the visualization space preserve their pair-
wise distances from the high-dimensional observation
space. Therefore similar objects are automatically lo-
cated closer together in the visualization space. How-
ever, a visualization that is generated automatically
in such a manner may differ from the user’s desired
visualization who may want to locate objects with a
particular meaning to particular areas of visualization
space. For example, when visualizing images the user
may desire clusters of images of animals to be located
in one region of visualization space, inanimate objects
in another, and sceneries in another. Alternatively if
the objects exhibit a natural ordering, such as digits
or letters, then the user may wish to preserve this or-
dering in visualization space.

To address this problem, interactive visualization sys-
tems have been proposed (Wills, 1999; Johansson and
Johansson, 2009; Paulovich et al., 2011; Endert et al.,
2011). Here, we consider interactive systems in which
users can re-locate objects to obtain their desired vi-
sualization. When there are a large number of objects
it is difficult for users to select which objects to re-
locate; if many of the moves are redundant, that is,
they provide no new information about the user’s de-
sired visualization, then even after many queries the
visualization may not reflect the intended result.

The goal of this paper is to select objects to re-locate so
that the user can obtain their desired visualization by
moving as few as possible. For this purpose we propose
an active learning framework for visualization. Ac-
tive learning (Cohn et al., 1996) is a machine learning
framework for selecting objects that improve perfor-
mance with minimum possible labelings. Active learn-
ing methods are useful when the cost for obtaining la-
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beled data is high. Most active learning algorithms
were proposed in supervised learning settings (McCal-
lum and Nigam, 1998; Tong and Koller, 2002). We
develop an information theoretic active learning crite-
rion that selects objects to re-locate so as to reduce
the uncertainty of the visualization the most.

We present our proposed active visualization frame-
work with the widely used Laplacian eigenmap method
for nonlinear dimensionality reduction and visualiza-
tion (Belkin and Niyogi, 2003). Here, we can analyti-
cally calculate the objective function for selecting ob-
jects, permitting the proposed algorithm to be used in
a fast, online, interactive system. Note, however, that
we can use many other visualization methods within
our framework.

The paper is organized as follows: In Section 2 we
propose an active learning framework for visualization
based on an information theoretic criterion. In Sec-
tion 3 we present an implementation of the proposed
framework with the Laplacian eigenmap visualization
method. In Section 4 we outline related work. In Sec-
tion 5 we demonstrate the effectiveness of the proposed
framework by comparing to existing methods. Finally,
we present concluding remarks and a discussion of fu-
ture work in Section 6.

2 Active Visualization

The task of visualization is, given a set of observations
X = {x,})_,, to find an embedding Y = {y,})_;
that reveals structure in the data when viewed by the
user. Here, x,, € R is the feature vector of object n
in the observation space, and y,, € R¥ is the location
of object n in the visualization space. Normally the
observation dimensionality is much higher than the
visualization dimensionality D > K. The visualiza-
tion dimensionality is typically K = 2 or K = 3; al-
though this constraint arises from our technical ability
to view objects in higher dimensional space, the pro-
posed framework is mathematically and computation-
ally applicable with any visualization dimensionality.

In an active learning setting, the algorithm sequen-
tially selects objects for the user to re-locate in RX,
from a given set of N objects. The ground truth lo-
cations for the selected objects are obtained from an
oracle, i.e. the user, who places the objects within
an interactive visualization environment. Given the
desired location of the selected object obtained from
user feedback, the system changes the visualization of
all of the objects, incorporating the new information.

Let Y, be the data that has been labeled by the user,
or the set of locations of the selected objects that are
associated with the ground truth locations in visualiza-

tion space, and Y, = Y \ Y be the unlabeled data, or
the set of locations of the unselected objects. The in-
formation theoretic approach to active learning selects
objects that reduce the uncertainty about the param-
eters, measured by Shannon’s entropy (Cover et al.,
1991; Lindley, 1956). In the context of visualization,
the variables of interest are the locations of the un-
labeled data in visualization space, we may think of
these as the ‘parameters’ about which we want opti-
mally using active learning. Therefore, the objective
is to select an object i from the pool of unlabeled data
that maximizes the decrease in the entropy of our dis-
tribution over the locations of the remaining unlabeled
data as follows:

arg max Hp(YuilYs)] = Epy, v HIp(Yuwilyi, Ys)l,
(1)

where Y,; is unlabeled data excluding object 7,
H{p(-)] represents differential entropy of the probabil-
ity distribution p, and E,.) represents expectation un-
der distribution p. For notational simplicity we omit
the set of observations X from the conditioning of all
of the probability distributions, e.g. p(¥\;|Ys) should
read p(Y\;|Ys, X). The first term,

Hp(Y o[ Ys)] = — / (Y i Ya) log p(Y o0, [Y2)dY .
(2)

is the entropy of the distribution over the unlabeled
data given the labeled data; that is, it represents the
system’s uncertainty in the location of the unlabeled
data in the visualization space. The second term,

Epty. iy Hp(Ywilys, Ys)]
_ / Pyl Y.) / p(Y il Yo)
x log p(Yuilyi, Ys)dY i dys, (3)

is the entropy of the distribution over the unlabeled
objects after obtaining the true location of object 1,
where we take its expectation over the location of ob-
ject to be queried, y;, because we do not know yet its
true location. Further discussion for the exact form of
(1) is given in Section 4.

We can gain useful intuition about (1) by rearranging
the objective function as follows:

arg max Hlp(yi|Ys)] — Epey, v Hp(yil Y, Ys)l,
(4)

where we use an insight that the objective in (1) is
equivalent to the mutual information between the un-
labeled data and the location of the selected object,
I(Yyu\i,yi), given the labeled data. The first term in
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(4) favors objects about which we have high uncer-
tainty; this term alone corresponds to a classic ob-
jective known as ‘uncertainty sampling’ or ‘maximum
entropy sampling’ (Sebastiani and Wynn, 2000). The
second term has a separate role; it penalizes objects
that have high entropy if all of the remaining objects
Y,\; were observed. This means that if the unob-
served objects were seen, we would be confident in
the location of object ¢, alternatively put, the term
favors objects that are highly correlated with the re-
maining unobserved objects. In summary (4) seeks
objects about whose location in visualization space we
are uncertain, but also correlate with the remaining
unlabeled objects, and hence their label provides in-
formation about the other unlabeled points’ locations
also.

If we know that we will query the user with a number of
objects J, then it is optimal to maximize our querying
strategy over the entire set J. When we select multiple
objects to place the objective function becomes

arg mle H[P(YU\J [Ys)] — Ep(YJ|Y5)H[p(Yu\J Y5, Y]

(5)

However, for our active learning criterion, and sequen-
tial decision making tasks in general, this problem is
NP-hard. As is common in active learning we take a
myopic, or greedy approach, performing optimization
of (4) assuming that each query is the last. How-
ever, the mutual information function is submodular,
and the myopic strategy is known to perform near-
optimally for submodular functions (Guestrin et al.,
2005; Dasgupta, 2005; Golovin and Krause, 2010). In-
tuitively, this means that it satisfies the property of
‘diminishing returns’; that is the gain in information
when adding new labeled data point to a smaller pool
of observations Ymall is greater than, or equal to, the
gain in information when adding the data point to a
larger pool Ylree,

3 Laplacian eigenmap based active
visualization

We present the procedures of our active learning
framework for use with the Laplacian eigenmap vi-
sualization method (Belkin and Niyogi, 2003). The
Laplacian eigenmap is widely used for dimensional-
ity reduction, and it benefits from having a criterion
for visualization which can be globally optimized. In
this setting we can analytically calculate the objective
function for selecting objects to re-locate with our ac-
tive learning framework.

3.1 Laplacian eigenmap

We outline first the original Laplacian eigenmap al-
gorithm. The Laplacian eigenmap is a nonlinear
dimensionality reduction method that has locality-
preserving properties based on spectral techniques.

Firstly, a k-nearest neighbor graph is constructed by
using observations X based on the Euclidean distance.
One may also use a e-neighborhood graph instead of
k-nearest neighbor graph.

Secondly, we set the weight between objects ¢ and j so
that w;; = 1 if they are connected, w;; = 0 otherwise.

Finally, embedding locations Y that minimize the fol-
lowing function are obtained by solving a generalized
eigenvalue problem,

arg m\i{ntr(YTLY),
stYDY' =1, (6)

where D is a diagonal matrix with D;; = > ; Wjis L=
D — W is the Laplacian matrix of W, and W is an
N x N matrix whose element is wj;.

3.2 Probabilistic interpretation

In order to employ our active learning framework we
need a probabilistic interpretation of the Laplacian
eigenmap from which we can calculate the relevant
entropies and expectations. We make the Laplacian
positive definite by adding a small diagonal matrix
A = L+al. When the noise level « is small, we can ap-
proximate the minimization of the objective function
for the Laplacian eigenmap, tr(Y 'LY), by maximiz-
ing the likelihood of the following Gaussian distribu-
tion:

p(Y) =N(0,A71), (7)

where N(p, A~1) represents a Gaussian with mean p
and precision, or inverse covariance, A. The relation
between the graph Laplacian and Gaussian Markov
random fields is further discussed in (Zhu et al.,
2003b).

3.3 Active visualization

We present the procedures of our active learning
framework based on objective function (4) with the
probabilistic interpretation of the Laplacian eigenmap.
Without loss of generality we sort the location vector
Y into labeled then unlabeled data. We then partition
the precision matrix A into four parts corresponding
to the labeled and unlabeled data as follows:

A A
A — SS us . 8
(Asu Auu) ()
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By using the fact that

PyilYs) = N (= (AL AuwYo)ii, (AL i), (9)
and that the entropy of a Gaussian with dimensionality
K is

HIN (A1) =~ log |A] + & (log(2m) + 1), (10)

the first term of (4) is obtained by

_ K
Hp(y:[Ys)] = log[(Ay))ul + 5 (log(2m) +1). (11)
Similarly, the second term is obtained by
Epvo v HIP(Yil Y, Ys)]

K
= —log|Aui| + ?(1og(27r) +1). (12)
Therefore, (4) based on the Laplacian eigenmap be-
comes:

arg max log |(Au_u1)ii| + log | Ayl (13)

Since we can calculate analytically the entropy, the
conditional distribution, and the marginal distribution
of a Gaussian, we can calculate the objective func-
tion for active learning with the Laplacian eigenmap
analytically. We note that locally linear embedding
(LLE) (Roweis and Saul, 2000) can also been inter-
preted by a Gaussian model (Verbeek and Vlassis,
2006). Therefore, we may use exactly the same ex-
pressions as for the Laplacian eigenmap if we were to
use LLE for visualization. When we use visualization
methods that are not modeled by a Gaussian, we can
use similar procedures by exploiting the Laplace ap-
proximation.

After the selected object is re-located by the user we
need to re-calculate the visualization given the new
labeled datapoint, and show it to the user before se-
lecting the next point to label. For labeled objects, we
use the ground truth location given by the user. For
the locations for unlabeled objects, we estimate their
locations as follows:
Y, =

_AJulAusst (14)

because the distribution of unlabeled data conditioned
on the labeled data is given by

p(YulYs) = N (Yo, ALY, (15)

from the probabilistic interpretation of the Laplacian
eigenmap. The estimated locations Y, can be seen
as a semi-supervised Laplacian eigenmap visualization
result, where we have label information for some ob-
jects.
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3.4 Learning Hyperparameters

We can estimate hyperparameters, such as the num-
ber of neighbors and the noise level, o, by maximizing
the likelihood p(Ys) = N(0, (A~ 1)ss) given the labeled
data (Verbeek and Vlassis, 2006).

When the hyperparameters are fixed, inspection of
(13) reveals that the optimal object ¢ does not depend
on the location of the supervised data in visualiza-
tion space, just which ones have been selected. This
is not a general property of our active framework (1).
A consequence of this is that we can pre-compute the
optimal (myopic) set of objects to be presented to the
user, before the user has re-located any objects. How-
ever, when we update the hyperparameters the map-
ping changes, the precision matrices A become implicit
functions of the supervised data, and so we must wait
for the user to move each object before computing the
optimal new object to present.

4 Related Work

Let us first consider our objective in its reformulated
form (4). Suppose we were to consider only the first
term, the objective would become

arg max Hp(y:|Ys)], (16)
that is we would select the object whose predictive
distribution has highest entropy, or uncertainty. This
corresponds to one of the most ubiquitous strategies
in active learning, uncertainty sampling (Lewis and
Gale, 1994; Sebastiani and Wynn, 2000; Settles, 2009),
which selects the object for which one is least certain
how to label. When the uncertainty measure used is
Shannon’s entropy, this corresponds exactly to (16).
This strategy is used in (Verbeek and Vlassis, 2006) in
the context of the locally linear embedding for semi-
supervised regression. In the context of visualization
this strategy considers only the uncertainty in object
to be selected. However, our strategy (1) considers the
uncertainty of all of the unlabeled objects; the second
term in (4) favors objects that assist in determining the
location of other unlabeled objects. We demonstrate
experimentally the advantage of our framework over
the uncertainty sampling in Section 5.

Now let us consider the initial formulation of our ob-
jective (1). It may seem sensible to minimize the ab-
solute value of the entropy of the unseen data, that is
to consider only the second term in (1),

arg min Ep(y 1) HIp(Yuilyi, Ys)], (17)

rather than the expected decrease in predictive en-
tropy. However, this criterion turns out to be equiva-
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lent to uncertainty sampling (16) because

EP()’z|Y5)H[p(Yu\Z|Y'M Ys)]
—HPYY) - HpyilYs)],  (18)

and the first term of the left hand side H[p(Y,|Ys)]
does not depend on 3.

Many information theoretic algorithms for active
learning were proposed in the context of supervised
learning, where the objective function is equal to the
change in entropy of model parameters after receiv-
ing the label (Lindley, 1956; MacKay, 1992; Guestrin
et al., 2005; Houlsby et al., 2011). The criterion in
supervised learning is given by

arg m?XH[p(0|D)] - EP(tilx«L,D)H[p(a‘ti’ x;, D)],
(19)

where 0 is a set of parameters, D is a training data
set, x; is an input variable to be labeled, and t; is its
target variable. If we were to interpret the unknown
locations in visualization space Y\; as our ‘parame-
ters of interest’ @, the point to be labeled y; as the
target variable t;, and the labeled points Y as the
training data D, then this classical information the-
oretic approach for supervised learning (19) becomes
equivalent to our objective function (1).

Finally, an alternative approach to active learning is
to use decision theory in which one selects objects that
reduce the expected loss at test-time (Roy and McCal-
lum, 2001; Zhu et al., 2003a), that is, in a Bayesian
framework to minimize the ‘Bayes posterior risk’. In
the context of active visualization, the decision task
at hand is to select the location of the unlabeled ob-
jects. If we were to choose the log-loss on the prob-
ability of placing Y, at a particular location as our
loss function, then the optimal Bayesian decision at
test-time (visualization-time) is to place the objects
at the MAP estimate of their locations, as we do in
our framework (14). This corresponds to a Bayes risk
equal to the expected entropy over unlabeled data. If
one seeks to maximize the decrease in Bayes risk then
we arrive again at our objective (1). It is interesting
that in our context of active visualization (1) has both
an information-, and decision-theoretic interpretation,
where in general these approaches result in different
algorithms.

5 Experiments

5.1 Setting

We evaluated our active learning framework on one
synthetic data set, and five real data sets: Wine, Iris,
Vowel, Glass and Mnist, which are obtained from LIB-
SVM multi-class data sets (Chang and Lin, 2011). The
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synthetic data set, Synth, was generated as follows: 1)
for a ground truth visualization we located objects in a
two-dimensional grid and added small Gaussian noise
as shown in Figure 2 (a), and 2) we generated obser-
vation feature vectors with a Gaussian process latent
variable model (Lawrence, 2004), using the ground
truth as the latent variables. For the five real data sets
we generated the ground truth visualization by using
class information. In all of the real data sets, each
object has a class label; we located objects around
a circle, ordered according to their class, and added
Gaussian noise. The set up is depicted in Figure 2 (b)
and (c), the color of each node represents its class. We
summarize the statistics of data sets used for evalua-
tion in Table 1.

We compared our active visualization framework with
uncertainty sampling for active visualization, as de-
scribed in (Verbeek and Vlassis, 2006), and a random
sampling baseline method. We used the Laplacian
eigenmap for the visualization method.

5.2 Results

The performance metric used was the average mean
squared error between the estimated and true loca-
tions. To obtain statistailcally meaningful results, an
average was taken over 1000 experimental runs with
each data set, each using a different ground truth vi-
sualization. The noise parameter was set to aw = 1073,
We selected the optimal number of neighbors & from
the set {2,---,20} using maximum likelihood as de-
scribed in Section 3.4; k was update after every batch
of five labeled objects was obtained.

Figure 1 shows the results. For all of the methods, as
the number of labeled data points increases, the error
decreases. However, in most cases, our method de-
creases the error faster than uncertainty and random
sampling. This indicates the importance of consid-
ering the relationship between the point to be labeled
and the remaining unlabeled points that is represented
by the second term in (4), which is not considered in
uncertainty sampling.

Table 2 shows the statistical significance of the results
when the number of neighbors k is updated based on
the maximum likelihood estimation (a), and it is fixed
at k = 3 (b). In both of the cases, the proposed
method achieved the lowest error for all data sets. And
except for Iris and Vowel data sets when k = 3, the
proposed method was significantly better than uncer-
tainty and random sampling.

Figure 3 shows the visualization attained using the
Laplacian eigenmap in an unsupervised setting with
Synth, Wine and Mnist data sets. We used three
neighbors for constructing the neighbor graph. The
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Table 1: The statistics of data sets used for evaluation.
Synth  Wine Iris Vowel Glass Mnist

number of objects IV 400 178 150 528 214 1000

observed dimensionality D 100 13 4 10 9 784
number of classes C - 3 3 11 7 10
35 —— proposed 3.5 ——proposed 51\ —— proposed
| —4—uncertainty —+—uncertainty| —4—uncertainty
3 —e—random 3 —s—random 18] ——random
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(d) Vowel (e) Glass (e) Mnist

Figure 1: Average mean squared error between the estimated locations and the true locations for different
numbers of labeled objects achieved by the proposed method, uncertainty sampling, and random sampling. We
also show error bars depicting the standard deviation of the proposed method, but omit them from the other
methods for visual clarity (see Table 2 for statical significance).

Table 2: Average mean squared error given ten labeled objects when (a) the number of neighbors k is updated
based on the maximum likelihood estimation, and (b) it is fixed at k = 3. Values in bold typeface are statistically
better (at the 5% level) from those in normal typeface as indicated by a paired t-test.

(a) number of neighbors is updated
Synth ~ Wine Iris Vowel Glass Mnist

Proposed method 0.395 0.649 0464 1.833 1.727 1.585
Uncertainty sampling  0.585 0.842 0.523 1.906 1.769 2.073
Random sampling 0.788 0.888 0.704 1.864 2.050 1.946

(b) number of neighbors is fixed at k = 3
Synth ~ Wine Iris Vowel Glass Mnist

Proposed method 0.382 0.648 0.455 1.820 1.770 1.594
Uncertainty sampling  0.597 0.834 0.456 1.820 2.266 2.073
Random sampling 0.892 0.898 0.698 1.876 2.044 1.951

goal is to obtain a visualization that is similar to the Figure 4 shows the visualization when 20 objects are
ground truth (Figure 2) by labeling as few objects as  labeled by random sampling (top), uncertainty sam-
possible. Without any labeled objects, the locations pling (middle) and our active learning framework (bot-
differ greatly from the ground truth as shown Figure 3. tom). The random sampling method sometimes selects
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Figure 2: Ground truth, or user’s desired visualization. In the Synth data set (a), the color similarity of each
node related to the closeness in the ground truth visualization. In the Wine (b) and Mnist (c) data sets, the

color of each node represents the class information.
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Figure 3: Visualization results by the unsupervised Laplacian eigenmap in Synth (a), Wine (b) and Mnist (c)
data sets. The color of each node is the same as those in Figure 2.

objects located close together in visualization space, or
similar objects, which is not effective because the lo-
cations can be inferred easily by using the locations
of those similar objects. Uncertainty sampling tends
to select objects that are located at the edges of set
of objects, as shown in Figure 4 (a) middle. This is
because the entropy of objects that are located as far
from other objects is high (Ramakrishnan et al., 2005;
Guestrin et al., 2005). On the other hand, our method
selects a diverse set of objects by maximizing the de-
crease of the uncertainty for unlabeled data, and we
can obtain visualizations that are more similar to the
ground truth with fewer labels than random and un-
certainty sampling.

6 Conclusion

We have proposed an active learning framework for
data visualization based on an information theoretic
criterion where the object that reduces the uncer-
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tainty of the unlabeled data is selected. We have con-
firmed experimentally that our framework can obtain
the user’s desired visualization with fewer labeled ob-
jects than existing active visualization methods.

Although our results have been encouraging, our
framework can be further improved upon in a num-
ber of ways. Firstly, we plan to use other visualization
methods with our framework, such as the Gaussian
process latent variable model (Lawrence, 2004) and
stochastic neighbor embedding (Hinton and Roweis,
2002). Secondly, we would like to extend our frame-
work to incorporate other types of supervised infor-
mation. In the current framework, a user re-locates
objects to indicate its desired location. However, the
user might want to provide information about the de-
sired visualization by selecting two objects that should
be located close together, or far apart.
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Figure 4: Visualization results with 20 labeled objects selected by random sampling (top), uncertainty sampling

(middle) and the proposed method (bottom) in Synth (a), Wine (b) and Mnist (c¢) data sets. The ‘x’ shows the
location selected.
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