
 316

DivMCuts: Faster Training of Structural SVMs
with Diverse M-Best Cutting-Planes

Abner Guzman-Rivera Pushmeet Kohli Dhruv Batra

University of Illinois Microsoft Research Cambridge Virginia Tech

Abstract

Training of Structural SVMs involves solving

a large Quadratic Program (QP). One popular

method for solving this QP is a cutting-plane ap-

proach, where the most violated constraint is it-

eratively added to a working-set of constraints.

Unfortunately, training models with a large num-

ber of parameters remains a time consuming pro-

cess. This paper shows that significant computa-

tional savings can be achieved by adding mul-

tiple diverse and highly violated constraints at

every iteration of the cutting-plane algorithm.

We show that generation of such diverse cutting-

planes involves extracting diverse M-Best solu-

tions from the loss-augmented score of the train-

ing instances. To find these diverse M-Best so-

lutions, we employ a recently proposed algo-

rithm [4]. Our experiments on image segmenta-

tion and protein side-chain prediction show that

the proposed approach can lead to significant

computational savings, e.g., ∼28% reduction in

training time.

1 Introduction

A number of problems in Computer Vision, Natural Lan-

guage Processing and Computational Biology involve mak-

ing predictions over complex but structured interdepen-

dent outputs – e.g., the space of all possible segmenta-

tions of an image or all possible English translations of a

Chinese sentence. Formulations like Max-Margin Markov

Networks (M3N) [23] and Structural Support Vector Ma-

chines (SSVMs) [24] have provided principled techniques

for learning such structured-output models.

In all these settings, the learning algorithm has access to

n training (input-output) pairs: {(xi,yi) | xi ∈X ,yi ∈Y}

Appearing in Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale,
AZ, USA. Volume 31 of JMLR: W&CP 31. Copyright 2013 by
the authors.

and the goal is to learn a mapping f : X → Y from the

input space X to the output space Y , such that it minimizes

a (regularized) task-dependent loss function ℓ : Y × Y →
R

+, where ℓ(yi, ȳi) denotes the cost of predicting output

ȳi when the correct prediction is yi.

Cutting-Plane Training. This learning problem is gen-

erally formulated as a constrained Quadratic Program

(QP) [10, 24] with exponentially many constraints. For in-

stance, 1-slack SSVMs [10] involve |Y|n constraints, one

for each possible n-tuple of labels (ȳ1, . . . , ȳn)∈Y
n. If

the most violated constraint can be identified efficiently, a

cutting-plane (CP) approach [11] may be used to solve this

QP. A CP algorithm maintains a small working-set of con-

straints and alternates between: 1) solving for the optimum

solution under the current working-set, and 2) adding the

most violated constraint to the working-set by calling the

max-violation-oracle. It can be shown [10, 24] that such

a procedure converges in O(1
ǫ
) steps, where ǫ is the de-

sired precision. Finding the most violated constraint in-

volves maximizing the loss-augmented score [10] for each

training instance.

Unfortunately, models for many real world problems have

a large number of parameters and require many iterations

of the above procedure. At every iteration, inference must

be performed on the entire dataset and a large QP must be

solved. Thus, training such models becomes a time con-

suming process.

Contribution. This paper shows that significant computa-

tional savings can be achieved in training SSVMs by gener-

ating and adding a diverse set of highly violated constraints

(cutting-planes) at every training iteration. Fig. 1 illustrates

the idea. One key observation of our work is that for multi-

ple constraints to be useful and speed up convergence, they

should satisfy the following desiderata:

1. Marginal Relevance. Each constraint should be in-

formative w.r.t. the current approximation (i.e., be

highly violated) and also have marginal relevance

w.r.t. the constraints added at the current iteration (i.e.,

we need a diverse set of constraints).

2. Efficiently Computable. Finding a set of violated

constraints should be fast enough so as to not offset

 317

 318

Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra

Algorithm 1 Cutting-Plane Training of Structural SVMs

(margin-rescaling) via the 1-Slack Formulation OP1.

1: Input: S = {(x1,y1), . . . , (xn,yn)}, C, ǫ

2: W ← ∅
3: repeat

4: (w, ξ)← argmin
w,ξ≥0

1
2w

Tw + Cξ

s.t. 1
n
wT

n
∑

i=1

[

Ψ(xi,yi)−Ψ(xi, ȳi)

]

≥ 1
n

n
∑

i=1

ℓ(yi, ȳi)− ξi ∀Ȳ ∈ W

5: for i = 1, . . . , n do

6: ŷi ← argmax
y

{

ℓ(yi,y) +wTΨ(xi,y)
}

7: end for

8: W ←W ∪ {(ŷ1, . . . , ŷn)}

9: until 1
n

n
∑

i=1

ℓ(yi, ŷi)

− 1
n
wT

n
∑

i=1

[

Ψ(xi,yi)−Ψ(xi, ŷi)

]

≤ ξ + ǫ

10: return (w, ξ)

Cutting-Plane Training of SSVMs. Algorithm 1 provides

a CP approach to solving OP1. At every iteration, the al-

gorithm computes the solution over the current working-

setW (Line 4) and then finds the most violated constraint

(Lines 5-7) to add toW (Line 8). The algorithm stops when

the most violated constraint is violated less than a desired

precision ǫ (Line 9). Unlike the n-slack setting, Algorithm

1 adds a single constraint at every iteration – a linear com-

bination of features coming from all examples.

Joachims et al. [10] showed that the number of iterations to

convergence for Algorithm 1 does not depend on the num-

ber of training instances and grows as O(1
ǫ
). Specifically:

Theorem 1. Iteration Complexity of Algorithm 1. For any

0 < C, 0 < ǫ < 4R2C and any training sample S =
{(x1,y1), . . . , (xn,yn)}, Algorithm 1 terminates after at

most
⌈

log2(
ℓ

4R2C
)

⌉

+ 2

⌈

8R2C

ǫ

⌉

iterations, where R2 = maxi,ȳ ||Ψ(xi,yi)−Ψ(xi, ȳ)||
2
,

ℓ = maxi,ȳ ℓ(yi, ȳ) and ⌈.⌉ is the integer ceiling function.

Proof. See proof of Theorem 5 in [10].

3 Proposed Approach

Algorithm 1 incrementally builds an approximation to the

constraint-set by adding a single linear inequality in each

iteration. An intuitive approach to speed up this process

is to instead add multiple constraints in each iteration. We

will show that significant computational savings are possi-

ble if the additional constraints are highly violated and di-

verse. Finding the most violated constraint is equivalent to

performing MAP inference on a loss-augmented score for

each training instance. Similarly, finding multiple violated

constraints involves generating multiple diverse solutions

to the loss-augmented score of the training instances.

Techniques for producing multiple solutions in probabilis-

tic models can be broadly characterized into two groups:

M-Best MAP algorithms [7, 16, 17, 26] that find the top M

most probable solutions and sampling-based algorithms [2,

18,25]. Both of these groups fall short for our task. M-Best

MAP algorithms do not place any emphasis on diversity

and tend to produce solutions that are minor perturbations

of each other. Thus, the resulting cutting-planes are un-

likely to be of much value in tightening the constraint-set

approximation and speeding up convergence. Sampling-

based approaches typically exhibit long wait-times to tran-

sition from one mode to another, which is required for ob-

taining diversity.

3.1 Generating Diverse M-Best Solutions

on Loss-Augmented Score

To explicitly enforce diversity, we leverage algorithm Div-

MBest of Batra et al. [4], which computes a set of di-

verse M-Best solutions in discrete probabilistic models. We

briefly describe their approach here.

The approach is applicable to general structured-output
models but for the sake of illustration let us consider a
discrete Markov Random Field (MRF). Specifically, let
y = {y1, . . . , yp} ∈ Y be a set of discrete random vari-
ables, each taking value in a finite label set, i.e., yu ∈ Yu.
Let G = (V, E) be a graph defined over the output vari-

ables, i.e., V = [p], E ⊆
(

V

2

)

, and let yuv be shorthand

for the tuple (yu, yv). It is known that for decomposable
loss functions, the loss-augmented score for any configura-
tion y can be expressed as a sum of terms that decompose
along the graph-structure. Thus, loss-augmented inference
corresponds to a MAP inference problem:

max
y∈Y

S(y) = max
y∈Y

∑

u∈V

θu(yu) +
∑

(u,v)∈E

θuv(yuv). (2)

We assume availability of a function ∆(ỹ, ỹ′) quantifying

dissimilarity between solutions ỹ and ỹ′. Let ỹ(m) denote

the mth-best solution. Thus, ỹ(1) is the MAP, ỹ(2) is the
second DivMBest solution and so on. [4] proposed the fol-

lowing formulation for finding the mth solution:

ỹ
(m) = argmax

y∈Y

∑

u∈V

θu(yu) +
∑

(u,v)∈E

θuv(yuv) (3a)

s.t. ∆(y, ỹ(m′)) ≥ km′ ∀m
′
∈ [m−1] (3b)

In order to solve this problem, [4] use the Lagrangian re-
laxation of (3), formed by dualizing the dissimilarity con-

straints ∆(y, ỹ(m′)) ≥ km′ :

f(λ) = max
y∈Y

S∆(y) = max
y∈Y

∑

A∈V∪E

θA(yA)

+

m−1∑

m′=1

λm′

(

∆(y, ỹ(m′))−km′

)

(4)

 319

DivMCuts: Faster Training of Structural SVMs with Diverse M-Best Cutting-Planes

Here λ = {λm′ | m′ ∈ [m−1]} is the set of Lagrange

multipliers, which determine the weight of the penalty im-

posed for violating the constraints. Intuitively, we see

that the Lagrangian relaxation maximizes a ∆-augmented

score, i.e., a linear combination of the MRF score and the

dissimilarity w.r.t. the previous solutions, with the weight-

ing given by the Lagrange multipliers. For some classes of

∆-functions, we can solve the ∆-augmented score maxi-

mization problem using the same algorithms used for find-

ing the MAP. An illustrative example follows.

Hamming Dissimilarity. ∆(y, ỹ′)=
∑

u∈V [[yu 6=ỹ′u]].
This function counts the number of nodes labeled differ-
ently between two solutions. For this dissimilarity func-
tion, the ∆-augmented scoring function can be written as:

S∆(y) =
∑

u∈V

(

θu(yu) +

m−1∑

m′=1

λm′ [[yu 6=ỹ
(m′)
u]]

)

︸ ︷︷ ︸

Perturbed Unary Score

+
∑

(u,v)∈E

θuv(yuv). (5)

Thus (5) can be maximized by feeding a perturbed unary

term to the MAP inference algorithm.

Practical Remarks. The computation of additional solu-

tions can and should be warm-started by using dynamic in-

ference techniques such as [12, 22]. The benefit of such

warm-start typically decreases as magnitude of the pertur-

bations λm′ increases. For certain models/tasks the pertur-

bations could be limited to certain regions of the model so

that dynamic inference is particularly effective.

3.2 Generating Diverse M-Best

Cutting-Planes

Our proposed approach, DivMCuts, is summarized in Al-

gorithm 2. It is parametrized by M , the number of con-

straints to add to the working-set at every iteration – note

that Algorithm 1 is a special case of Algorithm 2 with

M=1. Algorithm 2 finds M diverse loss-augmented so-

lutions for each example (Line 6) and uses these solu-

tions to generate M diverse cutting-planes to be added

to the working-set (Lines 9-10). In order to fully spec-

ify the algorithm, we need to describe two procedures: 1)

Updateλ (Line 8) which controls the amount of diversity

in the loss-augmented solutions; and 2) Combine (Line 9)

which produces a set of M cutting-planes given the M loss-

augmented solutions from all n examples.

Diversity Requirements (Updateλ). The amount of di-

versity in the loss-augmented solutions is controlled by

parameters km in (3b) and the corresponding Lagrangian

multipliers λm in (4). However, the amount of diversity ap-

propriate for faster convergence will typically be problem

dependent and not known a priori. This is further compli-

cated by the fact that in practice the Lagrangian relaxation

may not be tight [4].

Algorithm 2 DivMCuts: Generalization of Algorithm 1

adding M constraints at every iteration.

1: Input: S = {(x1,y1), . . . , (xy,yn)}, C, ǫ, M , K, λ0

2: W ← ∅; λ← λ0

3: repeat

4: (w, ξ)← argmin
w,ξ≥0

1
2w

Tw + Cξ

s.t. 1
n
wT

n
∑

i=1

[

Ψ(xi,yi)−Ψ(xi, ȳi)

]

≥ 1
n

n
∑

i=1

ℓ(yi, ȳi)− ξi ∀Ȳ ∈ W

5: for i = 1, . . . , n do

6: Ỹi = (ỹ
(1)
i , . . . , ỹ

(M)
i)←

DivMBest(ℓ(yi, ·)+wTΨ(xi, ·),M,λ)
7: end for

8: λ← Updateλ(M,K,λ, Ỹ1, . . . , Ỹn)

9: (Ŷ(1), . . . , Ŷ(M))← Combine(M, Ỹ1, . . . , Ỹn)

10: W ←W ∪
{

Ŷ(1), . . . , Ŷ(M)
}

11: until 1
n

n
∑

i=1

ℓ(yi, ŷ
(1)
i)

− 1
n
wT

n
∑

i=1

[

Ψ(xi,yi)−Ψ(xi, ŷ
(1)
i)

]

≤ ξ + ǫ

12: return (w, ξ)

To address both issues, Algorithm 2 uses a feedback loop

to control the amount of diversity in the solutions. Let K̄j

be the observed dataset-wide diversity,

K̄j =

n
∑

i=1

∆
(

ỹ
(j)
i , ỹ

(j+1)
i

)

n
∑

i=1

maxy ∆
(

ỹ
(j)
i ,y

)

(6)

where ∆ is the dissimilarity function used by DivMBest.

For instance, in the case of Hamming distance, K̄j cor-

responds to the fraction of nodes labeled differently in all

(j+1)th solutions w.r.t. all jth solutions. Let also K =
(Kj | j ∈ [M−1]) be a vector of diversity setpoints. These

parameters specify the desired amount of dataset-wide di-

versity – this is preferred to specifying per-example diver-

sity as it leads to a better compromise between perturbation

minimization and amount of 1-slack diversity.

Then, at each iteration Updateλ compares the observed

dataset-wide diversity K̄j with setpoint Kj , and updates

λj to increase or decrease diversity at the next iteration.

We obtained good results with the following update rule:

λj ← λj

(

1 +
1

2

Kj − K̄j

max(Kj , K̄j)

)

. (7)

In Sec. 4 we will see that dataset-wide diversity of solutions

has a direct impact on the convergence rate of the algorithm

and will describe how to set parameter K.

Combining Solutions into Constraints (Combine).

Given (Ỹ1, . . . , Ỹn), the set of predictions computed in

 320

Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra

Line 6 of Algorithm 2, we must construct M 1-slack con-

straints – each of them a linear combination of features cor-

responding to solutions from all n training examples (thus,

there are Mn possibilities). Here, it is important to con-

sider the diversity of the resulting cutting-planes w.r.t. each

other – features appearing together in a constraint must be

such that their “diversities” do not cancel out.

DivMCuts ensures that Ŷ(1) corresponds to the standard

most violated constraint, i.e., the combination of MAP so-

lutions. This is sufficient to preserve the correctness and

convergence properties of the original algorithm. For the

the remaining M−1 additional cutting-planes, we explore

the following choices:

1. DivMBest−Ordering: Ŷ(j) ← (ỹ
(j)
1 , . . . , ỹ

(j)
n) for

j ∈ [M]. That is, we combine all mth solutions to-

gether to obtain the mth constraint.

2. DOP1−Heuristic: Informed by insight offered in the

proof of Theorem 1, this strategy involves an opti-

mization procedure that seeks to maximize the attain-

able increase (given the new constraints) in the objec-

tive of the Dual of OP1. The optimization procedure

is a binary Integer Quadratic Program (IQP) on “flag”

variables which select one solution from each example

for each constraint. This IQP is, however, too slow for

our purposes so we resort to, i) an approach based on

relaxing the IQP, and ii) an approach based on a sim-

plification of the IQP (by dropping quadratic terms)

which is efficiently solvable via binary Integer Linear

Programming (ILP). For lack of space, we relegate de-

tails to the supplementary materials.

We compare the effectiveness of the above strategies in the

experiments section.

4 Experiments

Setup. We tested DivMCuts (Algorithm 2) on two prob-

lems: 1) foreground-background segmentation in image

collections and 2) protein side-chain prediction.

For both problems we tuned parameter C on validation

data. For the K and λ0 vectors we use the same value

(scalars K and λ0) for each of the M−1 elements. We

performed grid-search on K and found the algorithm to be

fairly robust to the choice of λ0.

Our experiments show that the number of cutting-plane it-

erations can be reduced substantially, i.e., up to ∼ 62% in

the case of foreground-background segmentation. How-

ever, a reduction in the number of iterations will not nec-

essarily translate into a comparable reduction in training

time since the time taken for computing additional con-

straints increases with M and K. It is crucial to em-

ploy warm-starting (e.g., dynamic) techniques for infer-

ence and to compute feature vectors incrementally (i.e.,

Ψ(xi,y
(2)
i) = Ψ(xi,y

(1)
i) + δΨ(xi,y

(1)
i ,y

(2)
i)). The

greatest (time) speedup,∼ 28%, was obtained under a more

modest reduction in the number of iterations, ∼ 34%.

Practical Consideration. All QP solvers we used were

slowed down by the additional constraints. As observed

by [10], constraints that become inactive as optimization

proceeds may be removed without affecting the theoreti-

cal guarantees. Thus, we discard constraints that have not

been active in the last 50 QP solutions. For some problem

instances, this strategy made a significant difference. We

report results obtained with solver QPC.1

Baselines. We compare against three baselines obtained by

replacing the oracle call (line 6) in Algorithm 2 as follows:

1. MAP inference. Since we obtain single solutions this

becomes the special case of Algorithm 1.

2. MBest MAP inference. In the case of foreground-

background segmentation we implemented BMMF

[26] using Dynamic Graph-Cuts [12].

3. Rand: Nodes for relabeling are chosen at random so

that the resulting diversity is as specified by parameter

K. To relabel a node the procedure computes a multi-

nomial distribution from the unary potential (exclud-

ing the current label) and samples a new label from

this distribution.

Caching Constraints. While techniques like caching (and

warm-starting) are useful for speeding up CP training, they

are orthogonal to the contributions of this paper. Both Al-

gorithms 1 and 2 may benefit from such techniques. We

performed experiments with caching and confirmed that the

results in this paper apply directly to all iterations not con-

structing constraints from the cache. The effect of caching

has large variance across applications: major savings on

segmentation but negligible on side-chain prediction (also,

e.g., in [10], Fig. 3 and 6, somewhat different trends on the

effect of caching are reported on three applications).

Finally, DivMCuts can be combined with caching to pro-

vide additional benefits: 1) If one were to cache the state of

the separation-oracle, one could apply our method on iter-

ations constructing constraints from the cache. 2) Caching

the additional constraints produced with our method should

enable constructing constraints from the cache more often.

We leave such extensions for future work.

4.1 Foreground-Background Segmentation

Dataset. We used the co-segmentation dataset, iCoseg, of

Batra et al. [3]. iCoseg consists of 37 groups of related im-

ages mimicking typical consumer photograph collections.

Each group may be thought of as an “event” (e.g., images

from a baseball game, a safari, etc.). The dataset provides

pixel-level ground-truth foreground-background (f-b) seg-

mentation for each image.

Model and Features. The segmentation task is modeled as

1http://sigpromu.org/quadprog/

 321

 322

Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra

0 500 1000 1500

10
0

10
1

10
2

10
3

10
4

✳

■t❡r❛t✐♦♥

� ✿ ▼❆P
� ✿ ❉✁✈▼❈✉✂s✩✭✄❂✹❀ ❑❂✵☎✵✶✷✽✮
� ✿ ▼❇✆s✂✭✄❂✹✮
� ✿ ❘✝✞❞✭✄❂✹❀ ❑❂✵☎✵✶✷✽✮
� ✿ ❉✁✈▼❈✉✂s✭✄❂✽❀❑❂✵☎✵✵✻✹✮
� ✿ ▼❇✆s✂✭✄❂✽✮
� ✿ ❘✝✞❞✭✄❂✽❀ ❑❂✵☎✵✵✻✹✮

(a) γ vs iters. @ baselines.

0 500 1000 1500

10
0

10
1

10
2

10
3

10
4

10
5

❚
✟♠
✠
✡
☛
✠
❝
☛☞

✌✍✎✏✑✍✒✓✔

✕✖✗✘✙✚ ✛✜✢
✕✖✗✘✙✚ ✣✘✤✛✥✦✧★✪✫✬✯✰✱✲✯✴✸✴✺✼✾❁
✕✖✗✘✙✚ ✛❃❄★✧✫✬✯✰❁
✕✖✗✘✙✚ ❅✗✙❊✫✬✯✰✱✲✯✴✸✴✺✼✾❁
✕✖✗✘✙✚ ✣✘✤✛✥✦✧★✫✬✯✾✱✲✯✴✸✴✴❋✰❁
✕✖✗✘✙✚ ✛❃❄★✧✫✬✯✾❁
✕✖✗✘✙✚ ❅✗✙❊✫✬✯✾✱✲✯✴✸✴✴❋✰❁

(b) Time vs iters. @ baselines.

0 100 200 300 400 500

10
0

10
1

10
2

10
3

10
4

●

❍❏▲◆ ❖◗◆❙◗❯

❱ ❲ ❳❨❩
❱ ❲ ❬❭❪❳❫❴❵❜❢❣❤❥❦❧♣❥q✇q①②③④
❱ ❲ ❳⑤⑥❜❵❣❤❥❦④
❱ ❲ ⑦⑧⑨⑩❣❤❥❦❧♣❥q✇q①②③④
❱ ❲ ❬❭❪❳❫❴❵❜❣❤❥③❧♣❥q✇qq❶❦④
❱ ❲ ❳⑤⑥❜❵❣❤❥③④
❱ ❲ ⑦⑧⑨⑩❣❤❥③❧♣❥q✇qq❶❦④

(c) γ vs time @ baselines.

Figure 4: (a,b) Convergence and execution time vs iterations; and (c) Convergence vs time against baselines on f-b segmentation.

N
o

ca
ch

e
M

=
1

N
o

ca
ch

e
M

=
4

C
ac

h
e

M
=
1

C
ac

h
e

M
=
4

Total iterations 1836 1015 4048 3687

Iterations from cache 0 0 3974 3622

Time (secs) 297 245 104 97

Table 1: DivMCuts with caching on f-b segmentation.

model has a parameter for each feature-label combination,

i.e., 2 parameters for each unary feature and 4 parameters

for each edge feature.

We dropped different subsets of the features and re-tested

the effect of M on convergence. The plots in Fig. 3a show

that as the dimensionality |w| of the problem increases,

higher values of M lead to greater (percental) iteration re-

ductions. This suggest we may expect greater computa-

tional savings on problems of higher dimensionality.

Value of additional constraints. In Fig. 3b, 3c we confirm

that the cutting-planes generated by DivMCuts do posses

marginal relevance throughout the training process. Specif-

ically, we add each of the M constraints sequentially to the

working-set. For every addition, we solve the intermediate

QP and show: 1) Fig. 3b, the violation of each constraint

just before it is added to the working-set; and 2) Fig. 3c, the

improvement in the objective after the QP is solved. We see

that the M constraints are in fact, i) violated, and ii) con-

tinue to improve the QP objective even in the presence of

the previous constraints. This behavior precisely explains

the observed reductions in training iterations.

Comparison against Baselines. In Fig. 4a we observe that

the Rand baseline produced an increase in the number of

iterations to convergence (w.r.t. MAP). MBest obtained

about half the decrease in the number of iterations obtained

by DivMCuts, but as shown in Fig. 4b, MBest is close to

three orders of magnitude slower than the other algorithms.

Fig. 4c compares the algorithms’ convergence vs time per-

formance.

Caching Constraints. We experimented with the caching

methodology implemented in SVM-Struct [10] using de-

fault parameters (e.g., cache size). When combining

caching with DivMCuts, multiple constraints are added

only when constructing a constraint from the cache fails.

We cache only most violated constraints to be consis-

tent with SVM-Struct. Table 1 shows results for a few

combinations of caching and M . For this application,

caching works very well and reduces the speedup due to

our method. However, caching has negligible effect on the

experiments in the next section.

4.2 Protein Side-Chain Prediction

Model and Dataset. Given a protein backbone structure,

the task here is to predict the amino acid side-chain con-

figurations. This problem has been traditionally formu-

lated as a pairwise MRF with node labels corresponding to

(discretized) side-chain configurations (rotamers). These

models include pairwise interactions between nearby side-

chains, and between side-chains and backbone. We use

the dataset of [6] which consists of 276 proteins (up to

700 residues long).2 The energy function is defined as

a weighted sum of eight known energy terms where the

weights are to be learned.

To speedup inference and feature computation we carried

both tasks in parallel (4 workers). We continue to report

total train time below – times reported are wall-clock times

and not CPU times. Note that parallelization has no effect

in the number of cutting-plane iterations and minimal ef-

fect on training time ratios (due to non-zero overhead). For

inference we used TRW-S [13].

Effect of M on convergence. In Fig. 5a, 5b and 5c we ob-

serve that the greatest speedup was obtained for M=4 with

an iteration reduction of 102−67
102 ≈ 34.31% and a running

time reduction of 14749−10585 secs
14749 secs

≈ 28.23%.

Interestingly, DivMCuts achieved greater time savings for

2Dataset available from: http://cyanover.fhcrc.org/recomb-
2007/

 323

 324

Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and
S. Susstrunk. SLIC Superpixels Compared to State-of-the-
art Superpixel Methods. PAMI, 34(11):2274–2281, 2012.
6

[2] A. Barbu and S.-C. Zhu. Generalizing Swendsen-Wang to
Sampling Arbitrary Posterior Probabilities. PAMI, 27:1239–
1253, August 2005. 3

[3] D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. iCoseg:
Interactive Co-segmentation with Intelligent Scribble Guid-
ance. In CVPR, 2010. 5

[4] D. Batra, P. Yadollahpour, A. Guzman-Rivera, and
G. Shakhnarovich. Diverse M-Best Solutions in Markov
Random Fields. In ECCV, 2012. 1, 2, 3, 4

[5] Y. Boykov, O. Veksler, and R. Zabih. Efficient Approximate
Energy Minimization via Graph Cuts. PAMI, 20(12):1222–
1239, 2001. 6

[6] O. S.-F. Chen Yanover and Y. Weiss. Minimizing and Learn-
ing Energy Functions for Side-Chain Prediction. Journal of
Computational Biology, 15(7):899–911, 2008. 7

[7] M. Fromer and A. Globerson. An LP View of the M-best
MAP problem. In NIPS, 2009. 3

[8] J.-L. Goffin and J.-P. Vial. Multiple Cuts in the Analytic
Center Cutting Plane Method. SIAM J. on Optimization,
11(1):266–288, Jan. 2000. 8

[9] J.-L. Goffin and J.-P. Vial. Convex Nondifferentiable Opti-
mization: A Survey Focussed On The Analytic Center Cut-
ting Plane Method. Optimization Methods and Software,
17(5):805–867, 2002. 8

[10] T. Joachims, T. Finley, and C.-N. Yu. Cutting-Plane Training
of Structural SVMs. Machine Learning, 77(1):27–59, 2009.
1, 2, 3, 5, 7, 8

[11] J. E. Kelley Jr. The Cutting-Plane Method for Solving Con-
vex Programs. Journal of the Society for Industrial and Ap-
plied Mathematics, 8(4):pp. 703–712, 1960. 1

[12] P. Kohli and P. H. S. Torr. Effciently Solving Dynamic
Markov Random Fields Using Graph Cuts. In ICCV, pages
922–929, 2005. 4, 5

[13] V. Kolmogorov. Convergent Tree-Reweighted Message
Passing for Energy Minimization. PAMI, 28(10):1568–
1583, 2006. 7

[14] V. Kolmogorov and R. Zabih. What Energy Functions can
be Minimized via Graph Cuts? PAMI, 26(2):147–159, 2004.
6

[15] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher.
Block-Coordinate Frank-Wolfe Optimization for Structural
SVMs. In ICML, 2013. 8

[16] E. R. Natalia Flerova and R. Dechter. Bucket and mini-
bucket Schemes for M Best Solutions over Graphical Mod-
els. In IJCAI Workshop on Graph Structures for KRR, 2011.
3

[17] D. Nilsson. An efficient algorithm for finding the M
most probable configurations in probabilistic expert sys-
tems. Statistics and Computing, 8:159–173, 1998. 3

[18] J. Porway and S.-C. Zhu. C4: Exploring Multiple Solu-
tions in Graphical Models by Cluster Sampling. PAMI,
33(9):1713–1727, 2011. 3

[19] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. (Online)
Subgradient Methods for Structured Prediction. In AISTATS,
2007. 8

[20] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pe-
gasos: Primal Estimated sub-GrAdient SOlver for SVM.
Mathematical Programming, 127(1):3–30, 2011. 8

[21] M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs Using
Graph Cuts. In ECCV, 2008. 8

[22] D. Tarlow, D. Batra, P. Kohli, and V. Kolmogorov. Dynamic
Tree Block Coordinate Ascent. In ICML, 2011. 4

[23] B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov
Networks. In NIPS, 2003. 1

[24] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large Margin Methods for Structured and Interdependent
Output Variables. JMLR, 6:1453–1484, 2005. 1, 2

[25] Z. Tu and S.-C. Zhu. Image Segmentation by Data-Driven
Markov Chain Monte Carlo. PAMI, 24:657–673, May 2002.
3

[26] C. Yanover and Y. Weiss. Finding the M Most Probable
Configurations Using Loopy Belief Propagation. In NIPS,
2003. 3, 5

[27] Y. Ye. Complexity analysis of the analytic center cutting
plane method that uses multiple cuts. Math. Program.,
78(1):85–104, July 1997. 8

