
Supplementary Material for “DivMCuts: Faster Training of
Structural SVMs with Diverse M-Best Cutting-Planes”

Abner Guzman-Rivera
University of Illinois

Pushmeet Kohli
Microsoft Research Cambridge

Dhruv Batra
Virginia Tech

1 Preliminaries: Training Structural SVMs

This section reviews the notation used in the main paper and revisits cutting-plane methods for training
structured-output predictors.
Notation. For any positive integer n we use [n] as shorthand for the set {1, 2, . . . , n}. We use y for a
structured-output, and Y = (y1, . . . ,y|Y|) for a tuple of structured-outputs.

Given a training dataset of input-output pairs {(xi,yi) |xi ∈X ,yi ∈Y}, we are interested in learning
a mapping f : X → Y from an input space X to a structured output space Y that is finite but typically
exponentially large (e.g., the set of all segmentations of an image, or all English translations of a Chinese
sentence).
Structural Support Vector Machines (SSVMs). In an SSVM setting, the mapping is defined as f(x) =
argmaxy∈Y wTΨ(x,y), where Ψ(x,y) is a joint feature map: Ψ : X × Y → Rd. The quality of the
prediction ŷi = f(xi) is measured by a task-specific loss function ` : Y × Y → R+, where `(yi, ŷi)
denotes the cost of predicting ŷi when the correct label is yi. Since the task-loss ` is typically non-convex
and non-continuous, [2] proposed to optimize the hinge upper bound on `.

The regularized hinge-loss SSVM learning problem can be formulated as a QP with exponentially many
constraints. In this paper, we work with the 1-slack formulation of Joachims et al. [1] in the Margin-
Rescaling variant (1).
Optimization Problem 1 (OP1). 1-slack Structural SVM (Margin-Rescaling) Training (Primal) formula-
tion,

min
w,ξ≥0

1

2
wTw + Cξ (1a)

s.t.
1

n
wT

n∑
i=1

[
Ψ(xi,yi)−Ψ(xi, ȳi)

]
≥ 1

n

n∑
i=1

`(yi, ȳi)− ξ ∀Ȳ ∈ Yn (1b)

Note that 1-slack SSVMs involve |Y|n constraints, one for each possible combination of labels, Ȳ =
(ȳ1, . . . , ȳn) ∈ Yn, but there is a single slack variable, ξ, shared across all constraints. Hence, the name
1-slack. The number of constraints is thus exponentially larger than in n-slack SSVMs (which involve only
n|Y| constraints). However, Joachims et al. [1] showed that: 1) the two formulations are equivalent and,
most importantly, 2) 1-slack leads to faster convergence, both in theory and practice.

The cutting-plane algorithm (Algorithm 1 in the main paper) for solving OP1 relies on the fact that the
number of non-zero elements of the solution α of the dual problem of OP1 is independent of the size of the
training set. This key property is used for proving convergence of the cutting-plane algorithm. The Dual of
OP1 is [1],

1



Optimization Problem 2 (DOP1).

max
α≥0

D(α) =
∑

Ȳ∈Yn

αȲ`(Ȳ)− 1

2

∑
Ȳ∈Yn

∑
Ȳ′∈Yn

αȲαȲ′H(Ȳ, Ȳ′) (2a)

s.t.
∑

Ȳ∈Yn

αȲ = C (2b)

where `(Ȳ) = 1
n

n∑
i=1

`(yi, ȳi), and

H(Ȳ, Ȳ′) =
1

n2

[ n∑
i=1

n∑
j=1

Ψ(xi,yi)
TΨ(xj ,yj)−

n∑
i=1

n∑
j=1

Ψ(xi,yi)
TΨ(xj , ȳj)

−
n∑
i=1

n∑
j=1

Ψ(xi,yi)
TΨ(xj , ȳ

′
j) +

n∑
i=1

n∑
j=1

Ψ(xi, ȳi)
TΨ(xj , ȳ

′
j)

]
. (3)

The primal and dual solutions, w∗ and α∗ respectively, are related by

w∗ =
1

n

∑
Ȳ∈Yn

α∗Ȳ

n∑
j=1

[
Ψ(xj ,yj)−Ψ(xj , ȳj)

]
.

2 On Alternative 1-Slack Constraint Generation Strategies

A 1-slack constraint is uniquely determined by a tuple of solutions for all examples, e.g., Ŷ = (ŷ1, . . . , ŷn),

1

n

n∑
i=1

`(yi, ŷi)−
1

n
wT

n∑
i=1

[
Ψ(xi,yi)−Ψ(xi, ŷi)

]
≤ ξ (4)

Given tuples Ỹi = (ỹ
(1)
i , . . . , ỹ

(M)
i ) of diverse solutions for all examples, we need to decide which

solutions to combine with each other in order to generate multiple 1-slack constraints. Obviously, there are
an exponential number of possibilities.

The proof of Theorem 1 in the main paper suggests a number of ideas one could try. We describe in
detail one of the heuristics we experimented with which worked well in practice. We seek to maximize the
attainable increase of the dual objective (2a) after adding a set of M new constraints.

We keep only the terms in the dual objective (2a) that are dependent on the new constraints, i.e., we
would like to maximize the following expression (w.r.t. the new constraints),∑

m

αŶ(m)`(Ŷ
(m))−

∑
Ȳ∈W

∑
m

αȲαŶ(m)H(Ȳ, Ŷ(m))− 1

2

∑
m,m′

αŶ(m)αŶ(m′)H(Ŷ(m), Ŷ(m′)) (5)

where m,m′ ∈ [M ],W is the working-set at the current iteration and Ŷ(m) is the tuple of new constraints.
Of course, we do not know the value α will take after the addition of the new constraints but we must

somehow fix it in order to proceed. We set α as follows,

αY =
C

Z


αY if Y ∈ W
α̃W if Y is a new constraint

0 otherwise
(6)

2



where α̃W is the median of {αY | Y ∈ W} and C
Z is a normalization constant so that 2b is satisfied (normal-

ization, however, does not affect the optimization procedure that follows). Further, we would like for Ŷ(1)

to be the most-violated constraint (in order to preserve the theoretical properties of the original algorithm,
e.g., Theorem 1). That is, Ŷ(1) = (ŷ

(1)
1 , . . . , ŷ

(1)
n ). After fixing α and Ŷ(1), and discarding some constant

terms, eq. (5) becomes,∑
m∈[M ]−

α̃W`(Ŷ
(m))−

∑
Ȳ∈W

∑
m∈[M ]−

αȲα̃WH(Ȳ, Ŷ(m))−
∑

m∈[M ]−

α̃2
WH(Ŷ(1), Ŷ(m))

− 1

2

∑
m,m′∈[M ]−

α̃2
WH(Ŷ(m), Ŷ(m′)) (7)

where [M ]− = {2, 3, . . . ,M}.
Referring to eq. (3) we will now expand the H(·, ·)’s and drop additional terms not dependent on the

new constraints. We define two symbols in the process,

Ψ(X,Y)
∆
=

n∑
i=1

Ψ(xi,yi) (8)

δΨ(X,Y′)
∆
=

n∑
i=1

[
Ψ(xi,y

′
i)−Ψ(xi,yi)

]
(9)

Hence,

H(Ȳ, Ŷ) =
n∑
i=1

δΨ(X, Ȳ)TΨ(xi, ŷi) +
terms not

dependent on Ŷ (10)

H(Ŷ, Ŷ′) =
n∑
i=1

n∑
j=1

Ψ(xi, ŷi)
TΨ(xj , ŷ

′
j)−

n∑
i=1

Ψ(X,Y)TΨ(xi, ŷi)

−
n∑
i=1

Ψ(X,Y)TΨ(xi, ŷ
′
i) +

terms not
dependent on Ŷ, Ŷ′ (11)

Substituting the new symbols into eq. 7, dropping irrelevant terms and expanding `(Ŷ) we arrive at,

∑
m∈[M ]−

α̃W
n

n∑
i=1

`(yi, ŷ
(m)
i )−

∑
Ȳ∈W

∑
m∈[M ]−

αȲα̃W

n∑
i=1

δΨ(X, Ȳ)TΨ(xi, ŷ
(m)
i )

−
∑

m∈[M ]−

α̃2
W

n∑
i=1

δΨ(X, Ŷ(1))TΨ(xi, ŷ
(m)
i )

− 1

2

∑
m,m′∈[M ]−

α̃2
W

[ n∑
i=1

n∑
j=1

Ψ(xi, ŷ
(m)
i )TΨ(xj , ŷ

(m′)
j )

−
n∑
i=1

Ψ(X,Y)TΨ(xi, ŷ
(m)
i )−

n∑
i=1

Ψ(X,Y)TΨ(xi, ŷ
(m′)
i )

]
(12)

3



reordering summations and grouping terms,

∑
m∈[M ]−

α̃W

n∑
i=1

[ 1

n
`(yi, ŷ

(m)
i )−

∑
Ȳ∈W

αȲδΨ(X, Ȳ)TΨ(xi, ŷ
(m)
i )

− α̃WδΨ(X, Ŷ(1))TΨ(xi, ŷ
(m)
i ) + (M−1)α̃WΨ(X,Y)TΨ(xi, ŷ

(m)
i )

]
− 1

2

∑
m,m′∈[M ]−

α̃2
W

n∑
i=1

n∑
j=1

Ψ(xi, ŷ
(m)
i )TΨ(xj , ŷ

(m′)
j ) (13)

Finally, we introduce binary variables ρmi,k which will take value 1 iff ŷ
(k)
i ∈ Ŷ(m), i.e., the k-th solution

for example i is included in constraint m. We are ready to write a binary Integer Quadratic Program (IQP)
to set the ρmi,k variables for us,

max
ρ

O(ρ) =
∑

m∈[M ]−

n∑
i=1

∑
k∈[M ]−

α̃W

[ 1

n
`(yi, ŷ

(k)
i )−

∑
Ȳ∈W

αȲδΨ(X, Ȳ)TΨ(xi, ŷ
(k)
i )

− α̃WδΨ(X, Ŷ(1))TΨ(xi, ŷ
(k)
i ) + (M−1)α̃WΨ(X,Y)TΨ(xi, ŷ

(k)
i )
]
ρmi,k

−
α̃2
W
2

∑
m,m′∈[M ]−

n∑
i=1

∑
k∈[M ]−

n∑
j=1

∑
l∈[M ]−

[
Ψ(xi, ŷ

(k)
i )TΨ(xj , ŷ

(l)
j )
]
ρmi,kρ

m′
j,l (14a)

s.t.
∑

k∈[M ]−

ρmi,k = 1 m ∈ [M ]−, i ∈ [n] (14b)

∑
m∈[M ]−

ρmi,k ≤ 1 k ∈ [M ]−, i ∈ [n] (14c)

ρmi,k ∈ {0, 1} m, k ∈ [M ]−, i ∈ [n] (14d)

Constraints (14b) indicate that a constraint must include exactly one solution for each example. Constraints
(14c) indicate that solutions must appear in at most one constraint. The latter constraints are optional but we
obtained better results when including them. A slight modification to the above program which we found
useful is to let k ∈ [M ]. That is, we allow the MAP solution to be reused once and we allow one of the
solutions for each example to not be used.

Solving IQP (14) is unfortunately a time consuming process and thus not practical. For this reason, we
tried the following two strategies:

1. Relaxation: We relax the problem by replacing (14d) with ρmi,k ∈ [0, 1]. Since the resulting quadratic
program (QP) is not convex we are forced to solve to first-order optimality only. We then rounded the
solutions we obtained from the relaxed problem.

2. Drop Quadratic Terms: The quadratic terms are exclusively dependent on the new constraints. Hoping
that the linear terms would contain sufficient information to achieve a good setting of ρ we remove
all quadratic terms obtaining an Integer Linear Program (ILP). It turns out we were able to solve the
resulting ILPs (without recurring to relaxation) in reasonable time.

The latter combination strategy is referred to as DOP1-ILP in the main paper. This is the strategy we
found experimentally to produce the greatest reduction in the number of iterations. However, as reported in
our experiments, the much simpler and computationally cheap DivMBest-Ordering strategy achieved similar
savings in the number of iterations.

4



References
[1] T. Joachims, T. Finley, and C.-N. Yu. Cutting-Plane Training of Structural SVMs. Machine Learning, 77(1):27–

59, 2009. 1
[2] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large Margin Methods for Structured and Interdepen-

dent Output Variables. JMLR, 6:1453–1484, 2005. 1

5


