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APPENDIX – SUPPLEMENTARY
MATERIAL

A Proofs

Here we will show that the joint pdf of the entire field
conditioned on its margin (Figure 9, gray area) equals
the product of the predictive conditional distributions.

Proof of Proposition 2.3. To simplify notation, we as-
sign index numbers i ∈ 1, . . . N to the space-time grid
(s, t) to ensure that the PLC of i1 cannot contain Xi2

if i2 > i1. We can do this by iterating through space
and time in increasing order over time (and, for fixed
t, any order over space):

(s, t) , s ∈ S, t ∈ T→
(
i(t−1)·|S|+1, . . . , i(t−1)·|S|+|S|)

)
= (t− 1) · |S|+ (1, . . . , |S|).

(31)

We assume that the process we observed is part of a
larger field on an extended grid S̃× T̃, with S̃ ⊃ S and
T̃ = {−(hp − 1), . . . , 0, 1, . . . T , for a total of Ñ > N
space-time points, X1, . . . , XÑ . The margin M are all

points X(s, u), (s, u) ∈ S̃ × T̃ that do not have a fully
observed past light cone. Formally,

M = {X(s, u) | `−(s, u) /∈ {X(r, t) ,(r, t) ∈ S× T}},
(32)

The size of M depends on the past horizon hp as well
as the speed of propagation c, M = M (hp, c).

In Figure 9, the part of the field with fully observed
PLCs are marked in red. Points in the margin, in
gray, have PLCs extending into the fully unobserved
region (blue). Points in the red area have a PLC that
lies fully in the red or partially in the gray, but never
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Figure 9: Margin of spatio-temporal field in (1+1)D.

in the blue area. As can be see in Fig. 9 the margin
at each t is a constant fraction of space, thus overall
M grows linearly with T ; it does not grow with an
increasing S, but stays constant.

For simplicity, assume that X1, . . . , XN are from the
truncated (red) field, such that all their PLCs are ob-
served (they may lie in M), and the remaining Ñ −N
Xjs lie in M (with a PLC that is only partially unob-
served). Furthermore let Xk

1 := {X1, . . . , Xk}. Thus

P
(
{X(s, t) |(s, t) ∈ S̃× T̃}

)
= P

(
XÑ

1

)
= P

(
XN

1 ,M
)

= P
(
XN

1 |M
)
P (M)

The first term factorizes as

P
(
XN

1 |M
)

= P
(
XN | XN−1

1 ,M
)
P
(
XN−1

1 |M
)

= P
(
XN | `−N ∪ {XN−1

1 ,M} \ {`−N}
)
P
(
XN−1

1 |M
)

= P
(
XN | `−N

)
P
(
XN−1

1 |M
)

where the second-to-last equality follows since by (31),
`−N ⊂ {Xk | 1 ≤ k < N} ∪M, and the last equality
holds since Xi is conditional independent of the rest
given its own PLC (due to limits in information prop-
agation over space-time).

By induction,

P (X1, . . . , XN |M) =

N−1∏
j=0

P
(
XN−j | `−N−j

)
(33)

=

N∏
i=1

P
(
Xi | `−i

)
(34)

This shows that the conditional log-likelihood maxi-
mization we use for our estimators is equivalent (up to
a constant) to full joint maximum likelihood estima-
tion.

B Predictive States and Mixture
Models

Another way to understand predictive states is as the
extremal distributions of an optimal mixture model
(Lauritzen, 1974, 1984).

To predict any variable L+, we have to know its distri-
bution P (L+). If, as often happens, that distribution
is very complicated, we may try to decompose it into a
mixture of simpler “base” or “extremal” distributions,
P (L+ | θ), with mixing weights π(θ),

P
(
L+
)

=

∫
π(θ)P

(
L+ | θ

)
dθ . (35)
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The familiar Gaussian mixture model, for instance,
makes the extremal distributions to be Gaussians
(with θ indexing both expectations and variances), and
makes the mixing weights π(θ) a combination of delta
functions, so that P (L+) becomes a weighted sum of
finitely-many Gaussians.

The conditional predictive distribution of L+ | `− in
(35) is a weighted average over the extremal condi-
tional distributions P (L+ | θ, `−),

P
(
L+ | `−

)
=

∫
π(θ|`−)P

(
L+ | θ, `−

)
dθ (36)

This only makes the forecasting problem harder, unless

P (L+ | θ, `−)π(θ | `−) = P
(
L+ | θ̂(`−)

)
δ(θ − θ̂(`−)),

that is, unless θ̂(`−) is a predictively sufficient statistic
for L+. The most parsimonious mixture model is the
one with the minimal sufficient statistic, θ = ε(`−).
This shows that predictive states are the best “param-
eters” in (35) for optimal forecasting. Using them,

P
(
L+
)

=

K∑
j=1

P
(
ε(`−) = sj

)
P
(
L+ | ε(`−) = sj

)
(37)

=

K∑
j=1

πj(`
−) · Pj

(
L+
)
, (38)

where πj(`
−) is the probability that the predictive

state of `− is sj , and Pj (L+) = P (L+ | S = sj). Since
each light cone has a unique predictive state,

πj(`
−) =

{
1, if ε(`−) = sj ,

0 otherwise.
(39)

Thus the predictive distribution given `−i is just

P
(
L+ | `−i

)
=

K∑
j=1

πj(`
−
i ) · Pj

(
L+
)

= Pε(`−i )

(
L+
)
.

(40)

Now the forecasting problem simplifies to mapping
`−i to its predictive state, ε(`−i ) = sj ; the appropriate
distribution-valued forecast is pj(L

+), and point
forecasts are derived from it as needed.

This mixture-model point of view highlights how pre-
diction benefits from grouping points by their predic-
tive consequences, rather than by spatial proximity (as
a Gaussian mixture would do). For us, this means clus-
tering past light-cone configurations according to the
similarity of their predictive distributions, not accord-
ing to (say) the Euclidean geometry. Mixed LICORS
thus learns a new geometry for the system, which is
optimized for forecasting.
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