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Abstract

We present a general construction for de-
pendent random measures based on thinning
Poisson processes on an augmented space.
The framework is not restricted to dependent
versions of a specific nonparametric model,
but can be applied to all models that can be
represented using completely random mea-
sures. Several existing dependent random
measures can be seen as specific cases of this
framework. Interesting properties of the re-
sulting measures are derived and the efficacy
of the framework is demonstrated by con-
structing a covariate-dependent latent fea-
ture model and topic model that obtain su-
perior predictive performance.

1 Introduction

Motivated by a desire for flexible models that mini-
mize assumptions about the underlying structure of
our data, Bayesian nonparametric models have gar-
nered much attention in the machine learning and
statistics communities. Most Bayesian nonparamet-
ric models assume observations are exchangeable. In
real life, this assumption is usually hard to justify. We
often have side information – for example time stamps
or geographical location – that we believe influences
the latent structure of our data.

There has been growing interest in models that
challenge this exchangeability assumption, while still
maintaining desirable properties of the original non-
parametric processes. A dependent nonparametric
process (MacEachern, 1999) is defined as a distribu-
tion over collections of measures indexed by values in
some covariate space, such that the marginal distribu-
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tion at some covariate value is described by a known
nonparametric process. A number of authors have
proposed dependent versions of the Dirichlet process
(for example Griffin & Steel, 2006; Rao & Teh, 2009;
Chung & Dunson, 2011; Duan et al., 2007; Caron et al.,
2007), the Pitman-Yor process (Sudderth & Jordan,
2009) and the Indian buffet process (Ren et al., 2011;
Williamson et al., 2010; Zhou et al., 2011).

Most of the basic nonparametric processes found in
the literature can be formulated in terms of completely
random measures (CRMs, Kingman, 1967) – distribu-
tions over measures that assign independent masses
to disjoint subsets of the space on which they are de-
fined. For example, the Dirichlet process can be ob-
tained by normalizing the CRM known as the gamma
process. The IBP can be described in terms of a mix-
ture of Bernoulli processes, where the mixing measure
is a completely random measure known as the beta
process (Thibaux & Jordan, 2007).

Completely random measures on some space Θ can be
represented as Poisson processes on the product space
Θ × R+. In this paper, we show that a large class of
dependent nonparametric processes can be described
in terms of operations on Poisson processes on an aug-
mented space X × Θ × R+. This framework offers
great flexibility in the form of the dependency, and of-
ten leads to simple posterior updates, as any conjugacy
present in the non-dependent version of the model is
carried over to the dependent case. The resulting class
of distributions contains, or is related to, several exist-
ing models, such as the kernel beta process (Ren et al.,
2011) and the spatial normalized gamma process (Rao
& Teh, 2009). A major contribution of this paper is
to express the relationships between these models in
a simple manner, and aid in the understanding of ex-
isting models and the development of new models and
inference techniques.

We use this framework as a basis for two models: a
covariate-dependent latent feature model based on the
beta process, and a covariate-dependent topic model
based on the gamma process. We show that incorpo-
rating dependency can improve the predictive power of
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Bayesian nonparametric models, and that by making
use of conjugacy and simpler forms of dependence, we
can obtain comparable results to existing dependent
nonparametric processes, with a dramatic decrease in
time spent on inference.

2 Background

A completely random measure (CRM) is a distribu-
tion over measures on some measurable space (Θ,FΘ),
such that the masses Γ(A1),Γ(A2), . . . assigned to dis-
joint subsets A1, A2, · · · ∈ FΘ by a random measure Γ
are independent (Kingman, 1967). The class of com-
pletely random measures contains important distribu-
tions such as the beta process, the gamma process, the
Poisson process and the stable subordinator.

A CRM on Θ is characterized by a positive Lévy mea-
sure ν(dθ, dπ) on the product space Θ× R+, and can
be represented in terms of a Poisson process on this
space. Let Π = {(θk, πk)}∞k=1 be a Poisson process on
Θ×R+, with mean measure ν(dθ, dπ). Then the com-
pletely random measure with Lévy measure ν(dθ, dπ)
can be represented as Γ =

∑∞
k=1 πkδθk .

De Finetti’s theorem tells us that any infinitely ex-
changeable sequence can be described as a mixture of
i.i.d. distributions. CRMs provide the mixing distri-
bution in the de Finetti representation of a number
of useful exchangeable distributions. For example, we
can represent the Indian buffet process, a distribution
over exchangeable binary matrices, as a beta process
mixture over countably infinite collections of Bernoulli
random variables (Thibaux & Jordan, 2007). The re-
sulting distribution over exchangeable binary matrices
is an appropriate prior for nonparametric versions of
latent feature models. Other distributions over ex-
changeable matrices have been defined using the beta
process (Zhou et al., 2012b) and the gamma process
(Titsias, 2007; Saeedi & Bouchard-Côté, 2011) as mix-
ing measures.

We are often interested in learning distributions over
probability distributions – for example, for use in clus-
tering or density estimation. Two important examples
of such distributions – the Dirichlet process (DP) and
the normalized stable process – can be obtained by
normalizing the gamma process and the stable subor-
dinator, respectively. CRMs can also be used directly
as a prior on hazard functions in survival analysis ap-
plications (Ibrahim et al., 2005).

3 Construction of dependent random
measures via thinned Poisson
processes

Let Π = {(xi, θi, πi)}∞i=1 be a Poisson process (PP) on
the space X × Θ × R+. This space has three compo-
nents: X , an auxiliary space; Θ, a space of parame-
ter values; and R+, values in which will be the point
masses making up the random measures. Let the mean
measure of Π be described by the positive Lévy mea-
sure ν(dx, dθ, dπ). While the theory herein applies for
any such Lévy measure, we will focus on the class of
Lévy measures that factorize as

ν(dx, dθ, dπ) = G(dx, dθ)ν0(dπ).

This corresponds to the class of homogeneous com-
pletely random measures, where the size of an atom is
independent of its locations in Θ and X .

It follows that Γ =
∑∞
k=1 πkδ(xk,θk) is a CRM on X×Θ.

By the mapping theorem of PPs (Kingman, 1993) we
see that B =

∑∞
k=1 πkδθk is a CRM on Θ with rate

measure given by

νB(dθ, dπ) =

∫
X
ν(dx, dθ, dπ) = ν0(dπ)

∫
X
G(dx, dθ).

Let T be some covariate space – for example time – and
let {px : T → [0, 1]}x∈X be a collection of functions
indexed by x ∈ X . We can now construct a family of
random measures Bt dependent on values t ∈ T . For
each point (xk, θk, πk) ∈ Π, define a collection {rtk}t∈T
of Bernoulli random variables (so rtk is a binary valued
random function on T ), such that p(rtk = 1) = pxk

(t).
The rtks indicate whether atom k in the global measure
B appears in the local measure Bt at covariate value
t. Therefore, the function px controls the degree of
dependence between two measures Bt and Bt′ .

Appealing to the marking theorem of PPs (Kingman,
1993), we see that the resulting thinned PP Πt and its
associated rate measure νt are described by

Πt =
{

(xk, θk, πk) | rtk = 1
}∞
k=1

νt(A, dθ, dπ) =

∫
x∈A

px(t)ν(dx, dθ, dπ)

for A ∈ FX . Then, applying the mapping theorem to
Πt and employing the sum form of a CRM, we find

Bt =
∑
k : rtk=1 πkδθk =

∑∞
k=1 r

t
kπkδθk

is a CRM on Θ that varies with t ∈ T and has rate
measure

νBt
(dθ, dπ) =

∫
X
px(t)ν(dx, dθ, dπ) = νt(X , dθ, dπ)

(1)
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which, given certain forms of px and ν, may be simpli-
fied further. We refer to {Bt}t∈T as a thinned CRM.

If the thinning function px(t) is taken to be a bounded
unimodal kernel function K(t,m, φ), where x :=
(m,φ) gives the center and dispersion of the kernel,
we can interpret the model as saying that each atom
πkδ(xk,θk) of the CRM defined on X ×Θ× R+ is “ac-
tive” in some subregion of T , dictated by a location
mk and a dispersion φk. However, px need not be
unimodal, or even a kernel. Later, we will consider a
form for px that allows atoms to be active at multiple
locations.

3.1 Properties of thinned CRMs

The moments of Bt(A) for any x ∈ X and A ∈ FΘ

can be determined from Campbell’s theorem (King-
man, 1993) using Eq. 1. Another quantity of interest
is the correlation between the marginals of a thinned
CRM at two covariate values t and t′. Assuming that
V(πk) <∞, which holds for most CRMs used in prac-
tice, we have

Corr(Bt(A), Bt′(A))

=

∑
k:θk∈A

E(rtkr
t′

k |pt, pt
′
)V(πk)√ ∑

k:θk∈A

E((rtk)2)V(πk)
∑

k:θk∈A

E((rt
′

k )2)V(πk)

=
< pt, pt

′
>

||pt|| ||pt′ ||

where pt = (pxk
(t))∞k=1. In other words, the corre-

lation between the two random measures is given by
the correlation between the thinning indicators rt and
rt

′
, and is independent of the Lévy measure. We can

therefore specify the correlation between the measures
at different covariate values through the form of px.
In general, smooth functions will capture the intuitive
notion that measures at nearby covariates should use a
similar set of atoms. Arbitrary correlation structures
can be obtained via appropriate choice of px.

A key property of the construction is that the result-
ing dependent random measures are of the same form
as the original process – the component ν0 of the Lévy
measure that governs the atom sizes is unchanged, and
the πks are distributed as before. This is desirable in
order to retain conjugacy in the model being used.
The thinned CRM framework puts very few restric-
tions on the original process allowing us to construct
a large family of dependent CRMs, whereas previous
constructions have been limited to specific processes.

4 Examples

In this section, we describe thinned CRMs with two
different dependency structures, and two hierarchical
models based on such thinned CRMs.

4.1 A single-location thinned CRM

One of the simplest forms of covariate dependency is
to assume that the expected correlation between two
measures decreases with increasing distance in covari-
ate space. This can be captured by choosing the thin-
ning probability for each atom of the global CRM to be
a unimodal distribution centered on a point in covari-
ate space – as we move away from this location in co-
variate space, the probability of a covariate-dependent
measure featuring this atom will decrease monotoni-
cally. Such a model is described as:

Γ :=
∑∞
k=1 πkδ(xk,θk) ∼ CRM(ν(dx, dθ, dπ))

px(t) = f(|x− t|)
rtk ∼ Ber(pxk

(t))

Bt :=
∑∞
k=1r

t
kπkδθk ,

(2)

where X = T and f : X → [0, 1] is some unimodal
function on X , for example a scaled Gaussian density.

4.2 A multiple-location thinned CRM

The form of dependency in Section 4.1 is restrictive:
the probability of an atom contributing to a CRM de-
cays with distance in covariate space. If each atom
corresponds to a feature in a latent factor model, this
means that, in practice, each feature is only going to
contribute to data points within a restricted covariate
range.

Greater flexibility can be obtained by replacing the
unimodal function f in Eq. 2 with an arbitrary func-
tion g : X → [0, 1]. The function g might, for example,
be a Gaussian random field on T that has been trans-
formed via a sigmoid function at every value of t ∈ T .

As a concrete example, consider one such construction
of a covariate-dependent beta process. Here, the base
CRM is a homogeneous beta process, with Lévy mea-
sure νB(dx, dθ, dπ) = cH(dx)B0(dθ)π−1(1 − π)c−1dπ
on X ×Θ× [0, 1], for some constant c > 0 and proba-
bility measures H and B0.

For the thinning function, we choose a transformed rel-
evance vector machine (RVM) kernel. The RVM (Tip-
ping, 2001) can be seen as the weighted sum of (a finite
number of) Gaussian kernels. Locations in the auxil-
iary space X correspond to the set of centers, weights
and widths of these kernels. A standard modeling de-
cision, which we adopt in our experiments, is to fix the
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centers of these kernels to the L locations t1, . . . , tL of
the data in covariate space T . Each location xk ∈ X
therefore corresponds to a set of L+1 weights ωlk ∈ R,
and a (shared) width φk selected from a fixed dictio-
nary D. Our auxiliary space is therefore defined as
X := RL+1 ×D, and our base measure H can be de-
composed into a normal-inverse Gamma prior on each
of the weights, and a categorical prior on the widths.
In our experiments, we chose small values of c0 and d0

(see below) resulting in most ωlk being small, which
implies that pxk

(t) will be large at few locations.

In order to ensure valid thinning probabilities, we
transform the RVM kernel pointwise using a probit
function. The generative procedure is given by:

Γ :=
∑∞
k=1πkδ(xk,θk) ∼ CRM(νB(dx, dθ, dπ))

ωlk ∼ NiG(0, c0, d0), φk ∼ Cat(φ1, . . . , φD)

pxk
(t) = Φ

(
ω0k +

∑L
l=1ωlk exp(−φk ||t− tl||22)

)
rtk ∼ Ber(pxk

(t))

Bt :=
∑∞
k=1r

t
kπkδθk .

(3)

4.3 A dependent latent feature model

We can use covariate-dependent CRMs to construct
covariate-dependent latent variable models. In such a
setting, each atom of the CRM on X ×Θ×R+ is asso-
ciated with a latent feature, and the mass of that atom
parameterizes a distribution over the weight assigned
to that feature. Each data point then selects a weight
for each feature according to the masses of the atom
in the corresponding thinned CRM.

As an example, consider a latent feature model based
on the covariate-dependent beta process described in
Eq. 3, where B0(dθ) is the multivariate Gaussian prior
measure – i.e. each latent feature is a real-valued vec-
tor. For each covariate value t ∈ T , a subset of
these features, and their corresponding atom weights
πk, are selected as in Eq. 3 to give a local measure
Bt =

∑∞
k=1 r

t
kπkδθk . For each data point n at covari-

ate value x, a subset of features are chosen by selecting
each feature with probability rtkπk. The selected fea-
tures are combined via linear superposition, and Gaus-
sian noise is added. The generative model is as follows:

zn,tk ∼ Ber(rtkπk) , t ∈ T , k ∈ N, n ∈ {1, . . . , Nt}
Ak ∼ N (0, σ2

AI) , k ∈ N
yn,t ∼ N (

∑
k z

n,t
k Ak, σ

2I),

where rtk and πk are sampled according to Eq. 3 and
Nt denotes the number of data points with covariate t.
In the case where each observation is associated with
a unique covariate we simplify the notation to znk and
rnk.

This model is a dependent version of the linear Gaus-
sian IBP model proposed by Griffiths & Ghahramani
(2005). The model can be extended by using differ-
ent models for generating and combining the features
(Wood et al., 2006; Miller, 2011), or by sampling a
real-valued weight sn,tk for each instance of a feature

and combining them as yn,t ∼ N (
∑
k s

n,tzn,tk Ak, σ
2I)

(Zhou et al., 2012a).

4.4 A time-varying topic model

Topic models are popular latent variable models that
decompose a text corpus into the underlying topics.
Topic models define a topic as a probability distribu-
tion over a finite vocabulary with P terms. The sim-
plest topic model is latent Dirichlet allocation (LDA,
Blei et al., 2003) where the words in each document are
generated by first sampling which topic the word ex-
hibits from a document-specific topic distribution and
then sampling the actual word from the correspond-
ing topic. The basic LDA model has been extended
in many ways: for example to allow correlated topics
(Blei & Lafferty, 2007; Paisley et al., 2011); to allow
the topics to drift over time (Blei & Lafferty, 2006;
Wang et al., 2008); and to allow topic usage to vary
over time (Wang & McCallum, 2006).

The thinned CRM construction described in this paper
can be used to construct a time-varying topic model
where the topics are assumed fixed, but the usage of
the topics changes over time. This assumption allows
the learned topics to be localized in time. As in Zhou
et al. (2012b), we formulate our topic model as a Pois-
son factor model.

We use a thinned gamma process (tGaP) to model the
global popularity of each topic and the relevance vec-
tor machine in Eq. 3 as the thinning function. Let wn,tp
denote the number of times the pth word (in a vocabu-
lary of P words) appears in the nth document at time
t. Let νG(dx, dθ, dπ) = νG0(dπ)H(dx)B0(dθ), where
νG0(dπ) = γπ−1 exp(−λπ)dπ) is the Lévy measure
of the gamma process; B0(dθ) is the P -dimensional
Dirichlet distribution with parameter αθ; and H(dx)
is the prior over parameters for the RVM as described
in Section 4.2.

The complete model, denoted tGaP-PFA, is specified
as

Γ :=

∞∑
k=1

πkδ(xk,θk) ∼ CRM(νG(dx, dθ, dπ))

pxk
(t) = Φ

(
ω0k +

∑L
l=1ωlk exp(−φk ||t− tl||22)

)
rn,tk ∼ Ber(pxk

(t))
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Gn,t :=
∑∞
k=1r

n,t
k πkδθk

βn,tk ∼ Ga(e, 1), n = 1, . . . , Nt, k ∈ N
w̃n,tpk ∼ Pois(θkpr

n,t
k πkβ

n,t
k )

wn,tp =

∞∑
k=1

w̃n,tpk ∼ Pois(

∞∑
k=1

θkpr
n,t
k πkβ

n,t
k )

where the RVM machinery is presented in Eq. 3. Each
vector θk = (θk1, . . . , θkP ) is a topic, the atom size
πk can be interpreted as the baseline rate at which
this topic generates words, and the βn,tk are document-
specific modulations of the global rate so that docu-
ments can exhibit a topic more or less than the base-
line.

5 Relationship with other processes

The framework for dependent random measures pro-
posed in Section 3 is very general, and includes or is
related to a number of existing models, as we describe
below.

5.1 Kernel beta process

The kernel beta process (KBP, Ren et al., 2011) has an
interesting interpretation in terms of thinned CRMs.
Let T be our covariate space, Ψ be a space of pos-
sible dispersions, and define our auxiliary space as
X := T ×Ψ. Let ν(dx, dθ, dπ) := ν0(dπ)H(dx)B0(dθ)
be a Lévy measure on X ×Θ×R+, such that ν0(dπ) =
cπ−1(1 − π)c−1dπ. Let px(t) = K(t,m, ψ) for every
x := m × ψ ∈ X , where K(·, ·, ·) is a unimodal ker-
nel with mean m and dispersion ψ bounded above by
1. Then, the expectation of a realization of the corre-
sponding thinned CRM is given by

Epx [Bt] =

∞∑
k=1

Epx [rtk]πkδθk =

∞∑
k=1

K(t,mk, ψk)πkδθk ,

which is exactly the form of the KBP. In other words,
the KBP is a mixture of kernel-thinned beta processes.
The thinned beta process provides a generative pro-
cess for the KBP, which could be useful for formulat-
ing the KBP in a probabilistic programming language
(e.g. Goodman et al., 2008). In fact, the inference
algorithm described in Ren et al. (2011) uses such a
representation.

While the KBP can be described without using a
thinned Poisson process representation, we feel that
the above derivation is easier to interpret, and prop-
erties of the KBP can be simply derived by appealing
to well-known properties of marked Poisson processes.
Additionally, the thinned Poisson process construction
makes extending the KBP idea to arbitrary CRMs sim-

ple, whereas the original construction relied on specific
properties of the beta process.

5.2 Spatial normalized gamma processes

Just as a Dirichlet process can be constructed by
normalizing a gamma process, a dependent Dirichlet
process can be constructed by normalizing a thinned
gamma process. If X = T and the thinning proba-
bility is given by pxk

(t) =
∫∞

0
I[|t − xk| ≤ `]f(`)d`

for some distribution f(·) over window size l, then af-
ter normalization, this describes the spatial normalized
Gamma processes (SNΓP) of Rao & Teh (2009), whose
marginals Dt are distributed according to a DP.

Incorporating the Poisson process representation into
the SNΓP model could yield a number of benefits.
The inference scheme described by Rao & Teh (2009)
involves representing each Dt as a mixture of inde-
pendent DPs, and performing inference in the corre-
sponding mixture of urn schemes. However, this ap-
proach does not scale well to higher dimensional co-
variate spaces, as the number of independent regions,
and thus the number of DPs that need to be repre-
sented, grows exponentially with the dimensionality
of the space. In addition, a naive MCMC implemen-
tation mixes poorly, necessitating the use of expensive
split/merge Metropolis Hastings steps. Representing
the SNΓP as a normalized thinned CRM opens up the
possibility of different inference algorithms that rep-
resent Dt explicitly, and may yield more scalable and
efficient implementations.

In addition, understanding the model in terms of
thinned Poisson processes makes it easier to change
the form of dependency from the box kernel employed
in the original paper. Alternative kernels, for example
an exponential kernel, could be used to give a softer
falloff and hence more flexible dependency.

5.3 Ornstein-Uhlenbeck Dirichlet process

The Ornstein-Uhlenbeck Dirichlet process (OUDP,
Griffin, 2007) can be constructed in a similar manner
to the KBP, with an added normalization step. We
define T = R and X := R×Ψ, and let ν(dx, dθ, dπ) :=
ν0(dπ)H(dx)B0(dθ) be a Lévy measure on X ×Θ×R+

and Γ the associated CRM. Let {Gt} be the depen-
dent CRM obtained when we choose the thinning
probability pxk

(t) = K(t,mk, ψk) to be an Ornstein-
Uhlenbeck kernel, and ν0(dπ) to be the Lévy measure
of a Gamma process. The OUDP is then obtained

as Dt(A) =
Epx [Gt(A)]
Epx [Gt(Θ)] . For the Ornstein-Uhlenbeck

kernel, Griffin (2007) showed that Dt is a DP. Un-
fortunately, the proof does not easily extend to ar-
bitrary kernels or higher dimensional spaces. How-
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ever, treating Dt as a mixture of normalized thinned
CRMs immediately shows that if we instead consider
the “complete representation” of the random measures
{Dt}t∈T , then the marginal distributions are Dirichlet
processes, regardless of what kernel we pick and the
covariate space.

5.4 Other dependent nonparametric
processes with Poisson process
interpretations

In addition to models that can be represented in terms
of thinned Poisson processes on an augmented space,
there are a number of other models that can be de-
scribed in terms of Poisson processes. Lin et al. (2010)
create a Markov chain P1, P2, . . . of Poisson processes
on Θ × R+ such that, at each time point, the corre-
sponding Poisson process is obtained by thinning the
previous Poisson process and superimposing an inde-
pendent Poisson process. The resulting chain of Pois-
son processes defines a Markov chain of gamma pro-
cesses, which are normalized to give a Markov chain
of Dirichlet processes. A similar procedure, with thin-
ning probability that depends on the atom sizes, un-
derlies the size-biased deletion form of the dependent
Poyla urn model of Caron et al. (2007). These models
do not fit neatly into the framework described in this
paper, and are restricted to Markovian dependency
and discrete covariate spaces.

6 Experimental evaluation

We illustrate the effectiveness of using a thinned CRM
to relax the assumption of exchangeability in non-
parametric Bayesian modeling on both synthetic and
real data. Specifically, we consider the approaches
described in Sections 4.3 and 4.4, where a probit
RVM thinned CRM is used as the basis for covariate-
dependent binary latent feature models and covariate-
dependent topic models, respectively. The experi-
ments using binary latent feature models are per-
formed to allow comparisons to existing work and to
show that the proposed prior (and not a novel like-
lihood) is indeed capturing the structure. The topic
model experiments are intended to highlight the ease
with which we can incorporate dependency into more
complex hierarchical models, and demonstrate the per-
formance gains such covariate dependency can yield.

6.1 Inference

Inference in the probit RVM model described in Sec-
tion 4.2 is carried out using Gibbs sampling. We
consider a truncated version of the beta process and
gamma process for computational simplicity. In both

cases, we select a truncation level K. To approxi-
mate the beta process, we draw K atom sizes from
a Beta

(
1
K , 1−

1
K

)
distribution. The resulting K-

dimensional vector can be shown to converge to a draw
from a beta process as T →∞ (Paisley & Carin, 2009).
Similarly, to approximate the gamma process, we draw
K atom sizes from a Ga( 1

K , 1) distribution.

The weights {ωlk} can be sampled using the method
of Albert & Chib (1993) using the rtk of Eq. 3 as ob-
servations. To allow conjugate updates for πk we in-
troduce an auxiliary variable bn,tk for each data point

and feature such that zn,tk = 1 iff bn,tk = 1 and rtk = 1.

We then sample (bn,tk , rtk) from their joint distribution,
which can be enumerated since both variables are bi-
nary. A similar scheme was used by Ren et al. (2011).
Lastly, we sample the kernel dispersion parameters φk
from a fixed finite dictionary of possible values with a
uniform prior over the possible values.

For the latent feature model described in Section 4.3,
the remaining Gibbs sampling equations are all easily
derived by conjugacy, and Zhou et al. (2012a) provides
most of the required distributions. For the topic model
described in Section 4.4, the Gibbs sampling equations
for the remaining variables are described in the sup-
plement.

We evaluated convergence of our sampler by monitor-
ing the log joint density of the model and other param-
eters of the model. We ran the sampler for the binary
feature model experiments in Sections 6.2 and 6.3 for
1000 burn-in iterations and collected 100 samples. For
the topic model experiments in Section 6.4 we ran the
sampler for 1000 burn-in iterations and collected 500
samples.

6.2 Dependent binary latent feature model:
Synthetic data

To demonstrate the model’s ability to uncover
covariate-dependent structure, we generated synthetic
data similarly to the “bag of items” experiment in
Williamson et al. (2010). Here, the covariate space
is the real line, and the covariate values are the in-
tegers 1, . . . , 20. The data was generated using eight
64-pixel image features (depicted in the top row of
Fig. 1), and eight corresponding time-varying thin-
ning probabilities generated using the RVM kernel
described in Section 4.2, with kernel weights ωlk ∼
κkδ0 + (1 − κk)N (0, 4), κk ∼ Beta (1, 1). Each kernel
had dispersion parameter φ, implying that all features
vary on the same scale. The resulting thinning prob-
abilities pxk

(t) are shown in the second row of Fig. 1.
For each location t ∈ {1, . . . , 20} we generate a binary
matrix Zt = {zn,tk } ∈ {0, 1}100×8 of feature usage in-
dicators for 100 data points at location t using the
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Figure 1: Recovering feature probabilities in synthetic
data. Top row: Features used to generate synthetic
data. Second row: Time-varying thinning probabili-
ties used to generate synthetic data. Third row: Re-
covered features (manually aligned to match generat-
ing features). Bottom row: Recovered time-varying
thinning probabilities.

sampling equation for zn,tk in Eq. 4.3. Finally, we gen-
erate data for each t as Y t = ZtA+E, where the rows
of A are the eight features and E is a matrix of obser-
vation noise with each entry normally distributed with
mean 0 and variance 0.25.

We perform inference using the Gibbs sampler de-
scribed above, with a truncation level of 20 features,
and learned individual dispersions φk for each ker-
nel. The resulting learned features and their respective
thinning probabilities are depicted in the third and
fourth rows of Fig. 1. The model usually learns the
correct dimensionality of the data and thinning prob-
abilities as in the case depicted, however, sometimes
extra features are used to explain the noise present in
the data in addition to the correct features.

6.3 Dependent binary latent feature model:
U.N. development indicators

We evaluate the model in a predictive setting on a UN
dataset consisting of 15 developmental indicators for
144 countries. This dataset was used by Williamson
et al. (2010) to evaluate an alternative dependent
latent feature model known as the dependent IBP
(dIBP). The dIBP induces dependency directly be-
tween corresponding elements of a collection of binary
vectors using a transformed Gaussian process.

We follow the experimental protocol used in
Williamson et al. (2010) where 14 countries are se-
lected at random as a test set, and the model is trained
on the remaining 130 countries. For each test country
we observe a single feature chosen at random (possibly
a different feature for each country) and the goal is to
predict the remaining 14 unobserved features. The co-
variate for the thinned beta process model is log-GDP

Table 1: RMSE on UN developmental data
Exchangeable thinned BP dIBP

1.02± 0.08 0.85± 0.11 0.73± 0.05

of the country. We perform 10-fold cross-validation
and report the mean RMSE and two standard devi-
ations in Table 1 where we compare the results for
an exchangeable beta-Bernoulli process feature model,
the thinned beta process model and the dIBP model.

The thinned beta process model obtained lower RMSE
than the exchangeable model on all folds, indicat-
ing that incorporating covariate information improves
modeling performance. The best results are obtained
by the dIBP. This is not surprising, because the Gaus-
sian processes used are flexible enough to model arbi-
trary changes in the latent structure. However, this
added performance comes at a cost – the dIBP uses a
single Gaussian process for each latent feature, and
inference in the Gaussian processes scales cubically
with the number of covariate locations. In addition,
the dIBP does not make use of conjugacy, which in-
creases the computational costs. While the exchange-
able model and the thinned BP models ran on the
order of hours, the dIBP ran on the order of days.
We feel the thinned BP provides a compromise be-
tween improved accuracy by taking covariate informa-
tion into account and running time.

6.4 Time-varying topic model

We evaluate the time-dependent topic model proposed
in Section 4.4 both quantitatively and qualitatively on
the State of the Union dataset, which consists of the
full texts of the addresses for presidents George Wash-
ington to George W. Bush covering the years 1780–
2002. As in Wang & McCallum (2006) we break up the
addresses into documents of three paragraphs. This
resulted in 5997 documents. We created our vocab-
ulary by computing the term-frequency inverse docu-
ment frequency (TFIDF, Manning et al., 2008) score
of all observed words and only keeping those with at
least 10 occurrences in the corpus and in the upper 0.15
quantile of the observed TFIDF scores, resulting in a
vocabulary with 997 words. All results are reported
for the DP concentration parameter αθ = 0.05, with
comparable results obtained with other values. Large
values of αθ result in few topics being learned and vice
versa. We report the average number of topics learned
for each model with this setting of αθ in Table 2.

We evaluate our model using three tasks: perplexity
on held out data; time-stamp prediction; and quali-
tative evaluation. The perplexity evaluation was car-
ried out following Zhou et al. (2012b), by holding out
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Table 2: Average perplexity and average # of topics
for State of the Union corpus over 5 hold-out sets.

Static Dynamic BNBP
Perp. 624.5± 1.9 525.7± 1.7 418.1± 0.9
E[K] 5.0± 0.3 64.8± 1.2 198.4± 0.4

Table 3: Predicting the decade of documents, reported
as absolute (L1) error in decades and accuracy (aver-
age over 5 hold-out sets).

Static Dynamic Baseline
L1 6.86± 0.12 2.42± 0.02 6.97± 0.00
Acc. 0.05± 0.00 0.21± 0.01 0.05± 0.00

20% of the words from each document, training the
model on the remaining 80% and computing the per-
plexity of the held-out words (as described in the sup-
plement). We compared the tGaP-PFA model against
a static version of the same model (obtained by de-
terministically setting all rn,tk = 1) and against the
beta-negative binomial process (BNBP) model of Zhou
et al. (2012b).

The perplexity results are presented in Table 2. We see
that the tGaP-PFA model obtains superior perplexity
to the static version, showing that incorporating de-
pendency can improve performance when the data is
assumed to be non-exchangeable. The stationary ver-
sion of the tGaP-PFA model is a much simpler model
than the BNBP topic model, which unsurprisingly per-
forms better. However, since the BNBP model is based
on a stationary CRM, our results suggest that a dy-
namic version of the BNBP topic model, constructed
with a thinned beta process, could achieve better per-
formance than the stationary model.

We also evaluate the ability of the our dynamic model
to predict the decade of a held-out document. We
hold out 20% of the documents in each decade and
train the model on the remaining 80%. To predict the
decade for a held-out document we find the decade
that maximizes the predictive likelihood of the docu-
ment. We compare the dynamic model with a static
version where we train a separate static tGaP-PFA
model at each timestamp and predict the decade of
a held out document by choosing the decade with the
maximum predictive likelihood. We also compare with
a baseline prediction that selects a decade uniformly
at random. The results are presented in Table 3 where
we see that the dynamic model obtains ≈ 65% reduc-
tion in absolute (L1) error and ≈ 4× increase in accu-
racy over the static and baseline models. Interestingly
the static model performs on par with the baseline,
indicating substantial over-fitting and displaying the
necessity of taking time into account.

1800 1850 1900 1950 2000
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Figure 2: Activation functions over time for three top-
ics.

Table 4: Learned topics.
Topic 1 Topic 2 Topic 3

military (0.074) soviet (0.042) tribes (0.142)
defense (0.061) nations (0.035) indian (0.124)

war (0.056) security (0.022) indians (0.116)
forces (0.051) peace (0.021) frontier (0.034)
force (0.041) nuclear (0.020) greater (0.027)

In Figure 2 we depict the activation functions (the
mean of rn,tk ) over time for three topics, and in Ta-
ble 4 we show the top 5 words in each topic and the
probability of the word under the topic. Topic 1 is
a topic about war, and we see it peak at most major
conflicts that the United States was involved in. Topic
2 is about the Cold War, and peaks at the beginning
and end. Topic 3 regards Native Americans and is very
prominent in addresses up to the 1850s but becomes
less active in recent addresses. Figure 2 shows that the
tGaP-PFA topic model is able to uncover multi-modal
topic activations as well as localizing the topic usage
in time.

7 Discussion

We have presented a framework for dependent ran-
dom measures, that can be used as priors for a large
class of nonparametric Bayesian models. Unlike previ-
ous work, our construction is applicable to any CRM
and has the added benefit that the resultant depen-
dent models retain any existing conjugacy. We showed
that many dependent random measures in the liter-
ature can actually be seen as specific cases of the
thinned CRM framework. We demonstrated the effec-
tiveness of the framework by using it to create a non-
exchangeable latent feature model and a time-varying
topic model. The models achieved superior predictive
performance to exchangeable versions.
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