Supplementary Material:
A unifying representation for a class of dependent
random measures

1 Introduction

We present a complete description of the tGaP-PFA topic model, the associated
Gibbs sampler and how to compute perplexity for unseen documents under the
model with samples drawn from the Gibbs sampler.

2 Model

Recall that wp,; represents the number of occurrences of word p in the nth
document at time ¢, and that we decompose this as wpn: = 220:1 Wpntk, Where
Wpntk is the number of occurences attributed to topic k. In the generative pro-
cess presented below, p indexes the vocabulary, t indexes the observed times of
documents, n indexes the documents at a time ¢ and takes values in {1,..., N;},
and k indexes the topics. Additionally, [ indexes the kernel functions of the
RVM (Tipping, 2001) with centers m;, which we take to be the locations of the
observations (although this is not necessary).
The generative process is as follows

= T0(a,.0.) ~ CRM(vgo(dm)H(dx)Go(d6)) , (1)
k=1

where 2 == (Wok, ..., WLk, ®1); Voo(dw) = 7w Lexp(—m)dr is the Lévy mea-
sure of the gamma process with parameters (1,1); By(df) is the P-dimensional
Dirichlet distribution with parameter ag; and H(dx) = Hy(d¢) Hszo H,(dwy),
where Hy(do) is the categorical distribution over the dictionary of kernel widths,
and H, (dw;) ~ NiG(0, ¢, dp) is drawn from the normal-inverse gamma distri-



bution. The rest of the model is

P (1) = @ (wor + Y01 win exp(—dy [t — i][3))

(2)

e’ ~ Ber(pa, (1)) (3)

Gt = Y peq Ty Tio, (4)

Bt ~ Ga(e,1),n=1,...,N;,k €N (5)

Dpntk ~ Pois(Orpry mi 5" (6)

Wpnt = Z Wpntk ~ Pois(z HkaZ’tﬂ'kﬁZ’t) (7)
k=1 k=1

3 Gibbs sampler

We use a truncated version of the model by fixing the number of atoms we will
represent to K and forming the (finite) random measure, I' g := Zszl T (2,50 ) 5
where T ~ Ga(l/K, 1), T = (ka, ooy WLk, ¢k)7 Wi ~~ NIG(07 Co, d())7 and
ok ~ {47, .., 65} In the limit, K — oo, 'k — T in distribution. This trunca-
tion allows for the derivation of a straight-forward Gibbs sampler. We assume
T is the set of unique observed times.

We sample each of the variables in turn from their full conditional distribu-
tions. We use a standard data-augmentation technique for probit regression to
sample the wy variables by introducing an auxiliary variable FZ’t ~ N(pz, (t),1)
for each topic k at each document n at time ¢, such that

nt_ J1 if 7" >0
0 otherwise.

See Albert & Chib (1993) for details of the data augmentation. The conditional
distributions are as follows.

e Topics, 0.
9k| NDiI"(Oé@—l—U~}1‘.k,...,ag+’J}p..k) (8)

- Ne -
where Wp..k =3 ycq 2551 Wpntk-

e Global topic proportions, m.

Ny
Tkl .o~ Ga(lg +1/K,Y > Bt +1) (9)

teT n=1

. P Ny -~
where ..., = szl DoteT Dane1 Wpntk-
e Per-topic counts, wy,x.
(ﬁ)pntl» ceey wpntK)| RN MUIt(wpnt; fpntla cee agpntK)a

n,t n,t
kark Wkﬁk

K n,t n,t
Zj:l opjrj Wjﬂj

where &y = (10)



where we ensure that the denominator is greater than 0 by making sure

that when sampling the rZ’ts, every document is not thinning at least one
. . . n,t

topic, i.e. VtVndj,r;” = 1.

Per-document topic rate, ﬁ,?’t.
Bg’t| oo~ Ga(Wog + a, TZ’tﬂk +1) (11)

~ P ~
where W. 1 = szl Wpntk-
Time-dependent indicators, rZ’t: There are three cases:
LVt =0—rt=1
S VLT = k=

2. Ip, Wpner >0 — 1t =1
3. VPv 'prntk =0
Cases 1 and 2 are deterministic. For case 3 let uppnit, ~ Pois(p,) with p, =

Opr T ﬁ,?’t denote the fictitious count of word p in the nth document at time

t assigned to topic k disregarding rZ’t. The upptr allow us to determine

whether Wyt = 0 because the topic has been thinned or because the
topic is not popular (globally or for the individual document). Case 3
above then splits into the following cases:

L. Vp, tpper = 0, 7" = 1 with probability o« p(r}"" = 1) H;::l Pois(0; pp)
2. 3p, upntr > 0, 7" = 0 with probability o p(r;"* = 0) (1 - H5:1 Pois(0; pp)>
3. VD, upnix = 0, 71" = 0 with probability o p(r;"* = 0) H;::l Pois(0; pp)

We evaluate the three probabilities and sample from the resulting discrete
distribution.

RVM weights, w;;. We introduce the auxiliary variables Aj; such that

Ak ~ Ga(co, do)
wik ~ N(0, A1)

Let wy = (wok,---,wrk)? be the vector of RVM weights and ¥, be the
vector of augmentation variables for all all time stamps, and

Ktk = (17K(t7m17¢k)7"‘7K(t7mL7¢k))T (12)

be the vector of the evaluation of the RVM kernels for time ¢. Then, the
conditional of wy, is given by

wk|fk,~N(£,B) (13)

where B = (diag(AOk, ey )\Lk) + Ktj];f'k)_l and f = BKtjl;fk



¢ RVM auxiliary variables, F,Zt

.y )a{Nmﬁwb)umt>m if et =1

14
P N(KGwi, D1 < 0), if 7t =0 (14)

which is a truncated normal distribution that we sample using the inver-
sion method described in Albert & Chib (1993).

¢ RVM precisions, \j.
Atk ...~ Ga <Co +5,do + 2wlk) (15)

e RVM kernel widths, ¢;. We assume a finite dictionary {¢7, ..., ¢4} of
possible values for the RVM kernel widths, and a uniform prior on these
values,

Ny
p(on = il o a7 T TT @0wes, ()75 (1= 0o (0)) " (16)

teT n=1

where we have denoted the thinning function as a function of ¢* as the
other variables are held fixed.

4 Perplexity

Similarly to Zhou et al. (2012), given B samples of the model parameters and
latent variables we compute a Monte Carlo estimate of the held-out perplexity
for unobserved counts Y = [y;*] as

Zb IZk 19;(;l;c7rk r"tk(b)ﬁntk
SIS W) LT TR I
Y pmtter n=t Zb:l Zp:l Zk:l Hpkﬂ-k Ttk Btk

where we have used a superscript b to denote the bth sample of the parameters
and latent variables! and y" = Zp 1D teT Zn 1Yyt denotes the held-out
number of occurrences of word p in the nth document at time t.
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We have denoted the bth samples of rZ’t and ﬁ:’t as rflbi , and Bflbi i, for readability.



