
Supplementary Material:

A unifying representation for a class of dependent

random measures

1 Introduction

We present a complete description of the tGaP-PFA topic model, the associated
Gibbs sampler and how to compute perplexity for unseen documents under the
model with samples drawn from the Gibbs sampler.

2 Model

Recall that wpnt represents the number of occurrences of word p in the nth
document at time t, and that we decompose this as wpnt =

∑∞
k=1 w̃pntk, where

w̃pntk is the number of occurences attributed to topic k. In the generative pro-
cess presented below, p indexes the vocabulary, t indexes the observed times of
documents, n indexes the documents at a time t and takes values in {1, . . . , Nt},
and k indexes the topics. Additionally, l indexes the kernel functions of the
RVM (Tipping, 2001) with centers ml, which we take to be the locations of the
observations (although this is not necessary).

The generative process is as follows

Γ :=

∞∑
k=1

πkδ(xk,θk) ∼ CRM(νG0(dπ)H(dx)G0(dθ)) , (1)

where xk := (ω0k, . . . , ωLk, φk); νG0(dπ) = π−1 exp(−π)dπ is the Lévy mea-
sure of the gamma process with parameters (1, 1); B0(dθ) is the P -dimensional

Dirichlet distribution with parameter αθ; and H(dx) = Hφ(dφ)
∏L
l=0Hω(dωl),

where Hφ(dφ) is the categorical distribution over the dictionary of kernel widths,
and Hω(dωl) ∼ NiG(0, c0, d0) is drawn from the normal-inverse gamma distri-
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bution. The rest of the model is

pxk
(t) = Φ

(
ω0k +

∑L
l=1ωlk exp(−φk ||t− tl||22)

)
(2)

rn,tk ∼ Ber(pxk
(t)) (3)

Gn,t :=
∑∞
k=1r

n,t
k πkδθk (4)

βn,tk ∼ Ga(e, 1), n = 1, . . . , Nt, k ∈ N (5)

w̃pntk ∼ Pois(θkpr
n,t
k πkβ

n,t
k ) (6)

wpnt =

∞∑
k=1

w̃pntk ∼ Pois(

∞∑
k=1

θkpr
n,t
k πkβ

n,t
k ) (7)

3 Gibbs sampler

We use a truncated version of the model by fixing the number of atoms we will
represent toK and forming the (finite) random measure, ΓK :=

∑K
k=1 πkδ(xk,φk),

where πk ∼ Ga(1/K, 1), xk := (ω0k, . . . , ωLk, φk), ωlk ∼ NiG(0, c0, d0), and
φk ∼ {φ∗1, . . . , φ∗d}. In the limit, K →∞, ΓK → Γ in distribution. This trunca-
tion allows for the derivation of a straight-forward Gibbs sampler. We assume
T is the set of unique observed times.

We sample each of the variables in turn from their full conditional distribu-
tions. We use a standard data-augmentation technique for probit regression to
sample the ωlk variables by introducing an auxiliary variable r̃n,tk ∼ N(pxk

(t), 1)
for each topic k at each document n at time t, such that

rn,tk =

{
1 if r̃n,tk > 0

0 otherwise.

See Albert & Chib (1993) for details of the data augmentation. The conditional
distributions are as follows.

• Topics, θk.
θk| . . . ∼ Dir(αθ + w̃1··k, . . . , αθ + w̃P ··k) (8)

where w̃p··k =
∑
t∈T

∑Nt

n=1 w̃pntk.

• Global topic proportions, πk.

πk| . . . ∼ Ga(w̃···k + 1/K,
∑
t∈T

Nt∑
n=1

βn,tk + 1) (9)

where w̃···k =
∑P
p=1

∑
t∈T

∑Nt

n=1 w̃pntk.

• Per-topic counts, w̃pntk.

(w̃pnt1, . . . , w̃pntK)| . . . ∼ Mult(wpnt; ξpnt1, . . . , ξpntK),

where ξpntk =
θpkr

n,t
k πkβ

n,t
k∑K

j=1 θpjr
n,t
j πjβ

n,t
j

(10)
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where we ensure that the denominator is greater than 0 by making sure
that when sampling the rn,tk s, every document is not thinning at least one

topic, i.e. ∀t∀n∃j, rn,tj = 1.

• Per-document topic rate, βn,tk .

βn,tk | . . . ∼ Ga(w̃·ntk + a, rn,tk πk + 1) (11)

where w̃·ntk =
∑P
p=1 w̃pntk.

• Time-dependent indicators, rn,tk : There are three cases:

1. ∀j, rn,tj = 0→ rn,tk = 1

2. ∃p, w̃pntk > 0→ rn,tk = 1

3. ∀p, w̃pntk = 0

Cases 1 and 2 are deterministic. For case 3 let upntk ∼ Pois(ρp) with ρp =
θpkπkβ

n,t
k denote the fictitious count of word p in the nth document at time

t assigned to topic k disregarding rn,tk . The upntk allow us to determine
whether w̃pntk = 0 because the topic has been thinned or because the
topic is not popular (globally or for the individual document). Case 3
above then splits into the following cases:

1. ∀p, upntk = 0, rn,tk = 1 with probability∝ p(rn,tk = 1)
∏P
p=1 Pois(0; ρp)

2. ∃p, upntk > 0, rn,tk = 0 with probability∝ p(rn,tk = 0)
(

1−
∏P
p=1 Pois(0; ρp)

)
3. ∀p, upntk = 0, rn,tk = 0 with probability∝ p(rn,tk = 0)

∏P
p=1 Pois(0; ρp)

We evaluate the three probabilities and sample from the resulting discrete
distribution.

• RVM weights, ωlk. We introduce the auxiliary variables λlk such that

λlk ∼ Ga(c0, d0)

ωlk ∼ N(0, λ−1lk ) .

Let ωk = (ω0k, . . . , ωLk)T be the vector of RVM weights and r̃k be the
vector of augmentation variables for all all time stamps, and

Ktk = (1,K(t,m1, φk), . . . ,K(t,mL, φk))T (12)

be the vector of the evaluation of the RVM kernels for time t. Then, the
conditional of ωk is given by

ωk |̃rk, . . . ∼ N(ξ,B) (13)

where B = (diag(λ0k, . . . , λLk) +KT
tkr̃k)−1 and ξ = BKT

tkr̃k.
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• RVM auxiliary variables, r̃n,tk .

p(r̃n,tk | . . .) ∝

{
N(KT

tkωk, 1)1(r̃n,tk > 0), if rn,tk = 1

N(KT
tkωk, 1)1(r̃n,tk < 0), if rn,tk = 0

(14)

which is a truncated normal distribution that we sample using the inver-
sion method described in Albert & Chib (1993).

• RVM precisions, λlk.

λlk| . . . ∼ Ga

(
c0 +

1

2
, d0 +

1

2
ω2
lk

)
(15)

• RVM kernel widths, φk. We assume a finite dictionary {φ∗1, . . . , φ∗M} of
possible values for the RVM kernel widths, and a uniform prior on these
values,

p(φk = φ∗m| . . .) ∝
1

M

∏
t∈T

Nt∏
n=1

Φ(pφ∗
m

(t))r
n,t
k (1− Φ(pφ∗

m
(t)))1−r

n,t
k (16)

where we have denoted the thinning function as a function of φ∗ as the
other variables are held fixed.

4 Perplexity

Similarly to Zhou et al. (2012), given B samples of the model parameters and
latent variables we compute a Monte Carlo estimate of the held-out perplexity
for unobserved counts Y = [yn,tp ] as

exp

(
1

y·,··

P∑
p=1

∑
t∈T

Nt∑
n=1

yn,tp log

∑B
b=1

∑K
k=1 θ

(b)
pk π

(b)
k rn,t,k

(b)β
(b)
n,t,k∑B

b=1

∑P
p=1

∑K
k=1 θ

(b)
pk π

(b)
k rn,t,k(b)β

(b)
n,t,k

)
(17)

where we have used a superscript b to denote the bth sample of the parameters
and latent variables1 and y·,·· =

∑P
p=1

∑
t∈T

∑Nt

n=1 y
n,t
p denotes the held-out

number of occurrences of word p in the nth document at time t.
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1We have denoted the bth samples of rn,t
k and βn,t

k as r
(b)
n,t,k and β

(b)
n,t,k for readability.
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