Supplementary Material: A unifying representation for a class of dependent random measures

1 Introduction

We present a complete description of the tGaP-PFA topic model, the associated Gibbs sampler and how to compute perplexity for unseen documents under the model with samples drawn from the Gibbs sampler.

2 Model

Recall that w_{pnt} represents the number of occurrences of word p in the *n*th document at time t, and that we decompose this as $w_{pnt} = \sum_{k=1}^{\infty} \tilde{w}_{pntk}$, where \tilde{w}_{pntk} is the number of occurences attributed to topic k. In the generative process presented below, p indexes the vocabulary, t indexes the observed times of documents, n indexes the documents at a time t and takes values in $\{1, \ldots, N_t\}$, and k indexes the topics. Additionally, l indexes the kernel functions of the RVM (Tipping, 2001) with centers m_l , which we take to be the locations of the observations (although this is not necessary).

The generative process is as follows

$$\Gamma := \sum_{k=1}^{\infty} \pi_k \delta_{(x_k,\theta_k)} \sim \operatorname{CRM}(\nu_{G0}(d\pi) H(dx) G_0(d\theta)) , \qquad (1)$$

where $x_k := (\omega_{0k}, \ldots, \omega_{Lk}, \phi_k)$; $\nu_{G0}(d\pi) = \pi^{-1} \exp(-\pi) d\pi$ is the Lévy measure of the gamma process with parameters (1, 1); $B_0(d\theta)$ is the *P*-dimensional Dirichlet distribution with parameter α_{θ} ; and $H(dx) = H_{\phi}(d\phi) \prod_{l=0}^{L} H_{\omega}(d\omega_l)$, where $H_{\phi}(d\phi)$ is the categorical distribution over the dictionary of kernel widths, and $H_{\omega}(d\omega_l) \sim \operatorname{NiG}(0, c_0, d_0)$ is drawn from the normal-inverse gamma distribution.

bution. The rest of the model is

$$p_{x_k}(t) = \Phi\left(\omega_{0k} + \sum_{l=1}^{L} \omega_{lk} \exp(-\phi_k ||t - t_l||_2^2)\right)$$
(2)

$$r_k^{n,t} \sim \operatorname{Ber}(p_{x_k}(t)) \tag{3}$$

$$G_{n,t} := \sum_{k=1}^{\infty} r_k^{n,t} \pi_k \delta_{\theta_k} \tag{4}$$

$$\beta_k^{n,t} \sim \operatorname{Ga}(e,1), n = 1, \dots, N_t, k \in \mathbb{N}$$
(5)

$$\tilde{w}_{pntk} \sim \operatorname{Pois}(\theta_{kp} r_k^{n,t} \pi_k \beta_k^{n,t}) \tag{6}$$

$$w_{pnt} = \sum_{k=1}^{\infty} \tilde{w}_{pntk} \sim \operatorname{Pois}(\sum_{k=1}^{\infty} \theta_{kp} r_k^{n,t} \pi_k \beta_k^{n,t})$$
(7)

3 Gibbs sampler

We use a truncated version of the model by fixing the number of atoms we will represent to K and forming the (finite) random measure, $\Gamma_K := \sum_{k=1}^K \pi_k \delta_{(x_k,\phi_k)}$, where $\pi_k \sim \text{Ga}(1/K, 1), x_k := (\omega_{0k}, \dots, \omega_{Lk}, \phi_k), \omega_{lk} \sim \text{NiG}(0, c_0, d_0)$, and $\phi_k \sim \{\phi_1^*, \dots, \phi_d^*\}$. In the limit, $K \to \infty$, $\Gamma_K \to \Gamma$ in distribution. This truncation allows for the derivation of a straight-forward Gibbs sampler. We assume \mathcal{T} is the set of unique observed times.

We sample each of the variables in turn from their full conditional distributions. We use a standard data-augmentation technique for probit regression to sample the ω_{lk} variables by introducing an auxiliary variable $\tilde{r}_k^{n,t} \sim N(p_{x_k}(t), 1)$ for each topic k at each document n at time t, such that

$$r_k^{n,t} = \begin{cases} 1 & \text{if } \tilde{r}_k^{n,t} > 0\\ 0 & \text{otherwise.} \end{cases}$$

See Albert & Chib (1993) for details of the data augmentation. The conditional distributions are as follows.

• Topics, θ_k .

$$\theta_k | \dots \sim \operatorname{Dir}(\alpha_\theta + \tilde{w}_{1 \cdots k}, \dots, \alpha_\theta + \tilde{w}_{P \cdots k})$$
(8)

where $\tilde{w}_{p \cdots k} = \sum_{t \in \mathcal{T}} \sum_{n=1}^{N_t} \tilde{w}_{pntk}$.

• Global topic proportions, π_k .

$$\pi_k | \dots \sim \operatorname{Ga}(\tilde{w}_{\dots k} + 1/K, \sum_{t \in \mathcal{T}} \sum_{n=1}^{N_t} \beta_k^{n,t} + 1)$$
(9)

where $\tilde{w}_{\cdots k} = \sum_{p=1}^{P} \sum_{t \in \mathcal{T}} \sum_{n=1}^{N_t} \tilde{w}_{pntk}$.

• Per-topic counts, \tilde{w}_{pntk} .

$$(\tilde{w}_{pnt1}, \dots, \tilde{w}_{pntK}) | \dots \sim \text{Mult}(w_{pnt}; \xi_{pnt1}, \dots, \xi_{pntK}),$$

where $\xi_{pntk} = \frac{\theta_{pk} r_k^{n,t} \pi_k \beta_k^{n,t}}{\sum_{j=1}^K \theta_{pj} r_j^{n,t} \pi_j \beta_j^{n,t}}$ (10)

where we ensure that the denominator is greater than 0 by making sure that when sampling the $r_k^{n,t}$ s, every document is not thinning at least one topic, i.e. $\forall t \forall n \exists j, r_j^{n,t} = 1$.

• Per-document topic rate, $\beta_k^{n,t}$.

$$\beta_k^{n,t} | \dots \sim \operatorname{Ga}(\tilde{w}_{\cdot ntk} + a, r_k^{n,t} \pi_k + 1)$$
(11)

where $\tilde{w}_{.ntk} = \sum_{p=1}^{P} \tilde{w}_{pntk}$.

- Time-dependent indicators, $r_k^{n,t}$: There are three cases:
 - 1. $\forall j, r_j^{n,t} = 0 \rightarrow r_k^{n,t} = 1$ 2. $\exists p, \tilde{w}_{pntk} > 0 \rightarrow r_k^{n,t} = 1$ 3. $\forall p, \tilde{w}_{nntk} = 0$

Cases 1 and 2 are deterministic. For case 3 let $u_{pntk} \sim \text{Pois}(\rho_p)$ with $\rho_p = \theta_{pk} \pi_k \beta_k^{n,t}$ denote the fictitious count of word p in the nth document at time t assigned to topic k disregarding $r_k^{n,t}$. The u_{pntk} allow us to determine whether $\tilde{w}_{pntk} = 0$ because the topic has been thinned or because the topic is not popular (globally or for the individual document). Case 3 above then splits into the following cases:

1. $\forall p, u_{pntk} = 0, \ r_k^{n,t} = 1$ with probability $\propto p(r_k^{n,t} = 1) \prod_{p=1}^P \operatorname{Pois}(0; \rho_p)$ 2. $\exists p, u_{pntk} > 0, \ r_k^{n,t} = 0$ with probability $\propto p(r_k^{n,t} = 0) \left(1 - \prod_{p=1}^P \operatorname{Pois}(0; \rho_p)\right)$

3.
$$\forall p, u_{pntk} = 0, r_k^{n,t} = 0$$
 with probability $\propto p(r_k^{n,t} = 0) \prod_{p=1}^{P} \text{Pois}(0; \rho_p)$

We evaluate the three probabilities and sample from the resulting discrete distribution.

• **RVM weights**, ω_{lk} . We introduce the auxiliary variables λ_{lk} such that

$$\lambda_{lk} \sim \operatorname{Ga}(c_0, d_0)$$
$$\omega_{lk} \sim N(0, \lambda_{lk}^{-1}).$$

Let $\boldsymbol{\omega}_k = (\omega_{0k}, \dots, \omega_{Lk})^T$ be the vector of RVM weights and $\tilde{\mathbf{r}}_k$ be the vector of augmentation variables for all all time stamps, and

$$K_{tk} = (1, K(t, m_1, \phi_k), \dots, K(t, m_L, \phi_k))^T$$
(12)

be the vector of the evaluation of the RVM kernels for time t. Then, the conditional of ω_k is given by

$$\boldsymbol{\omega}_k | \tilde{\mathbf{r}}_k, \dots \sim \mathcal{N}(\xi, B) \tag{13}$$

where $B = (\operatorname{diag}(\lambda_{0k}, \ldots, \lambda_{Lk}) + K_{tk}^T \tilde{\mathbf{r}}_k)^{-1}$ and $\xi = B K_{tk}^T \tilde{\mathbf{r}}_k$.

• RVM auxiliary variables, $\tilde{r}_k^{n,t}$.

$$p(\tilde{r}_k^{n,t}|\ldots) \propto \begin{cases} \mathcal{N}(K_{tk}^T \boldsymbol{\omega}_k, 1) \mathbf{1}(\tilde{r}_k^{n,t} > 0), & \text{if } r_k^{n,t} = 1\\ \mathcal{N}(K_{tk}^T \boldsymbol{\omega}_k, 1) \mathbf{1}(\tilde{r}_k^{n,t} < 0), & \text{if } r_k^{n,t} = 0 \end{cases}$$
(14)

which is a truncated normal distribution that we sample using the inversion method described in Albert & Chib (1993).

• RVM precisions, λ_{lk} .

$$\lambda_{lk}|\ldots \sim \operatorname{Ga}\left(c_0 + \frac{1}{2}, d_0 + \frac{1}{2}\omega_{lk}^2\right)$$
(15)

• **RVM kernel widths,** ϕ_k . We assume a finite dictionary $\{\phi_1^*, \ldots, \phi_M^*\}$ of possible values for the RVM kernel widths, and a uniform prior on these values,

$$p(\phi_k = \phi_m^* | \dots) \propto \frac{1}{M} \prod_{t \in \mathcal{T}} \prod_{n=1}^{N_t} \Phi(p_{\phi_m^*}(t))^{r_k^{n,t}} (1 - \Phi(p_{\phi_m^*}(t)))^{1 - r_k^{n,t}}$$
(16)

where we have denoted the thinning function as a function of ϕ^* as the other variables are held fixed.

4 Perplexity

Similarly to Zhou et al. (2012), given B samples of the model parameters and latent variables we compute a Monte Carlo estimate of the held-out perplexity for unobserved counts $Y = [y_p^{n,t}]$ as

$$\exp\left(\frac{1}{y^{,\cdot}}\sum_{p=1}^{P}\sum_{t\in\mathcal{T}}\sum_{n=1}^{N_{t}}y_{p}^{n,t}\log\frac{\sum_{b=1}^{B}\sum_{k=1}^{K}\theta_{pk}^{(b)}\pi_{k}^{(b)}r_{n,t,k}^{(b)}\beta_{n,t,k}^{(b)}}{\sum_{b=1}^{B}\sum_{p=1}^{P}\sum_{k=1}^{K}\theta_{pk}^{(b)}\pi_{k}^{(b)}r_{n,t,k}^{(b)}\beta_{n,t,k}^{(b)}}\right) \quad (17)$$

where we have used a superscript b to denote the bth sample of the parameters and latent variables¹ and $y^{,\cdot} = \sum_{p=1}^{P} \sum_{t \in \mathcal{T}} \sum_{n=1}^{N_t} y_p^{n,t}$ denotes the held-out number of occurrences of word p in the *n*th document at time t.

References

- Albert, J.H. and Chib, S. Bayesian analysis of binary and polychotomous response data. JASA, 88(422):669–679, 1993.
- Tipping, M. E. Sparse Bayesian learning and the relevance vector machine. JMLR, 1:211–244, 2001.
- Zhou, M., Hannah, L. A., Dunson, D. B., and Carin, L. Beta-negative binomial process and Poisson factor analysis. In AISTATS, 2012.

¹We have denoted the *b*th samples of $r_k^{n,t}$ and $\beta_k^{n,t}$ as $r_{n,t,k}^{(b)}$ and $\beta_{n,t,k}^{(b)}$ for readability.