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Abstract

The estimation of causal effects from non-
experimental data is a fundamental problem
in many fields of science. One of the main ob-
stacles concerns confounding by observed or
latent covariates, an issue which is typically
tackled by adjusting for some set of observed
covariates. In this contribution, we analyze
the problem of inferring whether a given vari-
able has a causal effect on another and, if it
does, inferring an adjustment set of covari-
ates that yields a consistent and unbiased
estimator of this effect, based on the (con-
ditional) independence and dependence rela-
tionships among the observed variables. We
provide two elementary rules that we show
to be both sound and complete for this task,
and compare the performance of a straight-
forward application of these rules with stan-
dard alternative procedures for selecting ad-
justment sets.

1 INTRODUCTION

In many fields of science researchers are interested in
estimating the causal effect of one variable on another.
For instance, in epidemiology one might study the ef-
fect of a given treatment (or exposure) on the health of
the patient, while in economics one may be interested
in the influence of education on the income level of
individuals. When possible, the preferred means of es-
timating such effects is using randomized controlled
experiments, in which the ‘treatment’ variable (the
cause) is randomized while the ‘outcome’ variable (the
effect) is passively observed. Unfortunately, this tech-
nique is not possible in many cases. In the examples
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given above, it would be unethical to deliberately ex-
pose individuals to harmful substances, and it would
be in practice impossible to actively control the level
of education that individuals achieve.

When randomized experiments are not available, re-
searchers are left with no option but to attempt to
infer from non-experimental (‘passive observational’)
data whether a variable has an effect on another, and,
if it does, the magnitude of the causal effect. In such
studies, one of the main risks is bias due to confound-
ing by observed or unobserved covariates: A variable
that has an effect on both the treatment and the out-
come variables may significantly bias the estimated ef-
fect unless this confounding is properly accounted for.
Thus, typically, some covariates are measured and ‘ad-
justed for’ (also termed ‘controlled for’) when estimat-
ing the causal effect of the treatment on the outcome.

If the full causal structure among all the variables
is known, there are algorithms to determine whether
there exists a consistent and unbiased estimator of
the desired causal effect (Pearl, 2009; Shpitser et al.,
2010; Shpitser and Pearl, 2006). However, if the causal
structure among the variables is not known, it is not
clear how to select the set of covariates to adjust
for. Some investigators suggest adjusting for all mea-
sured covariates, while others propose adjusting only
for those with certain statistical properties, such as
the ones associated with both the treatment and the
outcome. A recent study (VanderWeele and Shpitser,
2011) advocated adjusting for those covariates that are
known to influence the treatment or the outcome, or
both. Many of the proposed approaches are mutually
contradictory in their prescriptions. Thus, when the
causal structure among the variables is not known the
problem is still largely unsolved, both in terms of the
theoretical methodology and in terms of practical de-
ployment of known results. In this paper, we provide a
set of simple rules that, under well specified conditions,
identify the appropriate set of covariates to adjust for,
based on testable (conditional) dependence and inde-
pendence relations among the observed variables.
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2 MODEL AND PROBLEM SETUP

We derive all of our results in the framework of
modeling causal relationships using directed graphi-
cal models (Spirtes et al., 2000; Pearl, 2009). The
causal structure of the underlying system is repre-
sented by a directed acyclic graph (DAG) over a set
V = {x, y} ∪W ∪U of random variables, where x rep-
resents the ‘treatment’ variable, y represents the ‘out-
come’ variable, W consists of the set of observed co-
variates, and U represents an unknown set of latent
(unobserved) covariates, assuring that the full set of
variables V forms a causally sufficient set, i.e. any com-
mon cause of two or more variables in V is in V. Note
that W and U are allowed to be empty.

We assume that y is not a causal ancestor of x, and
that x and y are not causal ancestors of any variables
in W. This represents the situation where the covari-
ates correspond to ‘background conditions’ that may
influence both the treatment and the effect but may
not be influenced by these, and it is further known that
the effect cannot influence the treatment. Such an as-
sumption is typically reasonable in cases where a clear
time ordering exists among W, x, and y. Examples
are given in Figure 1.

We further make the common assumption of faithful-
ness, i.e. all independencies in the distribution P (V)
are due to the structure of the graph, rather than
the specific form of the relationships among the vari-
ables. Under this assumption, d-separation (Pearl,
2009, stated below) in the graph corresponds precisely
to conditional independence in the distribution P (V).

Definition 1 (D-separation). A path p is blocked by
a set Z if (a) p contains a chain vi → vk → vj or a
fork vi ← vk → vj with vk ∈ Z, or (b) p contains a
collider vi → vk ← vj such that neither vk nor any
of its descendants are in Z. If a path is not blocked it
is called active. Variables v1, v2 are d-separated by a
set Z if every path between v1 and v2 is blocked by Z.

Note that we make no other assumptions on the func-
tional form of the relationships, or the distributions
involved. We do assume that there is no selection bias,
i.e. whether or not a unit is included in the sample is
not affected by any variable causally related to any
v ∈ V. Typically this is achieved by a random sample.

The problem is to infer if x has a causal effect on y,
and if it does, to obtain a consistent and unbiased esti-
mator for the causal effect of x on y, i.e. P (y |do(x)) in
the notation of Pearl (2009). This may or may not be
possible by “adjusting” for an appropriate set Z ⊆W.
When the DAG over all variables V (observed and la-
tent) is known, the following theorem due to Pearl
(2009) specifies which sets Z are appropriate.

Theorem 1. (‘Back-Door Adjustment’)
If a set of variables Z ⊆ W satisfies the back-door
criterion relative to (x, y), i.e.

(i) no node in Z is a descendant of x; and

(ii) Z blocks every back-door path from x to y (i.e.
paths from x to y containing an arrow into x:
x← . . .→ y),

then the causal effect of x on y is identifiable and is
given by

P (y |do(x)) =
∑
Z

P (y |x, Z)P (Z). (1)

In our setting, condition (i) is always fulfilled. Thus, if
Z d-separates x from y in the model in which the edge
from x to y is cut (if it exists), then Z satisfies the
criterion and is termed admissible. It is further known
that for any set Z which is not admissible, there exist
models in which adjusting for Z yields an inconsistent
and biased estimator of the desired causal effect. In
this sense, admissibility is exactly the property that is
sought (Shpitser et al., 2010).

With this criterion, it is easy to see why simple strate-
gies such as adjusting for all covariates, for none of the
covariates, or all covariates associated to both x and y,
can fail. Consider the two graphs in Figure 1 (a) and
(b). In (a), Z = {w1} is an admissible set, whereas in
(b), Z = {w1} is not admissible. On the other hand,
Z = ∅, is not admissible in (a), but admissible in (b).
Thus, all three of these simple strategies can fail. In
fact, since these two models entail the same set of in-
dependencies among the observed variables (there are
none), it is impossible to decide from testable depen-
dencies and independencies alone whether w1 should
be in the adjustment set or not.

Typically, the full causal structure is not known. Nev-
ertheless, in many cases the independencies and de-
pendencies among the observed variables do provide
sufficient information to identify the causal effect. Our
goal is thus a procedure that, under the stated assump-
tions, uses (testable) independencies and dependencies
in the data to output exactly one of the following:

‘±’: x has a causal effect on y, and the effect is found
by back-door adjustment with a given admissible
set Z ⊆W

‘0’: x has no causal effect on y

‘?’: we do not know whether x has a causal effect on
y or not.

At first sight, it might seem that there could be cases
in which the data allows us to infer that there is a
causal effect of x on y, but without us knowing an
admissible adjustment set. We will show that, under
the given assumptions, such cases do not occur.
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Figure 1: Example graphs with latent variables ui ∈ U, and observed covariates wj ∈W, for all i and j.

3 INFERENCE RULES

We introduce the following simple rules for solving the
above problem.

R1: If there exists a variable w ∈ W and a set Z ⊆
W \ {w} such that

(i) w /⊥⊥ y | Z, and

(ii) w⊥⊥ y | Z ∪ {x}

then infer ‘±’ and give Z as an admissible set.

R2: If there exists a set Z ⊆W such that

(i) x⊥⊥ y | Z,

or, if there exists a variable w ∈ W and a set
Z ⊆W \ {w} such that

(ii) w /⊥⊥x | Z, and

(iii) w⊥⊥ y | Z,

then infer ‘0’.

If neither R1 nor R2 apply, then we simply output ‘?’.

To get an intuition for why rule R1 is appropriate, con-
sider the following. Condition (i) ensures that there
exist (one or more) active paths from w to y, given Z,
which, by condition (ii) must all pass through x, since
including x in the conditioning set blocks all the paths.
This implies that there are (one or more) active paths
from w to x. If there existed an active back-door path
from x to y then condition (ii) could not hold, because
then the concatenation of the former with the latter
would be an active path, with x as a collider in the con-
ditioning set. One example graph in which R1 applies
is given in Figure 1 (c), with w = w1, Z = {w2, w3}.

The main idea of rule R2 is twofold: First, if there
existed a non-zero effect of x on y then, by faithfulness,
x and y would be dependent conditional on any subset
of the remaining variables, so condition (i) is sufficient
on its own to infer a zero effect. Second, conditions
(ii) and (iii) of R2 together may allow us to detect a
zero effect even in the presence of a latent confounder
between x and y: Condition (ii) ensures that there
exist (one or more) active paths from w to x given Z,
so if there existed an edge from x to y then adding that
edge to the previous path would immediately yield an
active path from w to y, contradicting condition (iii).

Figure 1 (d) gives an example where R2 (ii) and (iii)
apply, with w = w1 and Z = {w2}.

Next, we provide the formal results stating that, in the
large sample limit, the combination of these two simple
rules is both sound (i.e. whenever we infer either ‘±’ or
‘0’, this is correct) and complete (i.e. we only output
‘?’ when, based on conditional independencies and
dependencies among the observed variables, it cannot
be known whether x has a causal effect on y or not).

Theorem 2. Given an independence oracle, under the
assumptions stated in Section 2, whenever rule R1 or
R2 applies, the corresponding inference is correct.

The formal proof of the theorem is given in the Ap-
pendix. The main arguments were already discussed
above. Note that as long as consistent tests of indepen-
dence and consistent estimators for parameters exist,
the estimated causal effect will be pointwise consistent,
following similar arguments as in Spirtes et al. (2000,
Ch. 12.4), and Robins et al. (2003).

Theorem 3. Given an independence oracle, under the
assumptions stated in Section 2, whenever neither rule
R1 nor R2 applies it is impossible to determine, based
on the conditional independencies and dependencies
among the observed variables alone, whether x has a
causal effect on y or not.

The proof is given in the Appendix. The main idea is
that if neither rule applies using an independence ora-
cle, then there exist causal structures with and without
an edge from x to y, which entail the same dependen-
cies and independencies among the observed variables,
and hence it is impossible to reliably infer ‘±’ or ‘0’

solely based on testable independencies.

4 PRACTICAL ALGORITHM

In this section we discuss how the inference rules intro-
duced in the previous section can be used in practice
to infer ‘±’, ‘0’, or ‘?’, from finite-sample data.

For small sets of observed covariates it is possible to go
through all possible sets Z and pairs (w,Z), obtaining
p-values for the independence tests required by rules
R1 and R2. In each test, we must infer either de-
pendence or independence. A conservative approach
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is to infer a dependence only when the p-value is be-
low some quite low threshold, while requiring that the
p-value is above a different, much higher threshold to
infer independence. Note that, strictly speaking, a sta-
tistical dependence can never be rejected in such sta-
tistical tests, so in practice we must infer independence
when the null hypothesis of independence cannot be
rejected.1 At present, we also disregard the problem
of multiple testing, and that underlying samples are
partly shared, so that the statistical tests are corre-
lated. We further do not take into account the power
of the test. These are possible extensions of our work.

With the above approach, one may find multiple sets
Z and pairs (w,Z) which satisfy the conditions of the
rules. With finite sample data, one often finds cases
where both rules R1 and R2 apply, contradicting each
other. A näıve procedure would be based on majority
voting: If the necessary conditions for R1 were found
more often than the necessary conditions for R2 (nor-
malized by the number of tests run for each rule), infer
‘±’; if the reverse holds, infer ‘0’; and if neither holds,
infer ‘?’. This would, however, not be a very conser-
vative approach. Instead, we use a simple Bayesian
classifier based on a separate training set of simulated
data, where the correct answer (‘±’, ‘0’, or ‘?’) was
given by d-separation computed on the (known) true
causal structure. The input is simply the difference of
the frequencies of R1 and R2, and the class-conditional
distributions are Gaussian. The main effect is that if
the total number of applications of rules R1 and R2
is very low, or the rules apply in comparable frequen-
cies, we infer the uninformative but never incorrect
‘?’.2 To ensure that we err on the side of caution,
we compare the causal effects estimated when using
all admissible sets found with R1. If these are signif-
icantly different from each other, we cannot give an
estimate of the causal effect and hence output ‘?’.

When the number of observed covariates is high (sev-
eral tens of variables or more), it is not possible to
consider all sets Z or pairs (w,Z) as the number of
sets Z grows exponentially in the number of covari-
ates. In this case, one can (a) limit the size of the sets
Z considered, or (b) randomly sample sets Z and pairs
(w,Z) from the full set. With the latter approach,
one obtains estimates of the frequencies with which
the conditions of rules R1 and R2 apply, and these
estimates can be directly used as described above.

1This is a fundamental issue with all constraint-based
approaches to causal inference relying on faithfulness.

2In the infinite sample limit, ‘?’ is only inferred when
the structure of the underlying graph makes it impossible
to tell whether there exists a causal effect or not. How-
ever, in the finite sample case it is prudent to output ‘?’
whenever there isn’t sufficient evidence for either ‘±’ or
‘0’.

5 RELATED WORK

To the best of our knowledge, the existing work most
closely related to ours is that of Spirtes and Cooper
(1999), and Chen et al. (2007). In both of these papers
the authors search for triples (w, x, y) (in our nota-
tion), in which w is exogenous (there are no edges into
w in the generating model, known either from back-
ground knowledge or due to randomization of w), w,
x, and y are all pairwise marginally dependent, and w
is independent of y conditional on x. If such a triple is
found, they infer that x has a non-zero causal effect on
y, and this effect is unconfounded. Our inference rules
generalize this approach by allowing non-empty condi-
tioning sets Z, as well as by replacing the assumption
of w being exogenous with the weaker assumption of
x not being an ancestor of any w. On the other hand,
Spirtes and Cooper (1999), and Chen et al. (2007) do
not assume that y is not an ancestor of x, whereas our
inference rules currently rely on this assumption.

Two recent papers (de Luna et al., 2011; VanderWeele
and Shpitser, 2011) discuss the problem of covariate
selection under the same acyclicity and partial order-
ing assumption as our approach. De Luna et al. (2011)
further assume faithfulness, and that a subset of the
covariates W′ ⊆ W is admissible, and this subset W′

is known a priori. They suggest a selection procedure,
using a series of independence tests, to find a mini-
mal subset of W′ which is still admissible. Vander-
Weele and Shpitser (2011), on the other hand, only
assume that there exists some admissible set among
all covariates W, which does not have to be a priori
known. Their procedure however requires prior knowl-
edge about which covariate w ∈W is a cause (i.e. an-
cestor in the true graph) of x or of y: They show that
the adjustment set Z including all those covariates w
which are a cause of x, or a cause of y, or of both,
satisfies the back-door criterion and so is admissible.
As Z might include redundant variables, procedures
are also provided for selecting a subset of Z which is
still admissible. While the extra information required
by VanderWeele and Shpitser (2011) is somewhat re-
strictive in terms of applicability of the method, the
main drawback of both of the above methods is the
assumption that there exists an admissible set among
the observed covariates W. If this does not hold, nei-
ther of the two methods is able to detect this violation
of the assumption, and this can lead to an inconsistent
and biased estimator of the causal effect.

For linear non-Gaussian acyclic models (each vari-
able is a linear combination of its parents and a non-
Gaussian disturbance), Entner et al. (2012) tackle the
problem of identifying whether an estimator of the
causal effect of x on y is consistent and unbiased, given
the same partial ordering assumption as in this paper.
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In that approach, non-Gaussianity is essential, as the
method fails when applied to linear Gaussian models
(such as the ones used in the simulations of this paper).

A more general approach to causal discovery with hid-
den variables is given by the FCI algorithm (Spirtes
et al., 2000), which is a constraint based search method
that infers, under the faithfulness assumption, ances-
tral relationships among all observed variables using
conditional independence tests. It is straightforward
to incorporate background knowledge about a partial
ordering among the variables in FCI (Spirtes et al.,
2000). However, while Zhang (2008) showed that FCI
is sound and complete, it is not known whether com-
pleteness still holds when incorporating the above form
of background knowledge in the algorithm. Using the
output of the FCI algorithm, it is possible to make the
inferences ‘±’, ‘0’, or ‘?’. (The details of the pro-
cedure are left to the Supplementary Material as this
requires an understanding of ancestral graphs.) Thus,
our approach can be seen as a special case of the much
more general apparatus of FCI, tailored to the spe-
cific circumstances discussed. This not only allows a
method that can be understood with only the most ba-
sic knowledge of d-separation in DAGs, but also yields
a relatively simple proof of completeness. It also does
not attempt to infer irrelevant causal features among
the covariates, and allows the use of separate thresh-
olds for inferring dependence as opposed to indepen-
dence, which can significantly improve the reliability
of the algorithm, as shown in the next section.

6 EMPIRICAL RESULTS

In this section we evaluate the performance of our ap-
proach as described in Sections 3 and 4, and empiri-
cally compare it with the simple approaches mentioned
in Section 2, as well as to the method of VanderWeele
and Shpitser (2011) (providing the necessary informa-
tion about causes of x and y taken from the gener-
ating graph) and to the approach based on the FCI
algorithm, as discussed in Section 5.3 Matlab code to
reproduce all results is available at http://www.cs.

helsinki.fi/u/entner/CovariateSelection/.

We use linear Gaussian models throughout, testing for
zero partial correlation to infer conditional indepen-
dence, using Fisher’s Z transformation. We first ran-
domly create acyclic connections among the variables,
satisfying the partial order assumption. Next we as-

3We do not compare to the method of de Luna et al.
(2011), as their procedure solely aims at selecting a min-
imal set of covariates among a set which is known to be
admissible. For the same reason, in the approach of Van-
derWeele and Shpitser (2011) we simply use the full set of
covariates suggested by their selection procedure without
trying to find a smaller subset.

Table 1: Overview of the four simulation tasks.

Task Effect Admis. set Inferences
#1 non-zero yes ‘±’ or ‘?’
#2 non-zero no ‘?’

#3 zero yes ‘0’

#4 zero no ‘0’ or ‘?’

sign connection strengths to the edges and standard
deviations to the error terms. We then generate data
for each variable vi ∈ V using vi =

∑
vj∈pai

bijvj + ei,
where pai denotes the parent set of vi, bij the direct
causal effect of vj on vi, and ei the error term of vi.
Finally we hide the data over the latent variables in U.

We first use models with |W| = 10 observed and |U| =
5 hidden covariates, in which case it is possible to go
through all Z ⊆ W, and all combinations of w ∈ W

and Z ⊆ W \ {w}, and count the times rules R1 and
R2 apply. We divide our simulations into four cases,
summarized in Table 1. For task #1, there exists a
non-zero effect of x on y, and there exists an admissible
set (based on d-separation in the underlying graph).
However, it may not be possible from the dependencies
and independencies alone to conclude that there is a
causal effect. Hence, for this task, while ‘±’ is the
appropriate conclusion in some instances, in others the
appropriate inference is ‘?’. For task #2, there exists
a causal effect but no admissible set, and in this case
the only valid inference is ‘?’. In task #3, there is no
causal effect but there exists an admissible set. In this
case, any admissible set satisfies condition (i) of rule
R2, so the only appropriate inference is ‘0’. Finally,
in task #4, there is no causal effect and no admissible
set. In some instances, conditions (ii) and (iii) of R2
nevertheless apply, so ‘0’ can be inferred. In other
instances, none of the conditions apply so the only
valid inference is ‘?’. For each task, we randomly
generate 100 models as described above.

We first compare the results of our approach to the
results of the FCI based algorithm including the back-
ground knowledge given by the partial ordering (we ac-
tually use the CFCI algorithm, a conservative version
of FCI, to obtain more reliable results). In Figure 2,
we show the distributions of the obtained inferences
for the four tasks with three different sample sizes and
an independence oracle (‘infinite sample size’). The
results for our inference rules, presented in (a), show
that the larger the sample size gets, the fewer mistakes
we make. In particular, in task #1, the erroneous in-
ferences of ‘0’ (in blue) decrease to an insignificant
level as the sample size grows. For task #2, any in-
ferences of ‘±’ (in yellow), or ‘0’ (in blue) are mis-
takes, and both these proportions decrease with grow-
ing sample size. Lastly, for tasks #3 and #4, there
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(b) FCI based approach

Figure 2: Inferences produced for each of the four tasks of Table 1 using 100 models with 10 observed and 5
hidden covariates. The first three bars in each plot display the inferences with 100, 1000, and 10000 samples,
respectively, the last bar for an independence oracle (‘infinite sample size’). The colored proportion of the bars
represent how often the corresponding decision was made, with ‘±’ in yellow, ‘0’ in blue, and ‘?’ in red.

are essentially no errors (no inference of ‘±’), and the
number of inferences of ‘0’ increases with sample size
(though slowly). Compared to our rules, from (b) we
see that the FCI based approach performs as well (or
better) on tasks #3 and #4. However, it makes a sig-
nificant amount of mistakes (inference of ‘0’, in blue)
on task #1, even for large sample sizes. On task #2,
where the only correct inferences are ‘?’, the number
of errors is large, and growing with sample size.

As the main objective is to obtain accurate estimates
of the causal effect, we give in Figure 3 boxplots of the
difference between the true effect and the estimated
effect for the various approaches. For task #1, where
there truly exists an admissible set, the method of Van-
derWeele and Shpitser (2011) always yields an admis-
sible set, and so tends to be the most reliable method;
however, most of the other approaches are almost as
good. For task #2 on the other hand, the benefit of
our rules is clear: With the largest sample size, only in
15 out of 100 instances did the approach make a pre-
diction, and for those estimates the errors tend to be
smaller on average than for the other methods. Since
it is impossible to know, a priori, to which task a given
problem belongs, it is crucial to avoid making predic-
tions when the data does not warrant making one. In
tasks #3 and #4, both our approach and that based
on FCI are essentially avoiding any errors. (Note that
these two approaches actually set the estimated causal
effect to 0, while the other approaches simply esti-
mate the regression coefficient with adjustment; this
explains some of the discrepancy.) The main advan-
tage is again that our approach avoids making a pre-
diction when one is not warranted by the data, giving
fewer but much more accurate predictions.

We have also tested our approach on models with 100
observed covariates, using the sampling approach de-
scribed in Section 4. The main result is that, while
the absence of a causal effect (tasks #3 and #4) can
be detected reliably, and any non-zero estimated ef-
fects in tasks #1 and #2 have little error, there are
many cases in tasks #1 and #2 in which our approach
erroneously infers ‘0’. A figure and more details are
provided in the Supplementary Material.

7 CONCLUSIONS

Finding an appropriate adjustment set among the co-
variates W to obtain a consistent and unbiased esti-
mator of the ‘treatment’ x on the ‘outcome’ y, from
non-experimental data, is an important problem. For
acyclic models with no selection bias, and when the
underlying graph is known, this problem is solved.
We have considered the difficult case where the causal
structure is unknown. Assuming acyclic connections
among the variables, faithfulness, no selection bias,
and that all observed covariates are pre-treatment, we
have presented two simple rules to infer whether there
is a non-zero effect of x on y (and an admissible set for
adjustment), a zero effect of x on y, or whether this
information is impossible to determine from the data
alone. We have shown these inference rules to be sound
and complete, and demonstrated in simulations their
advantage compared to other proposed approaches.

Many questions are still left unanswered. For the prac-
tical implementation of the algorithm, several short-
comings were already mentioned in Section 4. Improv-
ing the ad-hoc procedure of using a Bayesian classifier
for propagating uncertainty would be an interesting
avenue of future research. It would also be important
to verify the performance of the method when applied
to data that is not linear-Gaussian.

Another open problem is how to incorporate further
background knowledge, such as that of VanderWeele
and Shpitser (2011) (having information on which vari-
ables are causes of x or y), or of Spirtes and Cooper
(1999), and Chen et al. (2007) (knowing that certain
variables are exogenous). One can for instance prove
the following theorem, which allows inferring that cer-
tain sets are not admissible. (Proof in the Supplemen-
tary Material.)

Theorem 4. (Test for non-admissibility) Given
the model and partial ordering assumptions of Sec-
tion 2, if there exists an exogenous variable w ∈ W

and a (possibly empty) set Z ⊆W \ {w} such that

(i) w /⊥⊥x | Z, and

(ii) w /⊥⊥ y | Z ∪ {x}
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Figure 3: Boxplots of the differences between the true and estimated causal effect, shown along the horizontal
axis, using 100 models with 10 observed and 5 hidden covariates. In the rows are plots for various sample sizes
(100, 1000, 10000), in the columns for the four tasks of Table 1. In each subfigure we show the boxplots for the
methods as indicated in the legend. For the boxplots, the box ranges from q1, the 1st quartile, to q3, the 3rd

quartile, and the median is indicated by a horizontal line in the box. The whiskers extend to the furthest point
not considered as an outlier. Outliers are all points larger than q3 + 1.5(q3− q1) or smaller than q1−1.5(q3− q1).
The numbers along the vertical axis indicate how often the corresponding method output an estimate.

then the set Z is not admissible.

Furthermore, one could relax the assumption of know-
ing a partial ordering among the observed variables.
The most straightforward generalization would be to
drop the requirement that y cannot be a causal ances-
tor of x, but keep the knowledge that the covariates
W causally precede both x and y, as in the work of
Spirtes and Cooper (1999), and Chen et al. (2007). A
second way to relax this assumption would be to allow
the covariates W to be between x and y, keeping the
knowledge that x precedes y. This could lead to op-
portunities to identify additional causal effects, as well
as to distinguish between direct and indirect effects.

Lastly, we want to mention that especially in non-
linear or discrete data sets, the size of the admissi-
ble set Z can significantly influence the performance
of the estimator, and small sets Z are desirable. Thus,
combining our approach with further selection criteria
to obtain a smaller or minimal admissible set, such as
discussed in de Luna et al. (2011), or VanderWeele and
Shpitser (2011), would be very useful.
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APPENDIX: PROOFS

Proof of Theorem 2 (Soundness)

We need to show that whenever either rule R1 or R2
applies, then the resulting inference is correct.

R1: We will show that, if rule R1 applies, then there is
a non-zero effect of x on y, and Z blocks all back-door
paths from x to y, and hence the set Z is admissible.

Condition (i) ensures that there exist active paths from
w to y given Z, and condition (ii) ensures that all such
paths must pass through x (as a non-collider, and by
assumption into x), since otherwise adding x to the
conditioning set would not block all the paths.

Since by assumption x is not an ancestor of any mem-
ber of W, and in condition (i) x is not in the condi-
tioning set, any active path from w to y given Z must
include the directed edge from x to y, and hence, by
faithfulness, the effect of x on y is non-zero.

Together, conditions (i) and (ii) thus imply that there
exists at least one active path from w to x given Z,
pointing into x. Now, if there existed an active back-
door path from x to y given Z, then concatenating
these two paths would yield an active path from w to
y given Z ∪ {x} (using Lemma 3.3.1 of Spirtes et al.
(2000) if the paths have more than one node in com-
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mon), since there is a collider at x. This would violate
condition (ii), and hence, all back-door paths from x
to y must be blocked by Z.

R2: Assume that the causal effect of x on y is not
zero, i.e. the model contains the edge x→ y. Faithful-
ness would then ensure that this yields a dependence
between x and y given any set Z. Thus, in this case
condition (i) would never hold.

Condition (ii) ensures that there is an active path π
from w to x, given Z, pointing into x, since by assump-
tion y /∈ Z so all paths via y are blocked by colliding
arrows. Now, if there was an arrow from x to y then
appending this arrow to π would lead to an active path
w ∗−∗ . . . ∗→ x → y, given Z, since x /∈ Z. But this is
in contradiction to condition (iii). Thus, there cannot
be an arrow from x to y.

Proof of Theorem 3 (Completeness)

We show that whenever neither rule R1 nor R2 applies
one cannot, only based on the conditional independen-
cies and dependencies among the observed variables,
know whether x has a causal effect on y or not.

‘±’: First consider the case where x really is a cause
of y, i.e. the true model contains the edge x→ y. We
will examine two separate cases:

(a) Assume that there does not exist a confounder
u ∈ U that is a parent of both x and y. Consider
adding such a confounder to the model. We will show
that if such an addition changes any (conditional) inde-
pendencies or dependencies among the observed vari-
ables W ∪ {x, y}, then rule R1 applies.

First note that adding a confounder of the above form
can only change a conditional independence to a de-
pendence, and not the reverse. Also note that any
dependence created by the added confounder must
rely on unblocked paths that all contain the subpath
w ∗→ x← u→ y, with w ∈W. To result in a change
from an independence to a dependence, conditional on
some set Z ∪ {x}, there can be no previously active
path from w to y given Z ∪ {x}. Hence condition (ii)
of R1 must apply. Since by necessity there is also an
active (sub)path from w to x given Z, and by the fact
that the model contains the edge x → y condition (i)
holds, so rule R1 applies.

(b) Next, assume that there does exist a confounder
u ∈ U that is a parent of both x and y. We will now
show that it is possible to remove the edge x→ y, and
add compensating edges to the model, such that all
(conditional) independencies and dependencies among
the observed variables remain unaltered.

Consider the model obtained by removing the edge
x → y and adding edges v → y from all v ∈ V that

are parents of x in the true graph (note that some of
these v may be unobserved). Any active path broken
by removing the edge x → y must include a subpath
v → x→ y, with v a parent of x, and x not in the con-
ditioning set. All such previously active paths are re-
stored by adding the edge v → y. Furthermore, adding
the edge v → y can never create any new active paths,
because v and y were always d-connected in the origi-
nal model because it included both paths v → x → y
and v → x ← u → y. Hence all independencies and
dependencies remain the same.

Together, parts (a) and (b) above show that for any
true model containing the edge x → y, either (i) it is
possible to find (by if necessary combining the model
alterations in (a) and (b)) an alternative model which
does not contain the edge x → y yet yields the same
set of independencies and dependencies, or (ii) rule
R1 applies. This implies that in all cases where x is
truly a cause of y, we can either detect it (and provide
an admissible set) or it is undecidable from the data
whether x is a cause of y or not.

‘0’: Next, consider the case where x is not a cause of
y, i.e. the true model does not contain the edge x →
y. We will show that if adding this edge changes any
independencies or dependencies, then rule R2 applies.
Thus, if R2 does not apply, it cannot be known from
independencies and dependencies whether x is a cause
of y or not.

Adding the edge x → y can only turn independencies
into dependencies, not the reverse. First consider in-
dependencies of the form x⊥⊥ y |Z, with Z ⊆W, which
are obviously turned into dependencies when the edge
is added. Any such cases are handled by condition (i)
of rule R2. Now, if x and y are dependent conditioned
on all subsets of W so that condition (i) does not apply,
then no independence between x and any w ∈ W can
be affected by the addition of the edge x→ y, because
an active path with an arrowhead at y already existed
prior to the addition. Hence we only need to consider
independencies between any w ∈ W and y. If x is
in the conditioning set then the addition of the edge
x→ y cannot change any such independencies. Thus,
the only new dependencies created must rely on ac-
tive paths that must contain the subpath w∗→ x→ y,
and x must not be in the conditioning set. This corre-
sponds to the combination of conditions (ii) and (iii)
of rule R2. Hence if any new dependencies would be
created by adding the edge x→ y, then R2 applies.

In summary, we have shown that whether or not the
true model contains the edge x → y or not, if neither
rule R1 nor R2 applies, one cannot based on condi-
tional independence and dependence information reli-
ably detect whether the edge is present or not.
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