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A. Details of the FCI based approach

In this section we describe the details of how to uti-
lize the FCI algorithm to make inferences ‘*’, ‘0’ or
€7’ as mentioned in Section 5 of the article. Without
going into all the details of the vast theory of ancestral
graphs (Richardson and Spirtes, 2002; Ali et al., 2009),
we note that the output of FCI is a partial ancestral
graph (PAG), representing the equivalence class over
all maximal ancestral graphs (MAGs) with the same
(in)dependencies over the observed variables. It is pos-
sible to make the inferences ‘+’, ‘0’, and ‘7’ from the
output PAG of FCI as follows: If there is a directed
edge r — y in the PAG, output ‘%’ with an admissi-
ble set Z as constructed in the following paragraph.!
If there is no edge between x and y or a bidirected
edge x + y in the PAG, output ‘0’. If there is an
edge = 0— y in the PAG, output ¢?°.2

If we infer ‘%’ we also need to output an admissi-
ble set Z to estimate the strength of the causal effect.
This set can be read off the PAG as follows: First,
one obtains a MAG from the equivalence class of the
given PAG using Lemma 4.3.6 of Zhang (2006). One
then adds a ‘policy’ variable p to this MAG whose
only connection is from p to . Using Theorem 6.2 of
Spirtes et al. (2000) one then can find a set Z’ which
m-separates p from y (the equivalence of d-separation
in DAGs for MAGs). It turns out that the set Z' con-
tains, in our specific setting, exactly all the parents of
y in the MAG. Knowing this, we can actually read off
this set Z’ directly from the PAG (without requiring

'Note that the used background knowledge implies that
x — y is always a so called visible edge, which in our setup
ensures that there exists an admissible set.

2The interpretation of the edges in a PAG is as follows:
x — y means that x is an ancestor of y, x <+ y means that
z is not an ancestor of y, nor y is an ancestor of x, and
r 0— y means that in some graphs of the equivalence class
this can be a directed edge, and in others a bidirected one,
or alternatively, that FCI with this form of background
knowledge is not complete.

any of the MAGs) simply by selecting all those vari-
ables v with either an edge v — ¥y, or v o— y in the
PAG. We thus obtain an admissible set (blocking all
back-door paths from z to y) as Z = 2\ {z}, since
to any back-door path from x to y we can concatenate
the edge p — z to obtain a path from p to y via =
with = being an active collider, and hence any such
path must be blocked by Z.

B. Simulations with 100 covariates

As mentioned in Section 6 of the article, we tested
our inference rules on models with 100 observed and
20 hidden covariates using the sampling approach of
Section 4. In such large models it is computation-
ally expensive to infer whether there truly exists an
admissible set, so for simplicity we merged tasks #1
and #2 (non-zero causal effect of z on y), as well as
tasks #3 and #4 (no effect of z on y). For both set-
tings we generate 100 models as described in Section 6,
and generate data with sample sizes of 100, 1000, and
10000, respectively.

In tasks #1 and #2, the method conservatively out-
puts ‘7’ in 59, 53, and 64 cases (out of the 100 mod-
els), for 100, 1000, and 10000 samples, respectively.
Even though the cases of wrongly inferring ‘0’ de-
crease with growing sample size, our method still out-
puts ‘0’ in 24 cases for the largest sample size. How-
ever, as Figure 1 shows, when our approach infers a
zero effect from x on y, the true underlying non-zero
effect is rather close to zero. Furthermore, we can see
from this figure that for growing sample size the mag-
nitude of the error made in the estimates decrease, on
average.

For tasks #3 and #4 our method can reliably detect
the zero effect, inferring ‘0’ in 41, 82, and 77 cases
(out of the 100 models), for sample sizes 100, 1000,
and 10000, respectively, and ‘?’ in almost all other
cases, i.e. we rarely make the only wrong decision ‘£’.
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Figure 1: True versus estimated causal effect using 100 models with 100 observed and 20 hidden covariates with
a non-zero effect of z on y, and various sample sizes (100, 1000, and 10000, respectively, from left to right). True
effects are on the horizontal axis, estimated effects are on the vertical axis. Estimated effects are only shown for

those models for which our method inferred ¢+’ or ‘0°.

C. Proof of Theorem 4

Condition (i) ensures that there is an active path p;
from w to x not blocked by Z, which is out of w (by
the exogeneity) and into z, i.e. ‘w — ... — 2’ (this is
not necessarily a directed path). Condition (ii) ensures
that there is an active path ps from w to y not blocked
by Z U {z}, which is out of w and into y.

If  is not necessarily needed in the conditioning set of
condition (ii), i.e. w JL y | Z holds, then concatenating
p1 and po at w yields an active back-door path from x
to y not blocked by Z (using Lemma 3.3.1 of Spirtes
et al. (2000, p.385) if the two paths share more than
the node w). Note that exogeneity of w ensures that
the arrows at w are not colliding.

On the other hand, if = needs to be in the conditioning
set of condition (ii), then z is either a collider on po,
implying that the subpath from x to y in ps is an
active back-door path from x to y not blocked by Z,
or x is a descendant of a collider on the path ps, and
concatenating the directed path from the collider to z,
with the subpath from the collider to y on po yields an
active back-door path (once more using Lemma 3.3.1
of Spirtes et al., 2000). O
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