
     170

A simple criterion for controlling selection bias

Eunice Yuh-Jie Chen Judea Pearl

Cognitive Systems Laboratory
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
eyjchen@cs.ucla.edu

Cognitive Systems Laboratory
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095

judea@cs.ucla.edu

Abstract

Controlling selection bias, a statistical error
caused by preferential sampling of data, is
a fundamental problem in machine learning
and statistical inference. This paper presents
a simple criterion for controlling selection
bias in the odds ratio, a widely used mea-
sure for association between variables, that
connects the nature of selection bias with the
graph modeling the selection mechanism. If
the graph contains certain paths, we show
that the odds ratio cannot be expressed us-
ing data with selection bias. Otherwise, we
show that a d-separability test can determine
whether the odds ratio can be recovered, and
when the answer is affirmative, output an un-
biased estimand of the odds ratio. The crite-
rion can be test in linear time and enhances
the power of the estimand.

1 INTRODUCTION

Controlling selection bias is one of the most critical
issues in machine learning and statistical inference.
Selection bias occurs when data is sampled preferen-
tially under a hidden selection mechanism. As a re-
sult, certain associations between variables are pre-
ferred in the data, and the data fails to represent the
distribution of interest. Much research therefore has
been devoted into recovering unbiased estimates from
selection-biased data.

The odds ratio (OR) is a wildly used mea-
sure for association between two binary variables.
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Bareinboim and Pearl (2012) defined the OR as G-
recoverable when an unbiased estimate of the OR can
be expressed in terms of selection-biased data using
the assumptions embedded in a graph representing
the selection mechanism (see Geneletti et al., 2009;
Hernán et al., 2004; Spirtes et al., 1995). For example,
the OR between the outcome (Y ) and the treatment
(X) is G-recoverable when the selection mechanism is
modeled by the graph in Figure 1, where S denotes the
selection and the selection mechanism is active when
S = 1. Bareinboim and Pearl (2012) have also de-
veloped a recursive graphical criterion to determine if
there exists a set of variables Z such that condition-
ing on Z renders the OR G-recoverable; and find Z if
it exists. In addition, they implemented the criterion
using a polynomial-time algorithm.

X Y

S

Figure 1: A graph for a selection mechanism where the
odds ratio between X and Y is G-recoverable.

In this paper, we show that the criterion proposed by
Bareinboim and Pearl (2012) is equivalent to a non-
recursive criterion. We first show that the OR is not
G-recoverable when the graph G representing the se-
lection mechinism contains resilient paths (defined in
Subsection 3.1). Next we show that when G does not
contain resilient paths, the OR is G-recoverable if and
only if there exists a set of observable non-resilient (de-
fined in Subsection 3.2) variables Z that d-separates
X and Y in a subgraph of G, and conditioning on any
such Z renders the OR G-recoverable. The criterion
can be tested in linear time, and can deliver a mini-
mum cardinality Z, which improves the power of the
estimand, in polynomial time.

We assume that G is a directed acyclic graph (DAG)

mailto:eyjchen@cs.ucla.edu
mailto:judea@cs.ucla.edu


     171

A simple criterion for controlling selection bias

and S is a sink. The assumptions hold for typical selec-
tion mechanisms. We also assume that G contains an
edge X → Y , reflecting the association of interest. In
addition, we denote a singleton set {W} as W ; an an-
cestral set of W as An(W ); and when clarity demands,
denote an ancestral set of W in G as An(W )G.

2 BACKGROUND

This section provides a background on the OR and
discusses previous work on OR recovery.

2.1 The Odds Ratio

We will be considering the OR that measures the as-
sociation between two binary variables X and Y given
a set of variables C, namely, the c-specific odds ratio.
It is defined as the ratio between the odds of y when
X = x′ and when X = x given C = c.

Definition 1. (Odds Ratio)
Given two binary variables X,Y and a set of variables
C, the c-specific odds ratio between X and Y , denoted
as OR(Y,X |C), is

Pr(y|x′, c)/Pr(y′|x′, c)

Pr(y|x, c)/Pr(y′|x, c)
.

Following Bareinboim and Pearl (2012), we will con-
fine our attention to covariate sets C consisting of X-
independent variables or otherwise the c-specific OR
does not have a causal interpretation.

2.2 Previous Work

The OR may be recovered from selection-biased data
by applying Lemma 1, which is stated by Didelez et al.
(2010) and follows Cornfield (1951); Geng (1992);
Whittemore (1978).

Lemma 1. (OR Collapsibility)
Given two binary variables X,Y and two sets of vari-
ables T,U, then OR(Y,X |T,U) is collapsible over
T, that is, OR(Y,X |T,U) = OR(Y,X |U), if either
(X ⊥⊥ T|Y,U) or (Y ⊥⊥ T|X,U).

Consider the selection mechanism modeled by the
DAG G in Figure 1, which shows (X ⊥⊥ S|Y )G. Let
T = S and U = {}. Then by Lemma 1, OR(Y,X |S =
1) = OR(Y,X). Since OR(Y,X |S = 1) can be esti-
mated from selection-biased data, OR(Y,X) is recov-
erable from the data.

Note that Lemma 1 involves statistical independence:
(X ⊥⊥ T|Y,U) or (Y ⊥⊥ T|X,U); while the exam-
ple above uses graphical independence: (X ⊥⊥ S|Y )G.
Statistical independence is implied by graphical in-
dependence, yet graphical independence is not al-
ways implied by statistical independence (Pearl, 1988).

Therefore we follow Bareinboim and Pearl (2012) and
define a weaker notion of OR recoverability, that is,
the OR recoverability over the graph representing the
selection mechanism.

Definition 2. (OR G-Recoverability)
Given a graph G representing a selection mechanism
and a set of variables C, then OR(X,Y |C) is G-
recoverable from selection-biased data when the as-
sumptions embedded in G render it expressible in
terms of observable distribution P (V−S |S = 1), where
V−S denotes V \ S. Formally, for every two prob-
ability distributions P1(.) and P2(.) compatible with
G, P1(V−S |S = 1) = P2(V−S |S = 1) implies
OR1(X,Y |C) = OR2(X,Y |C).

Following this definition, OR(Y,X) is G-recoverable
from the DAG in Figure 1. Now consider the task of re-
covering OR(Y,X) from the DAG G in Figure 2. Since
(Y ⊥⊥ S|X,W )G, apply Lemma 1 with T = S,U =
W and obtain OR(Y,X |W,S = 1) = OR(Y,X |W ).
Then since (X ⊥⊥ W |Y )G, reapply Lemma 1 with
T = W,U = {} and obtain OR(Y,X |W ) = OR(Y,X).
Consequently OR(Y,X) = OR(Y,X |W,S = 1), and
OR(Y,X) is G-recoverable.

X Y

W

S

Figure 2: A DAG for a selection mechanism where
OR(Y,X) is G-recoverable.

In the examples above, the OR is recovered by re-
peatedly applying Lemma 1 till it can be expressed
with selection-biased data. This approach exem-
plifies the OR G-recoverability criterion proposed
by Bareinboim and Pearl (2012), which states that
OR(Y,X |C) is G-recoverable if and only if there
exists a sequence of variables Z = (Z1, . . . , Zn)
such that by recursively applying Lemma 1 to
G, OR(Y,X |C,Z, S = 1) = OR(Y,X |C,Z) =
OR(Y,X |C, Z1, . . . , Zn−1) = . . . = OR(Y,X |C, Z1) =
OR(Y,X |C). In addition, they implemented the re-
cursive criterion using a polynomial-time algorithm.

3 A SIMPLE CRITERION FOR

ODDS RATIO RECOVERY

In this section, we first define resilient paths, and pro-
vide an intuition on why they render the OR not G-
recoverable. Next we present the OR G-recovery test.
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In the following, C denotes a set of X-independent
variables, which is the C in OR(X,Y |C).

3.1 Non-Recoverability and Resilient Paths

Now we define resilient paths and present the theo-
rem stating that resilient paths renders the OR not
G-recoverable.

Definition 3. (Resilient Paths)
Given a DAG G, a resilient path for S is

1. A path between Y and S passing X as a collider
and is not blocked when conditioning on C

⋃

X.

2. A path between X and S passing Y as a collider
and is not blocked when conditioning on C

⋃

Y .

3. A path p between X and Y along which there ex-
ists a non-collider T such that there is a path p′

between T and S, and both p and p′ are not blocked
when conditioning on C.

Theorem 1. Given a DAG G, then OR(Y,X |C) is
not G-recoverable if G contains resilient paths.

Proof. See Appendix.

Below, we provide examples for Theorem 1, and dis-
cuss the intuition behind.

3.1.1 Type 1 Resilient Path

Consider the task of recovering OR(Y,X) from the
DAG G in Figure 3. In G there exists a Type 1
resilient path S ← W2 → X ← W1 → Y . Con-
sider conditioning on W1 to recover OR(Y,X). Since
(Y ⊥⊥ S|X,W1)G, by Lemma 1, OR(Y,X |W1, S =
1) = OR(Y,X |W1). However because of the resilient
path, there does not exist a U such that at least one of
(X ⊥⊥ W1|Y,U)G and (Y ⊥⊥ W1|X,U)G holds. Con-
sequently Lemma 1 cannot be applied to remove W1

from the conditioning set in OR(Y,X |W1). The best
we can do is to recover OR(Y,X |W1). An attempt to
recover OR(Y, X) by conditioning on W2 would fail
for similar reasons.

S X Y

W2 W1

Figure 3: A DAG for a selection mechanism where
given C = {}, there exists a Type 1 resilient path
S ←W2 → X ←W1 → Y .

One might surmise, at this point, that we may be
able to recover OR(Y,X) by averaging OR(Y,X |W1)

over all W1 (Pearl, 2012). Unfortunately even when
the prior probability P (W1) is known, this cannot
be accomplished because OR(Y,X) is non-linear in
OR(Y,X |W1) and P (W1).

3.1.2 Type 2 Resilient Path

The case for a Type 2 resilient path is similar to that of
Type 1, with Y being the collider. For example, con-
sider the task of recovering OR(Y,X) from the DAG
G in Figure 4. In G there exists a Type 2 resilient
path X → Y ← W → S. Since (Y ⊥⊥ S|X,W )G, by
Lemma 1, OR(Y,X |W,S = 1) = OR(Y,X |W ). How-
ever because of the resilient path, there does not exist
a U such that at least one of (X ⊥⊥ W |Y,U)G and
(Y ⊥⊥ W |X,U)G holds. Consequently Lemma 1 can-
not be applied to remove W from the conditioning set
in OR(Y,X |W ), and OR(Y,X) is not G-recoverable.

X Y

W

S

Figure 4: A DAG for a selection mechanism where
given C = {}, there exists a Type 2 resilient path
X → Y ←W → S.

3.1.3 Type 3 Resilient Path

Consider the task of recovering OR(Y,X) from the
DAG G in Figure 5. In G there exists a Type 3 re-
silient paths X ←W → Y . Since (Y ⊥⊥ S|X,W )G, by
Lemma 1, OR(Y,X |W,S = 1) = OR(Y,X |W ). How-
ever because of the resilient path, there does not exist
a U such that at least one of (X ⊥⊥ W |Y,U)G and
(Y ⊥⊥ W |X,U)G holds. Consequently Lemma 1 can-
not be applied to remove W from the conditioning set
in OR(Y,X |W ), and OR(Y,X) is not G-recoverable.

X Y

W

S

Figure 5: A DAG for a selection mechanism where
given C = {}, there exists a Type 3 resilient path
X ←W → Y .
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3.2 Recovery Test

Recall that the OR G-recovery criterion proposed by
Bareinboim and Pearl (2012) finds a Z = (Z1, . . . , Zn)
such that by recursively applying Lemma 1 to
G, OR(Y,X |C,Z, S = 1) = OR(Y,X |C,Z) =
OR(Y,X |C, Z1, . . . , Zn−1) = . . . = OR(Y,X |C, Z1) =
OR(Y,X |C). The discussions on resilient paths sug-
gest that if there exist generalized resilient paths for
a Z ∈ Z, as defined below, Z cannot be removed
from the conditioning set of the OR, and consequently
OR(Y,X |C,Z, S = 1) 6= OR(Y,X |C).

Definition 4. (Generalized Resilient Paths)
Given a DAG G and a node Z, a generalized resilient
path for Z is defined the same as a resilient path in
Definition 3, expect for replacing the S with Z.

Hence when OR(Y,X |C,Z, S = 1) = OR(Y,X |C), Z
must be non-resilient, defined below.

Definition 5. (Non-Resilient Variables)
Given a DAG G, a set of variables Z is non-resilient
if no Z ∈ Z induces generalized resilient paths.

Now we present the OR G-recovery theorem.

Definition 6. (Drainage Graph)
Given a DAG G, a drain is a path between X and Y
with colliders such that the colliders are in An(C

⋃

S)
and the non-colliders are not in C; and the drainage
graph Ĝ is the subgraph of G consisting of the drains
and the directed paths from the colliders on the drains
to C

⋃

S.

Theorem 2. Given a DAG G with no resilient paths,
then OR(Y,X |C) is G-recoverable if and only if there
exists a set of observable non-resilient variables Z ⊆
An(C

⋃

S)G such that (X ⊥⊥ Y |S,C,Z)
Ĝ
, where Ĝ

is the drainage graph of G. Moreover OR(Y,X |C) =
OR(Y,X |C,Z, S = 1).

Proof. See Appendix.

Recall the task of recovering OR(Y,X) from the
DAG G in Figure 2. DAG G has no resilient paths
and its drainage graph Ĝ is depicted in Figure 6.
Since (X ⊥⊥ Y |S,W )

Ĝ
, by Theorem 2, OR(Y,X) =

OR(Y,X |W,S = 1), as concluded. In this example,
to see the intuition behind Theorem 2, note that since
(X ⊥⊥ Y |S,W )

Ĝ
and X,Y are non-colliders in G, at

least one of (X ⊥⊥ S|W,Y )G and (Y ⊥⊥ S|W,X)G
holds. Consequently by Lemma 1, OR(Y,X |W ) =
OR(Y,X |W,S = 1). Then since in G a collider S lies
between X and W , and Y is a non-collider, (X ⊥⊥
W |Y, S)G. Consequently by Lemma 1, OR(Y,X) =
OR(Y,X |W ).

Then recall the task of recovering OR(Y,X) from the
DAG G in Figure 1. DAG G has no resilient paths

X Y

W

S

Figure 6: The drainage graph of Figure 2.

and its drainage graph Ĝ is the empty graph. There-
fore Z = {} satisfies Theorem 2 and OR(Y,X) =
OR(Y,X |S = 1), as concluded.

Now consider the task of recoveringOR(Y,X) from the
DAG G in Figure 7(a) (Bareinboim and Pearl, 2012).
DAG G has no resilient paths and its drainage graph
Ĝ is shown in Figure 7(b). By Theorem 2, Z may be
{W1,W2,W4}, {W1,W3,W4} and {W1,W2,W3,W4}.
Note that it is easy to find the Z’s with minimum
cardinality to enhance the power of the estimand (see
Subsection 4.2).

X

W4

W2

W3

W1

Y

S

(a) DAG G.

X

W4

W2

W3

W1

Y

S

(b) Ĝ of Figure 7(a).

Figure 7: A DAG for a selection mechanism where
OR(Y,X) is G-recoverable, and its drainage graph.

Another example is the task of recovering OR(Y,X)
from the DAG G in Figure 8(a). Again G has no re-
silient paths. Note that W1 is an ancestor of S. Con-
sequently the drainage graph Ĝ is the DAG in Fig-
ure 8(b). By Theorem 2, Z can be {W2}, {W1,W2},
{W2,W3} and {W1,W2,W3}.

X

W1

W2

W3

Y

S

(a) DAG G.

X

W1

W2

W3

Y

S

(b) Ĝ of Figure 8(a).

Figure 8: A DAG for a selection mechanism where
OR(Y,X) is G-recoverable, and its drainage graph.

Then consider the tasks of recovering OR(Y,X) from
the DAGs in Figure 9(a) (Bareinboim and Pearl, 2012)
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and 9(c). The DAGs do not contain resilient paths.
Note that in the DAG in Figure 9(c), both W1 and
W3 are not non-resilient. For both DAGs, there does
not exist a set of observable non-resilient variables Z ⊆
An(S)G such that (X ⊥⊥ Y |S,C,Z)

Ĝ
. Consequently

by Theorem 2, OR(Y,X) is not G-recoverable.

X

W4

W2

W3

W1

Y

S

(a) DAG G.

X

W4

W2

W3

W1

Y

S

(b) Ĝ of Figure 9(a).

X

W1

W2

W3

Y

S

(c) DAG G.

X

W1

W2

W3

Y

S

(d) Ĝ of Figure 9(c).

Figure 9: DAGs for selection mechanisms where
OR(Y,X) is not G-recoverable, and their drainage
graphs.

4 ALGORITHMS

In this section, we present algorithms implementing
the criterion we proposed. We use Gm to denote the
moral graph of G, and GW to denote the subgraph of
G induced by a set of nodes W.

4.1 Resilient Paths

Recall that the definition of resilient paths involves
d-separation, which we would test with Theorem 3
(Lauritzen et al., 1990).

Theorem 3. Given a DAG G and a set of variables
W, (X ⊥⊥ Y |W)G if and only if W separates X and
Y in

(

GAn(X
⋃

Y
⋃

W)

)m
.

Consider testing if there exist Type 1 resilient paths in
a DAG G. Let G′ denote

(

GAn(C
⋃

X
⋃

Y
⋃

S)

)m
. DAG

G′ can be constructed in O
(

|E(G′)|
)

time. Then on
G′ two breadth-first searches, one starting from Y and
the other from S, can together enumerate all the paths
between Y and S and check whether any passes X as
a collider in O

(

|E(G′)|
)

time. The other two types of
resilient paths can be tested similarly.

4.2 Odds Ratio Recovery

Recall Theorem 2. Algorithms similar to the ones
in Subsection 4.1 can find the non-resilient vari-
ables in An(C

⋃

S)G and construct the drainage
graph Ĝ. Then using the algorithms proposed by
Acid and De Campos (1996) and Tian et al. (1998),
an observable non-resilient Z ⊆ An(C

⋃

S)G such
that (X ⊥⊥ Y |S,C,Z)

Ĝ
can be found in O

(

|E(Ĝm)|
)

time. Moreover a minimum Z can be obtained in
O
(

|N|·|E(Ĝm)|
)

time, whereN is the set of observable

non-resilient variables in An(C
⋃

S)G in Ĝ.

5 CONCLUSION

This paper presents a simple criterion for determin-
ing if the OR can be recovered from selection-biased
data, and when the answer is affirmative, it outputs an
unbiased estimand of the OR. The criterion can be im-
plemented using linear-time algorithms and enhances
the power of the estimand.

Appendix

Our proofs for Theorem 1 and 2 involve the following
theorem (Bareinboim and Pearl, 2012).

Theorem 4. Given a DAG G, then OR(Y,X |C) is
G-recoverable if and only if there exists an ordered set
of observable variables Z = (Z1, . . . , Zn) such that

(X ⊥⊥ ZS
i |C, Y, ZS

1 , . . . , Z
S
i−1)G or

(Y ⊥⊥ ZS
i |C, X, ZS

1 , . . . , Z
S
i−1)G (1)

for 1 ≤ i ≤ n+ 1, where ZS = (Z, S). Moreover if Z
exists, OR(Y,X |C) = OR(Y,X |C,Z, S = 1).

In the following, we use p(X,Y ) to denote a path p
between X and Y ; p |W to denote that p is not
blocked when conditioning on W; and Z1,i to denote
{Z1, . . . Zi}. In addition, we refer to a generalized re-
silient path for Z simply as a resilient path for Z.

Theorem 1

Lemma 2. Given a Type 3 resilient path p, recall that
p′ denotes the path between T and S. Then the path
px formed by the subpath of p between X and T and p′

is p x |C
⋃

Y ; and the path py formed by the subpath
of p between T and Y and p′ is p y |C

⋃

X.

Proof. First consider the case where p is of the form
X − . . .− ← T ← − . . . − Y and p′ is of the form
T ← − . . . − S. Since p |C and p′ |C, p x |C

⋃

Y .
Then since p |C and C is X-independent, T must be
is an ancestor of X on p. Consequently since p |C
and p′

 

|C, p y |C
⋃

X . The remaining cases can be
reasoned similarly.
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Now we prove Theorem 1.

Proof. For each type of resilient paths, we show that
Equation 1 fails for some i, and consequently by The-
orem 4 the OR is not G-recoverable.

Consider a Type 1 resilient path p. Since p |C
⋃

X ,
to satisfy Equation 1 for i = n+1, on p there must exist
a non-collider ZS

i′ ∈ ZS , where i′ < i. Repeat this rea-
soning till possible ZS

i′ are exhausted and Equation 1
fails for some i. For a Type 2 resilient path, similar ar-
guments apply. Then consider a Type 3 resilient path.
By Lemma 2, p x |C

⋃

Y and p y |C
⋃

X . Then similar
arguments apply.

Theorem 2

To prove Theorem 2, we first prove Theorem 5.

Definition 7. (Generalized Drain and Generalized
Drainage Graph)
Given a DAG G and a set of variables Z, then a
generalized drain and the generalized drainage graph
G̃ are defined the same as a drain and the drainage
graph in Definition 6, expect for replacing C

⋃

S with
C
⋃

Z
⋃

S.

Theorem 5. Given a DAG G with no resilient paths,
then OR(Y,X |C) is G-recoverable if and only if there
exists a set of observable non-resilient variables Z

such that (X ⊥⊥ Y |S,C,Z)G̃, where G̃ is the gener-
alized drainage graph of G. Moreover OR(X,Y |C) =
OR(X,Y |C,Z, S = 1).

Given Theorem 1 and 4, to prove Theorem 5, it suffices
to show the following lemma to be true.

Lemma 3. Given a DAG G with no resilient paths,
an ordered set of variables Z satisfies Equation 1 if
and only if it is non-resilient and (X ⊥⊥ Y |S,C,Z)G̃.

(⇒)

Lemma 4. Given a DAG G with no resilient paths,
and a set of non-resilient variables Z, then in G̃, every
path p(X,Y ) passes a collider not in An(C).

Proof. When p passes at least one collider, since C is
X-independent, the collider that is the closest to X
is not in An(C). Then consider when p only passes
non-colliders. Since p is in G̃, it consists of generalized
drains. As a result, p |C. Moreover since C is X-
independent, on p there exists a T such that there is
a path between T and a Z ∈ ZS that is not blocked
when conditioning on C. Consequently p is a Type 3
resilient path for Z, a contradiction.

Now we prove the (⇒) part of Lemma 3.

Proof. Arguments similar to those used for Theorem 1
show that Z must be non-resilient. Then we show that
(X ⊥⊥ Y |S,C,Z)G̃. Consider a p(X,Y ) in G̃. First
note that p |C

⋃

ZS . Then note that p does not pass
nodes in C as non-colliders, and that by Lemma 4, p
passes a collider not in An(C). Consequently if (X 6⊥⊥
Y |C,ZS)G̃, in G̃, Equation 1 must fail for some i.

(⇐)

Lemma 5. Given a DAG G with no resilient paths,
and a set of non-resilient variables Z such that (X ⊥⊥
Y |C,ZS)G̃, then (X ⊥⊥ Y |C,ZS

1,i)G̃ for 1 ≤ i ≤ n+ 1.

Proof. By Lemma 4, (X ⊥⊥ Y |C)G̃. Since G is a DAG,
from (X ⊥⊥ Y |C,ZS)G̃ to (X ⊥⊥ Y |C)G̃, there must
exist a sequence of Zi such that the removal of each Zi

from the conditioning set does not render X d-connect
to Y , that is, (X ⊥⊥ Y |C,Z1,i)G̃ for 1 ≤ i ≤ n.

Lemma 6. Given a DAG G with no resilient paths,
and a set of non-resilient variables Z such that
(X ⊥⊥ Y |C,ZS)G̃, then in G there do not exist paths
p(Y, ZS

i )
 |C

⋃

X
⋃

ZS
1,i−1 that pass exactly one col-

lider in An(X) \An(C
⋃

ZS
1,i−1).

Proof. Assume the contrary, and let T denote the
collider in An(X) \ An(C

⋃

ZS
1,i−1) on p. Since

p |C
⋃

X
⋃

ZS
1,i−1 and there are no Type 1 or 3

resilient paths for ZS , on p between Y and T
there must exist colliders T ′ in An(ZS

1,i−1) \ An(C).

Then since p |C
⋃

X
⋃

ZS
1,i−1, there must exist a

ZS
i′ ∈ ZS

1,i−1 such that px(X,ZS
i′ )
 |C

⋃

ZS
1,i′−1 and

py(Y, Z
S
i′ )
 |C

⋃

ZS
1,i′−1, where px : X ← . . . ← T ←

− . . .− → T ′ → . . .→ ZS
i′ and py : Y − . . .− → T ′ →

. . . → ZS
i′ . By Definition 7, px and py are in G̃, and

consequently (X 6⊥⊥ Y |C,ZS
1,i′)G̃, a contradiction by

Lemma 5.

Lemma 7. Given a DAG G with no resilient paths,
and a set of non-resilient variables Z such that
(X ⊥⊥ Y |C,ZS)G̃, then in G there do not exist paths
p(Y, ZS

i )
 |C

⋃

X
⋃

ZS
1,i−1 that pass more than one

collider in An(X) \An(C
⋃

ZS
1,i−1).

Proof. Assume the contrary, and consider the colliders
in An(X) \ An(C

⋃

ZS
1,i−1) on p . Let T denote the

one closest to Y , and T ′ denote the one closest to ZS
i .

Then consider path p′ : Y − . . .− → T → . . .→ X ←
. . . ← T ′ ← − . . . − ZS

i . Since p |C
⋃

X
⋃

ZS
1,i−1,

for p′ not to be a Type 1 resilient path for ZS , there
must exist colliders T ′′ in An(ZS

1,i−1)\An(C) between

Y and T . Then since p |C
⋃

X
⋃

ZS
1,i−1, there must

exist a ZS
i′ ∈ ZS

1,i−1 such that px(X,ZS
i′ )
 |C

⋃

ZS
1,i′−1

and py(Y, Z
S
i′ )
 |C

⋃

ZS
1,i′−1, where px : X ← . . . ←
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T ← − . . .− → T ′′ → . . .→ ZS
i′ and py : Y − . . .− →

T ′′ → . . .→ ZS
i′ . By Definition 7, px and py are in G̃,

and consequently (X 6⊥⊥ Y |C,ZS
1,i′)G̃, a contradiction

by Lemma 5.

Lemma 8. Given a DAG G with no resilient paths,
and a set of non-resilient variables Z such that
(X ⊥⊥ Y |C,ZS)G̃, then in G there do not exist paths
p(X,ZS

i )
 |C

⋃

Y
⋃

ZS
1,i−1 that pass exactly one col-

lider in An(Y ) \An(C
⋃

ZS
1,i−1).

Proof. Similar to that of Lemma 6.

Lemma 9. Given a DAG G with no resilient paths,
and a set of non-resilient variables Z such that
(X ⊥⊥ Y |C,ZS)G̃, then in G there do not exist paths
p(X,ZS

i )
 |C

⋃

Y
⋃

ZS
1,i−1 that pass more than one

collider in An(Y ) \An(C
⋃

ZS
1,i−1).

Proof. Similar to that of Lemma 7.

Lemma 10. Given a DAG G with no resilient
paths, and a set of non-resilient variables Z such that
(X ⊥⊥ Y |C,ZS)G̃, then in G there do not both ex-
ist a path px(X,ZS

i )
 |C

⋃

Y
⋃

ZS
1,i−1 that does not

pass colliders in An(Y ) \ An(C
⋃

ZS
1,i−1), and a path

py(Y, Z
S
i )
 |C

⋃

X
⋃

ZS
1,i−1 that does not pass collid-

ers in An(X) \An(C
⋃

ZS
1,i−1).

Proof. Assume the contrary. Since px does not pass
colliders in An(Y ) \ An(C

⋃

ZS
1,i−1), p x |C

⋃

ZS
1,i−1.

Similarly p y |C
⋃

ZS
1,i−1. Then let p denote path X −

. . .−T − . . .−Y , where T is the intersection of px and
py, and let p′ denote the subpath of px between T and
ZS
i .

We first show that on p there exist colliders T ′ in
An(ZS

1,i−1)\An(C). Consider when T is a non-collider

on p. Since p x |C
⋃

ZS
1,i−1, p y |C

⋃

ZS
1,i−1, and C

is X-independent, for p not to be a Type 3 resilient
path for ZS , on p there must exist colliders T ′ in
An(ZS

1,i−1)\An(C). Then consider when T is a collider

on p. Since p x |C
⋃

ZS
1,i−1 and C is X-independent,

either there exists colliders in An(ZS
1,i−1) \ An(C) on

p between X and T or T is in An(ZS
1,i−1) \An(C).

Then since p x |C
⋃

ZS
1,i−1 and p y |C

⋃

ZS
1,i−1, there

must exist a ZS
i′ ∈ ZS

1,i−1 such that p′x
 

|C
⋃

ZS
1,i′−1

and p′y
 

|C
⋃

ZS
1,i′−1, where p′x : X − . . .− → T ′ →

. . . → ZS
i′ and p′y : Y − . . .− → T ′ → . . . → ZS

i′ .

By Definition 7, px and py are in G̃, and consequently
(X 6⊥⊥ Y |C,ZS

1,i′)G̃, a contradiction by Lemma 5.

Now we prove the (⇐) part of Lemma 3.

Proof. Assume Equation 1 fails for some i. By
Lemma 6, 7, 8, 9, and 10, a contradiction occurs.

Before we prove Theorem 2, we first prove the follow-
ing lemmas.

Lemma 11. (Acid and De Campos, 1996)
Given a DAG G, nodes V, V ′, and a set of nodes
U, if there exists a set of nodes U′ such that (V ⊥⊥
V ′|U,U′)G, then the minimal sets U∗ ⊆ U′ such that
(V ⊥⊥ V ′|U,U∗)G are in An(V

⋃

V ′
⋃

U).

Lemma 12. If there exists a set of observable non-
resilient variables Z satisfying Equation 1, then there
exists a set of observable non-resilient variables Z′ ⊆
An(C

⋃

X
⋃

Y
⋃

S)G satisfying Equation 1.

Proof. Follows directly from Lemma 11.

Lemma 13. Given a DAG G with no resilient paths,
and a set of observable non-resilient variables Z ⊆
An(C

⋃

X
⋃

Y
⋃

S)G such that (X ⊥⊥ Y |C,ZS)G̃,

then when G̃ is not the empty graph, Y is in An(S)G \
An(C

⋃

X
⋃

Y )G.

Proof. Consider paths p(X,Y ) in G̃. First note that
p |C

⋃

ZS . Then note that by Lemma 4, p passes
colliders. Among these colliders, let T be the one
closest to Y on p. Then recall that G always con-
tains X → Y , and consider the path p′ in G that
consists of X → Y and subpath of p between Y and
T . Since p |C

⋃

ZS and C is X-independent, T is in
An(ZS)G \ An(C)G. Now we show that p′ is of the
form X → Y → . . . → T . Assume the contrary, that
is, p′ is of the form X → Y ← . . .←→ . . .→ T . Since
T ∈ An(ZS)G \ An(C)G, there exists a Type 2 re-
silient path for ZS , a contradiction. Then recall that
Z ⊆ An(C

⋃

X
⋃

Y
⋃

S)G. Since G is a DAG, T is
in An(S)G \ An(C

⋃

X
⋃

Y )G. Consequently Y is in
An(S)G \An(C

⋃

X
⋃

Y )G.

Lemma 14. Given a DAG G with no resilient paths,
and a set of observable non-resilient variables Z′ ⊆
An(C

⋃

X
⋃

Y
⋃

S)G such that (X ⊥⊥ Y |C,Z′S)G̃,

then if G̃ is the empty graph, Equation 1 is satisfied
when Z = {}.

Proof. Assume the contrary, that is, Equation 1 is not
satisfied when Z = {}. Since G contains no resilient
paths, there must exist drains. Consequently G̃ is not
empty, a contradiction.

Now we prove Theorem 2.

Proof. When G̃ is the empty graph, by Lemma 14,
Theorem 2 is true. Then consider when G̃ is not empty.
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By Lemma 12, if there exists an observable non-
resilient Z such that (X ⊥⊥ Y |C,ZS)G̃, there exists
an observable non-resilient Z′ ⊆ An(C

⋃

X
⋃

Y
⋃

S)G
such that (X ⊥⊥ Y |C,Z′S)G̃. Recall that G always
contains X → Y . Then by Lemma 13, X,Y are
in An(S)G. Consequently Z′ ⊆ An(C

⋃

S)G and
G̃ = Ĝ. As a result, (X ⊥⊥ Y |C,Z′S)G̃ if and only
if (X ⊥⊥ Y |C,Z′S)

Ĝ
. Then by Theorem 5, Theorem 2

is true.
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