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Abstract

We introduce the M-Modes problem for
graphical models: predicting the M label con-
figurations of highest probability that are at
the same time local mazima of the probability
landscape. M-Modes have multiple possible
applications: because they are intrinsically
diverse, they provide a principled alternative
to non-maximum suppression techniques for
structured prediction, they can act as code-
book vectors for quantizing the configuration
space, or they can form component centers
for mixture model approximation.

We present two algorithms for solving the M-
Modes problem. The first algorithm solves
the problem in polynomial time when the un-
derlying graphical model is a simple chain.
The second algorithm solves the problem for
junction chains.

In synthetic and real dataset, we demonstrate
how M-Modes can improve the performance
of prediction. We also use the generated
modes as a tool to understand the topog-
raphy of the probability distribution of con-
figurations, for example with relation to the
training set size and amount of noise in the
data.

1 Introduction

Discrete graphical models are widely used tools for
modelling and solving structured prediction problems.
Given a factor graph, one of the most common tasks
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is to compute the most probable configuration, called
MAP (for mazimum a-posteriori), and various algo-
rithms have been developed for it, including (loopy)
belief propagation, junction trees, and linear pro-
gramming relaxations (Wainwright and Jordanl 2008;
Nowozin and Lampert), {2010)).

Several practical application, however, require ac-
cess to more than a single configuration, such as
multi-label classification (Lampert} 2011)), protein de-
sign (Yanover and Weiss| [2004; |Fromer and Yanover,
2009)), or human pose estimation (Park and Ramanan,
2011). A straight-forward way to predict multiple
good configurations from a graphical model is M -best
prediction: instead of just the MAP, one outputs the
M configuration of highest probability. Nilsson (1998)
proposed an algorithm for this that works with junc-
tion trees, while Yanover and Weiss (2004) and Fromer
and Globerson (2009) proposed alternative approxi-
mate techniques that can handle graphs with larger
tree-width. Recently, Batra (2012) also provided a
more efficient algorithm for such formulations. The
main problem of M-best prediction is its lack of di-
versity: because the configuration space of graphical
models is typically very large and fine-grained, the 2nd
best, 3rd best, etc., configurations typically differ only
insignificantly from the MAP, so the amount of addi-
tional information one obtains from them is limited.
To significantly go beyond the MAP, one typically has
to choose M very large, with negative consequences on
the runtime and the memory footprint.

A more promising strategy is to directly aim for a
set of high probability configurations that are also
sufficiently diverse. Interestingly, few principled ap-
proaches to this fundamental structured prediction
problem exist, but heuristic and domain-dependent
algorithms are prevalent. A common idea is non-
mazimum suppression (NMS), as it is frequently used,
e.g., in computer vision applications (Felzenszwalb
et al [2010; Blaschko, [2011)). Instead of returning all
M-best prediction they are filtered in a greedy way:
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for each configuration in the output set, one removes
all possible configurations of lower probability within
a similarity radius. While conceptually simple, NMS
provides only a partial solution to the problems men-
tioned above: one still has to enumerate and evaluate a
larger number of solutions. And because of the greedy
way that the procedure operates, small changes in pa-
rameters can have a big effect on the output set. Alter-
native approaches include sampling (Stephens et al.,
2008), clustering the set of predictions, (Viola and
Jones| 2004), adding on-the-fly constraints (Park and
Ramanan), |2011)) or adding diversity-enforcing penalty
terms (Yue and Joachims| [2008; [Yadollahpour et al.,
2011; Batra et al.l 2012]).

In this paper, we formalize a more principled approach
to predicting diverse subsets of high probability con-
figurations: M -best modes. As the name suggests, the
idea is to compute the M most probable modes of the
probability distribution, i.e. configurations that are lo-
cal maxima of the likelihood function.

We will show in synthetic and real datasets that M-
modes can often improve the prediction performance
compared to the previously mentioned techniques.
Furthermore, M-modes is a natural tool to character-
ize the topography of the probability distribution of
configurations. We provide some preliminary insight
into this aspect by characterizing the number of modes
of the distribution with respect to factors such as the
training set size and the amount of noise in the data.
As far as we know, this is the first study of this type.

As algorithmic contribution we propose two differ-
ent algorithms. The first algorithm solves the M-
modes problem for chain graphical models. The algo-
rithm is exact and polynomial in all relative quantities.
The second algorithm works on more general graphs,
namely, junction chains. Both algorithms are built on
relationship between local patterns and global prop-
erties. The difference is, the former identifies those
local patterns that are essential for a mode, so that
one could efficiently search through the space of all
modes, to identify the best M. The latter identifies
local patterns that are definitely not part of a mode.
The algorithm then shrinks the search space by for-
bidding these patterns.

Related Work. Since it is by far the most fre-
quently used related technique, we briefly describe
the algorithm of non-maximum-suppression. It con-
sists of iterative calls to an M-best algorithm (Nilsson)
1998} [Yanover and Weiss, 2004 [Fromer and Globerson),
2009), which returns the next best configuration that
has not been generated. The configuration is com-
pared with all configurations that have been collected
so far, and it is discarded (suppressed) if and only if its
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minimal Hamming distance from the collection is no
greater than a given threshold. The process is repeated
until M configurations have been collected. Because of
its simple structure, generalization are easy to create,
e.g. by using a different dissimilarity measure than the
Hamming distance (Park and Ramanan, [2011]).

Recently, Batra et al. (2012)) proposed a new method
which is more efficient to generate M diversified solu-
tions. It also works iteratively, starting with the MAP,
but instead of enumerating all configuration by their
probability score it searches for the next candidate in
a more targeted fashion. For this it formulates the
problem of computing the m-th solution as computing
the optimal configuration under the constraint that it
has to be dissimilar by a certain margin from the m—1
solutions collected so far. The problem is in general
NP-hard, but a Lagrangian relaxation can be solved
performing MAP with a modified set of unary poten-
tials. This makes the method very efficient and easy
to implement. Furthermore, the algorithm works on
loopy graphs using approximation algorithms like a-
expansion (Boykov et al. |2001)). However because the
Lagrangian relaxation is in general not tight, there is
no guarantee on the quality of the prediction, or that
the dissimilarity constraints will be fulfilled exactly.

Finally, we emphasize that computing the modes of
a function, or specifically a probability distribution,
has a rich tradition in machine learning, for example
in clustering (Cheng, [1995; [Leung et al. 2000), and
it also plays an important role in other branches of
mathematics, such as computational topology (Edels-
brunner and Harer| [2010). Somewhat surprisingly, we
are not aware of any in depth work that follows up on
this idea to characterize the probability distribution
given by a graphical model. The reason, we assume,
is not conceptual but computational: the probability
distributions of (discrete) graphical models are defined
over a finite but typically very large space, robbing us
even of the most basic tools from calculus (gradients,
curvature), but at the same time making it impossible
to find local maxima by exhaustive search.

2 M-Modes Problem

We start by formalizing the definition of mazima and
minima in a discrete setting. Let X = {z!,..., 2V} be
a finite, but potentially large set, for example the set
of all L-label configurations of a factor graph with n
variables, which has L™ elements. We call the elements
of X configurations, or labelings. For each x € X, let
N(z) € X be a neighborhood. Let f : X — R be
a discrete function. For easier explanation, we follow
the tradition of the M-best literature and assume that
all configurations have distinct function values.
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Figure 1: Tlustration of M-modes and non-maximum suppression (NMS).

Left: P(x) has 3 local maxima (red). Applying M-modes with ¢ as indicates returns these in order of decreasing
function value. NMS with same § will first return the global maximum. Subsequently, NMS returns further
points on the right slope. Only the 5th returned element will be the left mode, and the 10th the right one.
Right: A larger ¢ mitigates this effect, but it introduce the danger of suppressing the left mode. M-modes
returns the right mode as second result in this case. NMS returns neither the second nor the third mode, but

nearby configuration of potentially lower probability.

Definition 1. We call a labeling x € X a local max-
imum of f, iff f(x) > f(z'),Va' € N(z). We define

local minima analogously by the inverse inequality.

To define a neighborhood of a labeling, we make use
of a distance measure between labelings. The easiest
choice in a discrete graphical model framework is the
Hamming distance, dyg, i.e. the number of variables
at which two labelings disagree. For a non-negative
integer 6, we define the d-neighborhood of a labeling
x to be N5(z) = {2’ € X | du(=x,z’) < §}, the set of
labelings whose distances from x is no more than J.

Given a graphical model factor graph, its energy f
is inversely logarithm proportional to the probabil-
ity distribution P(z) = exp(—f(z) — A), where A =
log >, exp(—f(z)) is the log-partition function. Con-
sequently, there is a bijection between the local minima
of f and the local maxima of P. We call these label-
ings modes and use both views interchangeably. Given
d, we denote by M? the set of modes, formally,

M? ={z € X |z is alocal minima of f

under the neighborhood Nj(z)}. (1)
Note that through the choice of the threshold § in the
above definition we influence the smoothness or scale
of the topography, on which we characterize the en-
ergy. When 6 = 0, Ns(xz) = {z}, so every point is
a mode. When § = oo, Ns(z) = X, so MAP is the
only mode. As § increases from zero to infinity, the
d-neighborhood of & monotonically grows and the set
of modes M? monotonically decreases. Because modes
only disappear in this process except at M©, we obtain
that the M? form a nested sequence,

X=M'DM'D--- D M>®={MAP}, (2)

which one can view as a multiscale description of the
probability landscape. With the above notation we
formalize the problem that we study in this paper as
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Problem 1 (M-modes). Compute the M labelings
with minimal energies in M°.

Relation to non-maximum suppression. While
based on a similar intuition and language, there are
significant differences between M-modes and the con-
cept of non-maximum suppression (NMS). NMS is typ-
ically defined in an algorithmic way: starting from the
MAP prediction one goes through all labelings accord-
ing to an increasing order of the energy. A labeling be-
comes part of the predicted set if and only if it is more
than 0 away from the ones chosen before. NMS solu-
tions are typically not local extrema of the probability
distribution, and no nested sequence of the type of
Equation exists. Using a same parameter &, both
M-modes and NMS guarantee the solutions to be ¢
apart from each other. However, because M-modes
are at the same time local extrema, they can naturally
achieve larger diversity with smaller ¢, see Figure [I] for
an illustration. The difference in the neighborhood size
is relevant, since NMS for graphical model probability
functions quickly becomes inefficient with large J: the
iterative algorithm might have to go through O(JNj])
labelings before getting the next solution, and the size
of Ns grows exponentially with 4.

3 Algorithm for Simple Chains

In this section, we present the algorithm for simple
chains. We first study local behavior of modes. Theo-
rem [2| reveals that a labeling is a mode if and only if it
behaves like a “local mode” everywhere. Inspired by
this observation, we construct a new chain, and reduce
M-modes problem into the M-best problem of the new
chain. Throughout this section, we assume that § < n
is fixed and function f is given by

n n—1

f(@) = Z Z fisiv1 (@i, zig1)

i=1 1=1

3)
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(For brevity, we do not use unary terms since that
can be merged to pairwise terms). For a labeling x =
(z1,...,2,) € X it is convenient to define xg = 11 =
*. This can be thought of as appending nodes 0 and
n + 1 to the chain with one allowed label “x+”. For a
labeling x and an interval [i, j] C [0,n + 1], denote by
x;;; the partial labeling of x on the interval [4, j]. The
cost f(z;,;) of a partial labeling is the sum of those
terms in that lie inside [¢, j]. We call z;,; a partial
mode if its cost is smaller than the cost of any other
partial labeling y;.; with the same labels on ¢ and j,
and dp (.5, yi5) < 0.

Lemma 1 (Uniqueness of Partial Modes). Consider
interval [i,7] C [0,n+1] of length j—i+1 <642 and
a pair of labels (¢;,¢;) for nodes i and j. There exists
exactly one partial mode on [i, j], called xfgt (i, ¢;).

The lemma holds because the set of all partial labelings
x;:; with both ends fixed are at most ¢ from each other
in the Hamming distance.

Corollary 1. On any interval [i,j] C [0,n + 1] of
length +2, there are exactly L? partial modes if [i, j] C
[1,n], and L partial modes otherwise.

Theorem 2. A labeling x € X is a mode iff for any
interval [i,j] C [0,n 4+ 1] of length § 4+ 2, the partial
labeling x;.; is a partial mode, i.e. x;; = xf?t(wl,w])
A proof is given in Appendix A. The theorem suggests
the following algorithm for solving the modes problem
on a chain. Let us create a new energy minimization
instance on a chain whose set of nodes V is the set
of intervals [i,j] C [0,n + 1] of length § + 2. We can
write V = {vg, ..., vn_s} where v; = [i,j]. Each ver-
tex v; = [v;,v5] € V is allowed to have L? states (;, ;)
(except for the first and last vertices, which have only
L states)ﬂ Consider two consecutive vertices v; = [i, j]
and v;y1 = [t + 1,7 + 1]. We say that their states
a;, = (4;,¢;) and a1 = (lig1,¢41) are consistent
if partial labelings xfgt(&, ¢;) and xfﬁt1:j+1(€i+1, litq)
agree on the overlap [i 4+ 1, j]. We say that configura-
tion a = («w, - . ., n—g) 18 consistent if a; and ;41 are
consistent for all i € [0,n — ¢ — 1]. Using an induction
on i, we get the following fact.

Theorem 3. For any consistent configuration o there
exists a unique labeling x € X that is consistent with
a, i.e. for any interval v; = [i,j] € V with label o
(¢;,¢;) there holds x;.; = x‘;gt(&,fj).

Clearly, we can define energy

n—6—1

J?(Oé) = Z ﬁ‘,i+1(04¢,04i+1)
i=0

7

(4)

! For clarity, we use vertex/states/configurations for
the new chain and nodes/labels/labelings for the original
chain.
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in such a way that (i) cost ﬁ’iJ’,](ai, a;t1) is finite iff
a; and ;11 are consistent, and (ii) if « is a consistent
configuration corresponding_to labeling x € X then
f(oz) = f(x). By Theorem [2[ and |3| there is a one-to-
one cost-preserving correspondence between consistent
configurations a and the set of modes M?.

We reduced the problem of computing the M best
modes to the problem of computing the M best config-
urations in the new chain. The latter problem can be
solved using the M-best algorithm by Nilsson (1998).

Complexity. To construct the new chain instance,
we need to compute partial labelings xf’;t This can be
done by calling dynamic programming L times for each
interval [i,7] € V; these computations take O(nL?§)
time. Let us now discuss the complexity of the sec-
ond step (running Nilsson’s algorithm on the new in-
stance). We need the following observation.

Lemma 4. For any i € [0,n — § — 1] there exist at
most L? consistent pairs of states (cv, cviy1).

Proof. If states (¢;,¢;) and ({;j41,¢;4+1) agree then
ligg = [xfgt(&lj)]iﬂ. Thus, (¢;,¢;) completely de-
termines ¢;11. This implies the lemma. O]

Using this fact and the complexity stated in (Nils-
son, [1998)), we get that the second step takes O(nL?> +
MnL? 4+ nM log(nM)) time. Together with the com-
plexity of computing partial labelings, we showed that
M best modes of energy can be computed in
O(nL*(L + M + §) + nM log(nM)) time.

4 Algorithm for Junction Chains

We now consider the problem of computing modes in
a junction chain. Clearly, the energy of the junction
chain can be written in the form of eq. (3]) where nodes
1,...,n correspond to separators of the junction chain
and states ¢; correspond to labelings of these separa-
tors. If states ¢; and ¢;;1 correspond to inconsistent
labelings then the cost f; ;+1(¢;, 4i+1) equals co.

There is a one-to-one correspondence between label-
ings X of the original junction chain and consistent
labelings x of the chain in eq. . Let us define the
distance function d(-,-) between labelings of the new
chain via d(z,y) = du(X,Y") where z corresponds to
X and y corresponds to Y. It is not difficult to see
that d can be decomposed as follows:
n
d(z,2") = Zdz(xux;)

=1

(5)

where functions d;(-,-) for ¢ € [1,n] take non-negative
integer values. We thus focus on the following prob-
lem.
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Problem 2. Find M best modes of energy under
the distance function .

Unfortunately, since d(-,-) is not necessarily a Ham-
ming distance, we cannot reuse our previous algorithm
on simple chains. In particular, Theorem [2] does not
hold anymore. We thus need a different approach.

We will use a technique which is somewhat similar to
the algorithm for non-maximum suppression described
in the introduction. Namely, we find the best available
labeling and check whether it is a mode. If so, we out-
put this labeling. Otherwise, we suppress this labeling
and look again. One key difference is, instead of sup-
pressing one labeling, we identify some local pattern
that stops this labeling from being a mode. Then we
suppress all (could be exponentially many) labelings
sharing the same pattern.

To implement this strategy, we use the pattern-based
CRF on a chain (Ye et al 2009), which is defined by
the following energy:

F@)= Y fila) 6@ =a)

(evi,§)EA

(6)

Here A is a set of triplets («, i, j) such that [¢, j] C [1,n]
and « is a partial labeling of length j —i+ 1. Function
d(+) in eq. @ equals 1 if the argument is true, and 0
otherwise.

We now formally describe the algorithm for solving
Problem We start with the energy @ that is equiv-
alent to the energy . (Thus, set A contains all possi-
ble patterns of length 2). We then iterate the following
steps: (i) find labeling 2 that minimizes energy (6); (ii)
modify the energy by adding a “forbidden” pattern to
A with an infinite cost. This pattern is determined as
follows. First, we check whether x is a mode using dy-
namic programming (details are given below). If yes,
then we output x as the next mode and add (x,1,n)
as a forbidden pattern. If x is not a mode then there
exists an interval [i, ] C [1, n] and labeling y such that
(a) f(y) < f(z); (b) y agrees with x on all nodes ex-
cept for nodes in the interval [i,j]; (¢) d(z,y) < 6,
or equivalently > 7 _. di(zk,yx) < 6. In that case we
know that a labeling z € X with 2.,y = x.j» (where
i’ =max{i—1,1} and j' =min{j+1,n}) cannot be a
mode. Accordingly, we add (z;.;+,7, j') as a forbidden
pattern and repeat.

It is clear that this procedure will output modes of
function f in the order of increasing cost; let us dis-
cuss the complexity. The minimum of function @
can be computed in O3, ; jyea lo| - L) time where
|a| = j—i+1 is the length of @ and L is the maximum
number of states of a node (Ye et al.l [2009). In a par-
allel submission we developed an alternative algorithm

165

whose complexity is O3, ; jyea [ <108 €max) Where
limax 18 the maximum length of a pattern in A. The
factor log £max can also be replaced with m + log ¢, ..
where m is the number of patterns of size n and ¢},
is the maximum length of remaining patterns in A.

The complexity of the iterative procedure is thus de-
termined by the number of forbidden “local” patterns
that needs to be added before the next mode is found.
Unfortunately, we do not have a good bound on that.

In our preliminary implementation we were able to im-
prove the running time using the idea of Lemma
for junction chains. Namely, we first construct a new
chain instance whose nodes correspond to short inter-
vals. Next, we compute allowed labelings for these
intervals (i.e. labelings that are local modes); they
will be the allowed states in the new chain. Finally,
we apply the algorithm in this section to the obtained
chain instance.

The idea can be extended to general graphical mod-
els, given an efficient algorithm to minimize an en-
ergy function with forbidden patterns. But we are not
aware of any polynomial time algorithm for cases other
than junction chains. In fact, via a reduction from the
vertex cover problem, we can show that it is NP-hard
to minimize a submodular function of binary variables
with pairwise terms with forbidden patterns of size 2
(such patterns can be non-submodular).

Checking a mode. It remains to specify how to
check whether a given labeling x € X is a mode of
function under distance . We can do it by com-
puting messages m;_1 ;(¢;,~) which have the following
interpretation: it is the minimum cost of partial label-
ing z1.; that satisfies z; = ¢; and d(z1.;, z1.;) = 7. We
can use the recursion

Mii1(biv,7) = min [mi—1,i(Ci;Y') + fisiv1 (G iga)]
where we denoted v = v — d;+1(li+1,%i41), and as-
sumed that m;_1;(¢;,7) = oo if 4/ < 0. It suffices
to compute messages for all labels ¢; and all integers
v €10,4].

5 Experiments

To motivate that M-Modes solves a problem of prac-
tical relevance we performed experiments on synthetic
and real data. We used only simple chain models.

A first goal of the experiments is to provide a quanti-
tative comparison of M-Modes with two other meth-
ods for predicting diverse subsets: non-maximum-
suppression (M-NMS) and M-Diverse (Batra et al.,
2012). For this we let the methods predict up to M
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values indicate M-Modes outperforming others.

solutions and evaluate those by their oracle accuracy,
i.e. the smallest distance between one of the M solu-
tions and the ground truth. El

A second goal of the evaluation is to highlight how M-
Modes can serve as a tool to gain insight into the prob-
ability landscape. As an initial step in this direction
we report the total number of modes that the learned
probability distributions have. To obtain this number
we simply run M-Modes until it reports that no further
modes exist. Note that M-Diverse and M-NMS can-
not be used for a similar evaluation, since they cannot
guarantee to detect all modes for a given neighborhood
size (see Figure 7 nor are their solutions guaranteed
to be actual local maxima of the probability landscape.

5.1 Synthetic Experiments

We first illustrate the characteristics of M-Modes by
performing experiments on synthetic data: a chain-
CRF of n = 100 variables, each of which takes one
out of L = 8 labels. We first create a ground truth
set of 100 randomly generated labelings, see the sup-
plemental material for details of the procedure. We
then define feature functions for the CRF, which are

2The task of selecting one labeling out of M candidates
is also a problem of active research, but not specific to the
problem of M-best modes and therefore orthogonal to our
studies.
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Figure 4: Synthetic data: mode statistics. Left: map
plot of which fraction of test samples has at least M
modes with respect to a d-neighborhood (noise level
o = 1). Right: average number of modes (cropped at
30) for varying noise levels.

indicator vectors of the labels plus i.i.d. Gaussian noise
with standard deviation o, the value of which we vary
between experiments, and we train using the UGM
package . We use 6-fold cross-validation to
select free parameters, of which each method has one:
M-Modes has 6 € [1,10], which defines the neighbor-
hood radius of a labeling. M-NMS has v € [1,6],
which is the radius of the suppression. M-Diverse has
A € [0,2.9], which is the Lagrange multiplier of the
suppression constraint and added to unary potentials
to encourage diversity. For our experiments we select
the optimal parameters for each method and for each
M by cross-validation. (Different M could lead to dif-
ferent optimal parameters, even for a same method.)
The reason for choosing v in a smaller interval than
0 is purely computational. Because the number of so-
lutions M-NMS must explore grows exponentially in
v, often the algorithm did not terminal in reasonable
time when « was bigger than 6.

As test data, we create 100 test examples using the
same procedure as the training data, and we run the
three methods, M-Modes, M-NMS, and M-Diverse to
predict set with up to M labelings for varying num-
ber of M. Figure [3] reports the result of the three
methods for different values of ¢ in terms of their or-
acle accuracy. Figure [2] illustrates the differences for
different o. One can see that for larger noise levels, M-
Modes predict subsets of higher accuracy better than
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M-NMS and M-Diverse do. When the noise level be-
comes smaller, the gap shrinks, and for very small o,
M-NMS achieves slightly higher accuracy values than
M-Modes. However, all three methods have very sim-
ilar and high accuracy in this regime, so it is not clear
how significant this result is.

Figure [ illustrates the second aspect of interest in our
experiments: the number of local maxima that the
probability distribution exhibits. It shows that with
increasing noise level, the number of modes increases
quickly. In other words, a noise-free model tend to
have only a few modes, whereas with stronger noise,
more modes exist. Note that the role of local minima
is ambivalent: on the one hand they pose problems
for local optimization techniques for MAP prediction,
in particular ICM and variants (Besag), 1986; |Andres|
. On the other hand, as we saw in the pre-
vious section, modes can also be beneficial, as promis-
ing candidates for creating diverse prediction sets.

5.2 Gesture Recognition Data

In a second set of experiments, we apply M-Modes
to probability distributions obtained from the de-
velopment part of the ChaLearn gesture recognition
dataset . The data in this case consists of video
sequences of an actor making certain gestures, where
each video frame is given one label corresponding to
a gesture. We represent each frame of the video by a
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Figure 7: Gesture data: mode statistics. Left: map
plot of which fraction of test samples has at least
M modes with respect to a d-neighborhood (trained
with 20 examples). Right: average number of modes
(cropped at 30) for varying training size.

30-dimensional feature vector obtained using standard
computer vision features, HOG/HOF
. The dataset has 20 batches of 47 data samples
each. We randomly select 19 of them as test data and
use the rest to train a chain CRF as in the synthetic
case and use cross-validation for model selection. The
label space size varies for different batches, between 2
and 13. The sequences have an average length 86, and
maximum length 305.

Figures[6and [5]show the results using the same evalua-
tion and visualization as for the synthetic experiments.
As one can see M-Modes achieves better accuracy than
the other two methods and this effect is stronger the
more data is used for training. When reducing the
training set size to 20 per batch, or even 10 per patch,
M-Modes still outperforms M-NMS, but M-Diverse’s
performance is relatively increased. One explanation
for this is visible from Figure[7], which shows the modes
statistics for the different situations: with less training
data, the number of modes decreases.

5.3 Other Sequential Data

We also apply our algorithm on two classical sequen-
tial dataset OCR and chunking .
In these cases, we observed that regardless of § the
probability distributions learned had very few modes.
As a consequence, M-Modes could typically only re-
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turn a solution set of size below M, and its accuracy
did not improve significantly over the MAP state. We
found this an unexpected behavior, and we plan to
analyze it in more detail in future work.

5.4 Discussion of the Result

In both the synthetic and the real data experiments,
we see that if the probability distribution has suffi-
ciently many modes, M-Modes achieves equal or better
accuracy than M-NMS and M-Diverse. At the same
time it offers insight into the topography of the prob-
ability landscape, such as that the number of modes
is affected by the noise level and training data size.
For the OCR and chunking dataset, hardly any modes
besides the MAP state formed during training. Since
a common factor among the latter two dataset is that
their features all have largely discrete values, we be-
lieve that the characteristic of the feature function
might play a role here, and we plan to study this
aspect in the future. Overall, the experiments give
us hope that by studying the interaction of M-Modes
and these factors, one may gain insight of what makes
a model unimodal, and therefore easy to optimize, or
multi-modal, and therefore is more suitable for diverse
predictions.

An aspect of secondary interest to us is the prediction
speed. Nevertheless, we performed measurements of
average runtime in the synthetic data case, and report
the result in Figure One can see that for simple
chains, where both M-Diverse and M-Modes are poly-
nomial algorithms, their computation takes only frac-
tions of a second. M-Diverse is even faster, since for
each predicted labeling it only require a single call to
a MAP predictor, and only the potential values differ
between calls. Interestingly, the speed of M-Modes in-
creases with larger neighborhood size. However, this
is easily explained by the fact that with a larger neigh-
borhood larger regions of the set of all labelings can
be suppressed efficiently between detections. This is
in contrast to M-NMS, which scales exponentially in
the size of the neighborhood, and therefore exhibits
runtime behavior that depends exponentially on the
neighborhood size. Even though not visible in the
plot, we also observed its runtime to varies strongly
depending on the data itself.

On loopy graph, the junction chain variant of M-
Modes is still guaranteed to yield complete and correct
results, but it is applicable only for relatively small
problem. For large problem, M-Diverse seems cur-
rently the only possibility to use, since it can readily
be combined with off-the-shelf techniques for approx-
imate inference. A second direction of future work
for us will therefore be to re-examine the situation of
mode prediction for loopy graph.
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in the synthetic data experiments.

6 Conclusion

In this paper, we formulated the problem of computing
the M best modes. Two algorithms for simple chains
and junction chains are presented. Experimental re-
sults show that modes could be used to improve pre-
diction accuracy, and could be used as tools to char-
acterize the probabilistic distribution of labelings.

In the future, we will study the possibility of extend-
ing these algorithms to more general graphs. Extend-
ing to trees is already nontrivial. It seems unavoidable
to have the complexity exponential to some parame-
ter, e.g. the tree degree. We would also be interested
in exploring the possibility of reducing the problem
into a sequence of MAP inferences, and use the state-
of-the-art approximation algorithms, e.g. a-expansion
(Boykov et al.| |2001)), like M-Diverse.

Appendix A: Proof of Theorem

We first prove the necessity. Suppose x is a mode and

there is an interval [i,j] on which z;;; # 27% (z;,2;).

Consider labeling y = (Jclzi_l,x;ﬂ’;t(mi,a:j),xjH:N).
We have f(mf:’;t(mi,mj)) < f(zs;) and thus f(y) <

f(x). Also, y is at most § away from z in the Ham-
ming distance. This contradicts the fact that z is a
mode.

Now suppose that z is not a mode. Then there ex-
ists another labeling y with f(y) < f(z) such that
di(z,y) < 6. Let [a,b] be a maximal interval within
which = and y have different labels on every node. This
interval is at most § long. We can find a length 6+2 in-
terval [i, j] containing [a, b] such that z and y have the
same label on ¢ and j. Condition f(y) < f(z) implies
that f(ys:;) < f(zi;), and therefore z;.; # xfﬁ-t(xi,xj).
This concludes the proof of the theorem.
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