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Abstract

Feature screening is a key step in handling ul-
trahigh dimensional data sets that are ubiq-
uitous in modern statistical problems. Over
the last decade, convex relaxation based ap-
proaches (e.g., Lasso/sparse additive model)
have been extensively developed and ana-
lyzed for feature selection in high dimensional
regime. But in the ultrahigh dimensional
regime, these approaches suffer from several
problems, both computationally and statisti-
cally. To overcome these issues, in this paper,
we propose a novel Hilbert space embedding
based approach to independence screening
for ultrahigh dimensional data sets. The pro-
posed approach is model-free (i.e., no model
assumption is made between response and
predictors) and could handle non-standard
(e.g., graphs) and multivariate outputs di-
rectly. We establish the sure screening prop-
erty of the proposed approach in the ultra-
high dimensional regime, and experimentally
demonstrate its advantages and superiority
over other approaches on several synthetic
and real data sets.

1 Introduction

Ultrahigh dimensional data sets are ubiquitous in
modern statistical problems arising from several di-
verse scientific fields. For example, several biologi-
cal problems or high frequency trading problems have
several million features (denoted as p) compared to a
much lesser number of samples (denoted as n). Fea-
ture screening plays an important role in analyzing
these ‘large p small n’ data sets. Various penalization
based techniques that promote sparsity have been de-
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veloped and analyzed in this regime: Lasso (Tibshi-
rani, 1996), Dantzig selector (Candes and Tao, 2007)
and scad penalties (Fan and Li, 2001) assume a linear
model between the covariates and the response, while
SPAM and related techniques (Ravikumar et al., 2009,
Huang et al., 2010) assume a non-linear model in order
to select a few relevant features. All these methods al-
low for the data dimensionality to be greater than the
sample size.

However, there are several issues with the above men-
tioned penalty approaches in ultrahigh dimensions.
First, these methods cannot efficiently handle ultra-
high dimensional settings with p growing faster than
a polynomial rate in n, e.g., p growing exponential in
n. Secondly, the irrepresentability conditions (Zhao
and Yu, 2007)—these conditions mean that the co-
variates not in the true model are not representable, in
some sense, by the covariates in the true model—under
which the model selection consistency is proved for the
penalty methods in high-dimensions, are too stringent
to hold in ultrahigh dimensions (see Fan and Lv, 2010,
Section 5.5 for general discussion about this and con-
crete examples). Thirdly, penalization approaches are
computationally expensive, e.g., a typical algorithm
for lasso scales as O(p3) with other parameters fixed,
hence expensive for ultrahigh dimensional p problems.

In order to tackle this situation, an alternate line of re-
search based on marginal regression was proposed and
analyzed (Fan and Lv, 2008, Fan et al., 2009). This is
a relatively old technique, that has re-emerged as an
alternative for feature screening in ultrahigh dimen-
sions. The general idea of this approach is to measure
the relationship (to be clearly defined based on con-
text) of each feature individually to the response and
rank them accordingly. For example, assuming a lin-
ear model between response and covariates, Fan and
Lv (2008) proposed to measure the residual between
response and each covariate (in a least-square sense)
and rank the covariates accordingly. In order to relax
the linear model assumption, Fan et al. (2009) pro-
posed screening for generalized linear models based on
marginal utility; Fan et al. (2011) proposed screen-
ing using a non-parametric additive model based on
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smoothing splines. Recently, Li et al. (2012) pro-
posed a model-free (i.e., without any regressive model-
ing assumptions) screening procedure, DC-SIS, based
on distance covariance metric (Székely et al., 2007)—
which is zero if and only if the random variables are
independent—as a measure of relationship between re-
sponse and covariate. To elaborate, if the distance
covariance between the response and a covariate is
“small”, then the response is independent of the co-
variate and therefore such a covariate can be screened
out from consideration. Recently Ji and Jin (2012)
showed that a two-step procedure—screening followed
by penalized regression—is optimal for feature selec-
tion in this regime.

In this paper, we propose a general framework, sup-
HSIC-SIS (Hilbert Schmidt independence criterion–
Sure independence screening), for model-free, multi-
output screening. The approach uses RKHS based in-
dependence measures (Gretton et al., 2005) and gener-
alizes the previously proposed DC-SIS approach. This
proposal is motivated from the recent work by Se-
jdinovic et al. (2012a) who established the equiva-
lence between distance covariance and HSIC (a de-
pendence/independence measure based on RKHS em-
bedding of probabilities). Given this equivalence, it is
straight forward to propose an independence screening
procedure based on HSIC by replacing distance covari-
ance in (Li et al., 2012) with HSIC and carrying out
the analysis verbatim. However, a major issue with
DC-SIS (or its equivalent RKHS version, say HSIC-
SIS) is that the employed independence measure is
just one member of a parametric family of indepen-
dence measures and there is no guarantee that this
member provides the best screening procedure over all
the other choices from this family. In other words, if
we consider HSIC-SIS, the choice of kernel determines
the performance of the screening procedure.

Our main contribution in this paper is to address this
issue by using an independence measure (that adapts
to the joint distribution between the response and co-
variates) that is obtained by taking the supremum of
HSIC over a family of kernels, and theoretically show
that sup-HSIC-SIS enjoys the sure screening property
under some regularity conditions. Furthermore, we
propose two iterative versions of sup-HSIC-SIS that
address issues inherent in any marginal screening pro-
cedure and are robust to the assumed regularity con-
ditions. We empirically show that these proposed ex-
tensions along with sup-HSIC-SIS perform better than
the existing approaches, while the theoretical analysis
of these extensions are left out for future work.

A related RKHS based approach was previously pro-
posed for feature selection in Song et al. (2012). The
approach uses HSIC metric and deals primarily with
the low-dimensional setting (i.e., n > p) and is ba-

sically a model-free version of subset selection ap-
proaches used in linear regression settings. Comparing
their empirical results with ours (see Sections 6.4 and
6.5), we note that while BA-HSIC is suitable for low-
dimensions and to some extent for high-dimensional
settings, it does not perform well in ultrahigh dimen-
sional settings. In addition, while (Song et al., 2012)
do not provide any theoretical guarantees for their ap-
proach, we conjecture that BA-HSIC performs inferior
to DC-SIS and sup-HSIC-SIS in ultrahigh dimensional
settings using the arguments similar to the ones used
in (Li et al., 2012).

The paper is organized as follows. In Section 2, we
introduce the sup-HSIC dependence measure. In Sec-
tion 3, we discuss how it could be used for feature
screening in ultra-high dimensions. The sure screening
property of sup-HSIC-SIS is then analyzed in Section 4
and two related iterative extensions are discussed in
Section 5. Experimental results comparing the pro-
posed methods with various other approaches on syn-
thetic and real-world data sets are provided in Sec-
tion 6. Missing proofs are provided in an appendix.

2 RKHS embedding of probabilities

Recently, the notion of embedding probability mea-
sures into a reproducing kernel Hilbert space (RKHS)
has been proposed as a generalization to the classical
kernel method (which embeds points from an input
space into an RKHS) with a motivation to provide a
linear method for handling higher-order statistics of
random variables (Berlinet and Thomas-Agnan, 2004,
Smola et al., 2007). This notion has gained popularity
in various applications including hypothesis testing,
dimensionality reduction and reinforcement learning
(see Nishiyama et al., 2012, and references therein).
Formally, given a Borel probability measure, P defined
on a topological space, X , and the RKHS (H, k) of
functions on X with bounded and measurable k as
its reproducing kernel, the embedding of P into H is
defined as Pk :=

∫
X k(·, x) dP(x). Given two Borel

probability measures, P and Q, Gretton et al. (2007)
defined the RKHS distance between their embeddings
as the maximum mean discrepancy (MMD), i.e.,

γk(P,Q)
def
=

∥∥∥∥∫
X
k(·, x) dP(x)−

∫
X
k(·, x) dQ(x)

∥∥∥∥
H
.

Note that when the kernel k is characteristic (Sripe-
rumbudur et al., 2010), the embeddings are injective,
i.e., γk(P,Q) = 0 if and only if P = Q and thus
γk defines a metric on the space of probability mea-
sures. One of the applications of the above metric is
in capturing the degree of dependence between two
random variables X ∈ X and Y ∈ Y with marginal
distributions PX and PY and jointly distributed as
PXY . Assuming k : (X × Y)2 → R to be separa-
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ble, i.e., k((x, y), (x′, y′)) = kX (x, x′)kY(y, y′), where
kX : X 2 → R and kY : Y2 → R are reproducing kernels
of HX and HY respectively (so that H ∼= HX ⊗HY),
γ2k reduces to the Hilbert-Schmidt independence crite-
rion (Gretton et al., 2005) between X and Y , defined
as

γ2k(PXY ,PXPY )
def
= ‖PXY k − PXPY k‖2H

= EXX′Y Y ′ [kX (X,X ′)kY(Y, Y ′)]

+EXX′ [kX (X,X ′)]E Y Y ′ [kY(Y, Y ′)]

−2EXY [EX′ [kX (X,X ′)]E Y ′ [kY(Y, Y ′)]] , (1)

where X ′ and Y ′ are independent copies of X and
Y respectively. Gretton et al. (2005) showed that
γk(PXY ,PXPY ) is the Hilbert-Schmidt norm of the
cross-covariance operator between HX and HY , with
the property that when kX and kY are characteristic:
γk(PXY ,PXPY ) is zero iff X and Y are independent.
This crucial property of γk will be exploited later in
our screening framework. A drawback of the above
metric is: typically the kernel comes with a tuning
parameter that should be selected in practice using
heuristics. In order to deal with this problem, Sripe-
rumbudur et al. (2009) proposed the following mod-
ification (actually proposed in the context of MMD,
which we here present in the context of HSIC) which
we call as sup-HSIC:

γ(PXY ,PXPY )
def
= sup{γk(PXY ,PXPY ) : k ∈ K}.

Note that γ represents the maximal distance between
PXY and PXPY over the family of kernels K. If any
k ∈ K is characteristic, then γ is a metric. Typi-
cal example includes the family of Gaussian kernels

KG(u, v) when kX = kY
def
= {exp−σ‖u−v‖

2
2 : σ ∈ R+}.

See (Sriperumbudur et al., 2009) for more details and
examples.

In statistical problems, we are given n random samples
{(x(1), y(1)), . . . , (x(n), y(n))} drawn i.i.d. from PXY .
Given these samples, an estimate γ̂ of sup-HSIC is
defined as:

γ̂(PXY ,PXPY )
def
= sup{‖PXYn k − PXn PYn k‖H : k ∈ K},

=
1

n
sup

kX∈KX ,kY∈KY

√
trace (KXH KYH)

where PXYn ,PXn and PYn represent the empirical mea-
sures over the given samples, KX and KY are n × n
Gram matrices associated with kX and kY respectively,
H = I− 1

n11> where I is n× n identity matrix and 1
is a n× 1 vector of ones.

3 Screening via RKHS embedding

In this section, we describe how the sup-HSIC measure
of independence could be used for feature screening

in ultrahigh dimensions. We assume a response Y ∈
Rd and covariates X ∈ Rpn , with pn growing with
n and d fixed (for simplicity). The method applies
as well to more general topological spaces X ,Y. We
use Xr to denote the r-component of X and XS to
denote the components of X indexed by the elements
of the set S. We denote the n training set samples
as {(x(1), y(1)), . . . , (x(n), y(n))} where n can be very
small compared to pn. Under such an assumption, it
is natural to assume that only a subset of covariates
are related to the response Y .

Following Li et al. (2012), we define the set of relevant
variables M and irrelevant variables I as:

M = {r : P(Y |X) depends on Xr}
I = {r : P(Y |X) does not depend on Xr}

where P(Y |X) is the conditional distribution of Y
given X. Note that given XM, XI is conditionally
independent of Y and hence redundant while calculat-
ing the response. With this definition, feature selec-
tion involves estimating the set M from the given n
samples.

A natural idea is to rank the covariates according to
their degree of dependence to the response. In order to
measure such a degree of dependence of the dimension
Xr to Y , we use the sup-HSIC measure introduced
in the previous section. Specifically, we use the sup-
HSIC between the joint random variable (Xr, Y ) and
the marginals Xr and Y . Denoting the joint distribu-
tion of the vector (Xr, Y ) as PXrY and the marginal
distribution of the dimensions Xr and Y as PXr and
PY respectively, we define

ωr
def
= γr(PXrY ,PXrPY )

to be the measure of dependence between the rth di-
mension Xr and the response Y . Note that γr = 0 iff
Xr is independent of Y and greater the value, greater
the degree of dependence. These properties make sup-
HSIC suitable for ranking the dimensions of X ac-
cording to the degree of dependence to the response
Y . In practice, given n samples, we use the empirical
estimator γ̂ defined in the previous section. Specifi-
cally, we denote the corresponding empirical estimate
as ω̂r = γ̂r(PXrY

n ,PXr
n PYn ).

In order to select the relevant variables (i.e., to esti-
mate M), we first compute ω̂r for r = 1, . . . , pn and
define

M̂ = {r : ω̂r ≥ cn−κ, for 1 ≤ r ≤ pn}

where 0 ≤ κ < 1/2, as the estimated set of relevant
features. Note that the set of relevant features is de-
fined as the set of all dimensions that have dependence
greater than cn−κ with the response. The threshold
defined here depends on the value of n. When n is
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large, naturally it allows for variables with weaker de-
pendence to be detected.

The approach above has several nice properties. First,
the method is model free as it does not assume a spe-
cific regression model between X and Y . Second, the
response Y may be a vector or more generally a graph
or a ranking. As a result, the method can be used
for feature selection in the case of multi-label classifi-
cation and multivariate output regression. Third, the
method chooses the kernel k in a principled way by se-
lecting k from a family of positive definite kernels that
maximizes the Hilbert Schmidt norm of the covariance
operator. Finally, as we show in the next section the
method generalizes the recently proposed DC-SIS (Li
et al., 2012).

3.1 DC-SIS as a special case of sup-HSIC-SIS

In order to see how the proposed method generalizes
the recent approach by Li et al. (2012), we appeal to
the general equivalence between distance based inde-
pendence metrics and kernel based independence met-
rics, as established by Sejdinovic et al. (2012a). To
summarize DC-SIS briefly, Li et al. (2012) uses dis-
tance covariance metric (Székely et al., 2007) as a mea-
sure of independence in the screening approach. In or-
der to see the connection, we first need the following
definition due to Lyons (2012).

Definition 1. Let (X , ρX ) and (Y, ρY) be semi-metric
spaces of negative type (cf. Lyons (2012)), with ran-
dom variables X and Y taking values in X and Y re-
spectively. The distance covariance between X and Y
is defined as

dcov2(X,Y ) = EX,Y EX′,Y ′ρX (X,X ′)ρY(Y, Y ′)

+ EXEX′ρX (X,X ′)E Y ,E Y ′ρX (X,X ′)

− 2EX,Y (EX′ρX (X,X ′)E Y ′ρX (X,X ′)) .

When X = Rs and Y = Rt with ρX = ρY = ‖ · − · ‖,
dcov reduces to the distance used in (Székely et al.,
2007). The following result due to Sejdinovic et al.
(2012b) establishes the equivalence between dcov and
γk.

Theorem 3.1. Let (X , ρX ) and (Y, ρY) be semi-
metric spaces of negative type with X ∼ PX and
Y ∼ PY having joint PXY . Let kX and kY be ker-
nels on X and Y that generate the respective met-
rics and denote k((x, y), (x′, y′)) = kX (x, x′)kY(y, y′).
Then dcov2(X,Y ) = 4γ2k(PXY ,PXPY ).

Example 11 in (Sejdinovic et al., 2012b) shows that
kq(x, x

′) = 1
2 (‖x‖q+‖x′‖q−‖x−x′‖q), x, x′ ∈ Rd, 0 <

q ≤ 2 generates a semi-metric, ρq(x, x
′) = ‖x−x′‖q of

negative type. Choosing kX = kY = k1 yields the dcov
metric as proposed in (Székely et al., 2007), which is
used in DC-SIS. But there is no reason to fix q = 1 and

it is not possible to know appropriate q a priori, which
motivates the use of sup-HSIC as a dependence mea-
sure in sup-HSIC-SIS, thereby generalizing DC-SIS. In
addition, the proposed generalization enables one to
work with a wide variety of kernel families (and not
just {kq : 0 < q ≤ 2}) and provides a richer set of inde-
pendence measures between random variables, which
in turn enables one to do better model-free feature se-
lection. Thus the proposed sup-HSIC-SIS procedure
is strictly more general than the DC-SIS method, and
achieves better empirical results as demonstrated in
Section 6.

4 Theoretical analysis

In this section, we prove the sure screening property
of sup-HSIC-SIS for X ⊂ Rpn and Y ⊂ Rd. Our anal-
ysis applies to a range of kernel families and does not
impose any moment conditions on the variables X and
Y . Further it provides a simpler proof under relaxed
assumption compared to Li et al. (2012) even for DC-
SIS. For simplicity, we let d to be fixed, but one could
also analyze the dependency on d to determine the
joint scaling of d and pn with n. We allow the cardi-
nality of the active set to scale with n, i.e., |Mn| = sn.
The main assumptions we impose are the following:

A1 sup{kX (x, x) : kX ∈ KX , x ∈ X} = A <∞
A2 sup{kY(y, y) : kY ∈ KY , y ∈ Y} = A <∞
A3 min

r∈M
ωr ≥ 2cn−κ for some c > 0 and κ ∈ [0, 1/2).

Assumption A3 requires that sup-HSIC measure cor-
responding to the relevant variables cannot be too
small, which is similar to condition 3 of Fan and Lv
(2008) and various other previous works that analyzed
marginal screening approaches. The proof of sure
screening property of sup-HSIC-SIS in Theorem 4.1,
uses an intermediate result in Lemma 1 (stated and
proved in the appendix).

Definition 2. Let G be a class of functions on X ×X
and {ρ1, . . . ρn} be independent Rademacher random
variables. The homogeneous Rademacher chaos pro-
cess of order two with respect to {ρ1, . . . ρn} is de-
fined as {n−1

∑n
i<j ρiρjg(xi, xj) : g ∈ G} for some

{x1, . . . , xn} ⊂ X . The Rademacher chaos complexity
of G is defined as

Un(G; {xi})
def
= E ρ sup

g∈G

∣∣∣∣∣∣ 1n
n∑
i<j

ρiρjg(xi, xj)

∣∣∣∣∣∣ .
Theorem 4.1. Let kX and kY be measurable ker-
nels satisfying assumptions A1 and A2. Define D :=
{(x(i), y(i))}ni=1. Then we have

(PXY )n
({

D ∈ (X × Y)n : max
1≤r≤pn

|ω̂r − ωr| ≥ cn−κ
)}

≤ 6pn exp

(
−
(
cn

1
2
−k−Rn−6A

)2

162A2

)
,(2)
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where Rn
def
=
√

8AUn(KY ; {y(i)}) +

supr

(√
8Un(K; {(x(i)r , y(i))}) +

√
8AUn(KX ; {x(i)r })

)
.

Furthermore if assumption A3 is also satisfied, then
we have the following sure screening property:

(PXY )n
(
M⊆ M̂

)
≥ 1−O

sne−
(
cn

1
2
−k−Rn−6A

)2

162A2

 .

Proof. The proof of (2) follows from applying Lemma
1 from the appendix for each r followed by a union
bound. In order to prove the sure screening prop-

erty, if M * M̂, then there must exist some r ∈ M
such that ω̂r < cn−κ. But, from the assumption A3,
we have that |ω̂r − ωr| > cn−κ for some r ∈ M.

Hence we note that the event {M * M̂} happens
if {|ω̂r−ωr| > cn−κ}, for some r ∈M. Define Γ to be
the event {maxr∈M |ω̂r − ωr| ≤ cn−κ}. Then we have

(PXY )n
(
M⊆ M̂

)
≥ (PXY )n(Γ) and the following se-

quence of inequality holds. Define Pr
def
= (PXY )n.

Pr(Γ)=1− Pr(Γc) = 1− Pr

(
min
r∈M

|ω̂r − ωr| ≥ cn−κ
)

=1− snPr
(
|ω̂r − ωr| ≥ cn−κ

)
≥1−O

(
sn exp

(
−
(
cn−κ+1/2 − Rn − 6A

)2
162A2

))
.

This completes the proof.

Note that an important quantity controlling the rates
is the term Rn that involves the Rademacher chaos
complexities of K, KX and KY . Sriperumbudur et al.
(2009) has shown that for VC-subgraph classes of ker-
nels, the Rademacher chaos complexity is bounded
above by a constant that depends on the VC dimen-
sion of the class. Examples of such kernel classes
in a d-dimensional Euclidean space include Gaus-
sian, Laplacian, Matern class etc. We refer the
reader to (Sriperumbudur et al., 2009) for a de-
tailed discussion and several more examples. In
our setting, if K, KX and KY are VC subgraph
classes, then Pr (max1≤r≤pn |ω̂r − ωr| ≥ cn−κ) ≤
O
(
pn exp(−c1n1−2κ)

)
from which we observe that the

proposed approach enables us to handle ultrahigh di-
mensionality, i.e., log pn = o(n1−2κ).

In order to control the false positive rates, if we assume
that maxr/∈M |ωr| = O(n−κ), then with probability
tending to 1, we have

max
r/∈M

|ω̂r| ≤ C(n−κ).

for some constant C > 0. By applying Theorem 4.1,

we have: Pr(M = M̂) = 1−O(1). This gives a model

selection consistency result under the assumption that
there is a strict separation between the set of relevant
and irrelevant variables. But to be more general, we

analyze below, the cardinality of the set M̂.

4.1 Upper bounding the cardinality of M̂

A main reason for performing feature screening is to
reduce the dimensionality from exponential to some-
thing that could be handled, say polynomial with the
sample size. With that one could use cleaning proce-
dures to further refine the feature selection process. In
this section, we show that by appropriately selecting
the bound on the kernel (i.e., the value A), one could
make the cardinality of the estimated set grow poly-
nomially in the sample size. Specifically, we have the
following theorem.

Theorem 4.2. Let kX and kY be measurable kernels
satisfying assumptions A1 and A2. Then there exists
a constant c > 0 such that,

(PXY )n
(
|M̂| ≤ O(nκpnA)

)
≥ 1− pne−

(
cn

1
2
−k−Rn−6A

)2

162A2 .

Proof. First we note that
∑pn
r=1 ωr ≤ pn maxr ωr ≤

CApn = O(Apn). Now this would imply that |{r :
ωr > εn−κ}| cannot exceed O(nκApn) for any ε > 0.
Thus on the set, Υ = {max1≤r≤d |ω̂r − ωr| ≤ εn−κ},
|{r : ω̂r > 2εn−κ}| cannot exceed |{r : ωr > εn−κ}|,
which would be bounded by O(nκApn). If we take

ε = c/2, we have Pr(|M̂| ≤ O(nκAp)) ≥ Pr(Υ) and
the conclusion follows from (2).

The main consequence of the above theorem is that
when A = O(nτ/pn), for some τ > 0, then we have

|M̂| = O(nκ+τ ) and thus the size of the selected set is
of polynomial order in n. Compared to the initial case
when the dimensionality is of exponential order, this
is a huge improvement in terms of feature selection.
This also gives us some insights on how to design or
select kernels such that we could have a control over
the cardinality of the selected feature set size.

5 Iterative Screening procedures

Any screening method based on marginal computa-
tions suffers from the following problems (cf. (Fan
et al., 2009)): (1) any irrelevant covariate that is highly
correlated with the set of relevant covariates could be
selected and (2) marginally uncorrelated covariate that
is jointly correlated with the response might not be se-
lected. Here, we propose two approaches that could be
used in order to handle such scenarios.
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5.1 Method 1

We first consider the situation when important covari-
ates are marginally weakly correlated, but jointly cor-
related to the response. In order to deal with this
situation, we propose the following iterative method:

1. Compute sup-HSIC between each dimension and
response and select the covariates that have ωr >

λt. Let M̂(t) be the set of selected covariates at
round t with XM̂(t)

being the set of selected fea-

tures.

2. Compute sup-HSIC between (Y, (XM̂(t)
, Xj)) and

marginal Y and (XM̂(t)
, Xj)) for all j ∈ M̂c

(t).

The selected feature set M̂′(t) consists of covari-

ates j for which the above calculated sup-HSIC
is greater than the sup-HSIC between (Y,XM̂(t)

)

and the marginal Y and XM̂(t)
. Update M̂(t) =

M̂(t−1) ∪ M̂′(t)
3. Repeat the procedure till M̂(t) = M̂(t−1) or until

|
⋃
t M̂(t)| > n.

In the above iterative approach, the threshold λt is
set at a high value during the initial rounds and re-
duced as the rounds progress. In practice, it could
be selected using cross-validation. Heuristics for se-
lecting the threshold for such iterative methods could
be found in (Fan et al., 2009). The above iterative
approach would be able to detect covariates that are
marginally uncorrelated with the response (and hence
not selected in initial rounds), but are jointly corre-
lated because we measure sup-HSIC between the joint
vector (XM̂(t)

, Xj) and the response Y .

5.2 Method 2

This approach is motivated by the iterative screening
procedure proposed by Fan and Lv (2008) which was
based on residuals computed between the covariates
and response under a linear model assumption. It is
not possible to directly adopt such a procedure in our
case, as the proposed approach is model-free. In or-
der to proceed, first we introduce the input residual

matrix. Let XM̂(t)
∈ Rn×|M̂(t)| be data matrix associ-

ated with selected covariates at round t and XM̂c
(t)

∈

Rn×(p−|M̂(t)|) be data matrix corresponding to the re-
maining covariates. The input residual matrix is de-
fined as the projection of complement of selected vari-
ables in a particular step onto the orthogonal comple-
ment space of the selected variables in that step, i.e.,
X(t)
r = {In×n −XM̂(t)

(X>M̂(t)
XM̂(t)

)−1X>M̂(t)
}XM̂c

(t)

.

The key idea of this approach is that the input resid-
ual matrix at a particular step is uncorrelated with the
space of selected variables in that step. Thus covari-
ates that would have been selected because they are

correlated with a true relevant covariate (and hence
correlated with the response) could be avoided in this
approach. This discussion leads to the following ap-
proach:

1. Calculate sup-HSIC to the original data set and

let M̂(t) be set of selected features at round t.

2. Compute the residual data matrix, X(t)
r =

{In×n−XM̂(t)
(X>M̂(t)

XM̂(t)
)−1X>M̂(t)

}XM̂c
(t)

and

compute sup-HSIC between X(t)
r and the response

to obtain the selected feature set M̂′(t) and up-

date M̂(t) = M̂(t−1) ∪ M̂′(t). Stop when M̂(t) =
M̂(t−1) or |

⋃
t M̂(t)| > n.

Similar to Method 1, the threshold for the initial
rounds are set at high value and subsequently low-
ered. Since the residual matrix at each step is not
correlated with the selected covariates, the covariates
that are strongly correlated with any of true active co-
variates would not be selected. Also covariates that
were actually correlated to the response (but were not
selected) would now be detected easily.

6 Experiments

In this section, we report experimental results on vari-
ous synthetic and real-world data sets to demonstrate
the advantage of the proposed approach (sup-HSIC-
SIS) over various feature screening approaches. For
the experiments on synthetic data, we consider data
settings from (Li et al., 2012) in order to make a direct
comparison to their approach. For evaluation on real-
world data, we consider a very high dimensional gene
data set and a multi-label data set and show that the
proposed approach performs significantly better than
the existing approaches.

6.1 Synthetic data – univariate response

The synthetic data set is generated as follows: X ∼
N(0,Σ) where Σ ∈ Rp×p with entries σi,j = 0.8|i−j|.
We set n = 200 and let p to be 5000. We generate the
response Y according to three models:

1. Y = c1β1X1X2 + c3β21(X12 < 0) + c4β3X22 + ε

2. Y = c1β1X1X2 + c3β21(X12 < 0)X22 + ε

3. Y = c1β1X1 + c2β2X2 + c3β31(X12 < 0) +
exp(c4|X22||)ε

where βj = (−1)U (a + |Z|) where a = 4 log n/
√
n,

U ∼ Bernoulli(0.4) and Z, ε ∼ N(0.1). Note that all
models are non-linear in X12. Further the third model
is heteroscedastic. For the fourth data set, the rela-
tionship between the response and covariates is given
by the following joint model, PXrY ∝ 1+sin(lx) sin(ly)
for integer l, on the support [−π, π]× [−π, π] for each
r. Note that when l = 0, Xr and Y are independent



     132

Krishnakumar Balasubramanian, Bharath K. Sriperumbudur, Guy Lebanon

NIS q = 1 q = 1
2 q = 1

4 supq kq Gauss.

P (M∗ = M̂)
0.78 0.79 0.82 0.84 0.88 0.87
0.73 0.75 0.79 0.80 0.83 0.84
0.73 0.73 0.75 0.78 0.82 0.82
0.35 0.40 0.52 0.60 0.71 0.80

P (M∗ ⊂ M̂)
0.96 0.98 1.00 1.00 1.00 1.00
0.94 0.95 0.99 1.00 1.00 1.00
0.93 0.96 1.00 1.00 1.00 1.00
0.6 0.69 0 .72 0.75 0.92 0.98

|M̂|
10.1 7.4 5.4 4.4 4.2 4.2

Table 1: Probability of support recovery using the dis-
tance kernel and Gaussian kernel: First four rows cor-
respond to P (M∗ = M̂) (corresponding to models 1,
2, 3 and 4 respectively) and the last four rows corre-

spond to P (M∗ ⊂ M̂). The very last row corresponds
to the average cardinality of selected set.

and as |l| increases they become dependent wherein the
joint distribution departs from the uniform at higher
frequencies, making it hard to detect from small sam-
ple sizes. We set l = 10 for r = 1, 2, 3, 4 and l = 0 for
the rest. This way the response is dependent on the
first four covariates only.

We compared the following approaches: HSIC-SIS
with kq(z, z

′) = 1/2 (‖z‖q + ‖z′‖q − ‖z − z′‖q) at q =
1, 0.5, 0.25, sup-HSIC-SIS with K = {kq : 0 < q ≤
2}, sup-HSIC-SIS with a Gaussian kernel and non-
parametric independence screening (NIS) of Fan et al.
(2011). Note that q = 1 corresponds to DC-SIS. Ta-

ble 1 shows P (M∗ ⊂ M̂) and P (M∗ = M̂) computed
over 500 experiments. Note that the proposed sup-
HSIC-SIS approach performs better than other ap-
proaches. Also in some situations the Gaussian kernel
performs better, while in some the distance kernel per-
forms better. Further, the advantage of the proposed
approach is clearly demonstrated in the fourth model,
where the other approaches are not able to detect the
specific type of dependency whereas the proposed ap-
proach with Gaussian kernel performs the best. Se-
lecting a kernel for a given task is a more involved
problem which we hope to address in the future (a
simple step in this direction would be to consider a
convex combination of base kernels).

6.2 Synthetic data – multivariate response

In this experiment, we deal with multivariate outputs,
while we generate X as before. We generate Y from
normal distribution with mean zero and conditional
covariance matrix ΣY |X given by σ11 = σ22 = 1 and
σ12 = σ21 = σ(X). We consider two correlation func-

q = 1 q = 1
2 q = 1

4 supq kq Gaussian

P (M∗ = M̂)
0.79 0.85 0.86 0.91 0.90
0.77 0.81 0.85 0.87 0.89

P (M∗ ⊂ M̂)
0.97 0.99 1.00 1.00 1.00
0.96 0.97 0.98 1.00 1.00

|M̂|
9.4 6.7 5.2 4.3 4.4

Table 2: Probability of support recovery using the
distance kernel and Gaussian kernel. First two rows
correspond to P (M∗ = M̂) and the last three rows

correspond to P (M∗ ⊂ M̂). The very last row corre-
sponds to the average cardinality of selected set over
all experiments.

tions for σ(X) given by

1. σ(X) = sin(β>1 X) where β1 = (0.8, 0.6, 0, . . . , 0)

2. σ(X) = {exp(β>2 X − 1)/ exp(β>2 X + 1)} where
β2 = (2−U1, 2−U2, 2−U3, 2−U4, 0, . . . , 0) with
Ui drawn i.i.d. from Uniform[0, 1].

Note that for this experiment, the NIS method could
not be used directly as it cannot handle multivariate
outputs. Hence, we only compared our approach to
DC-SIS, whose results are presented in Table 2. It is
clear from Table 2 that sup-HSIC-SIS performs better
in this setup as well.

6.3 Synthetic data – Iterative screening

In this section, we demonstrate the advantage of the
iterative screening procedures (see Section 5) over sup-
HSIC-SIS, using a Gaussian kernel. We use the sim-
ulation setup provided by Fan and Lv (2008) which
consists of a linear model y = β>x + ε with β ∈ Rp
and ε ∼ N(0, 1). We set β = (5, 5, 5,−15

√
ρ, 0, . . . , 0)

with p = 2000 and we draw n = 100 covariates x from
a mean zero normal distribution with Σp×p = σij , with
entries σii = 1 for i = 1, . . . , p and σi4 = σ4i =

√
ρ for

i 6= 4 and σij = ρ for i 6= j, i 6= 4 and j 6= 4. Note that
all predictors except x4 are equally correlated with cor-
relation coefficient ρ. In addition, x4 has correlation
coefficient ρ with all other predictors and is indepen-
dent of y, but x4 belongs to the active set when ρ 6= 0.
We vary ρ to be 0, 0.1, 0.5, 0.9.

We perform 2 iterations of both the iterative algo-
rithms as we attain the stopping criterion. The thresh-
old parameter was set based on cross-validation. We
repeat the experiment for 1000 trials and report the
probability of including all correct variables in the es-

timated set (P (M∗ ⊂ M̂)) (see Table 3). Note that
the non-iterative version performs poorly. In fact it
could select all active covariates only by chance. Both
method 1 and 2 perform well in this situation, as ex-



     133

Ultrahigh Dimensional Feature Screening via RKHS Embeddings

ρ 0 0.1 0.5 0.9
sup-HSIC-SIS 0.98 0.89 0.54 0.42

Method 1 1.00 1.00 0.99 0.95
method 2 1.00 1.00 1.00 1.00

Table 3: Advantage of iterative methods over sup-
HSIC-SIS. The values reported are estimates of

P (M∗ ⊂ M̂) over 1000 trials.

pected. Method 1 performs slightly worse compared
to Method 2 because it has to deal with multivari-
ate sup-HSIC evaluations in the second step, which is
comparatively hard with less samples.

6.4 Gene array data set

Furthermore we analyze the Affymetric GeneChip Rat
Genome 230 2.0 Array data set which was previously
used by Scheetz et al. (2006) and Huang et al. (2010).
This data set consists of 120 rat subjects from which
18, 975 different probes sets (genes) from eye tissue
were measured. Following Huang et al. (2010), the
intensity values were normalized and gene expression
levels were analyzed on a logarithmic scale. Specifi-
cally, we are interested in finding the genes that are
most related to TRIM32 gene, the reason being that
this gene was recently found to cause Bardet-Biedl syn-
drome, a topic of interest in the biological community.
The data set is highly challenging with n = 120 and
p = 18, 975 with non-linear relationships.

We used sup-HSIC-SIS with Gaussian kernel to select
the important genes and compared it to BA-HSIC,
NIS and DC-SIS methods. BA-HSIC cannot actu-
ally handle high dimensionality because of its design;
we just use it for comparison purpose. For the ex-
periment, we used 100 training samples to select the
features (genes), and fitted an additive model (with
functions in Sobolev classes) using the selected fea-
tures, and compared the predictive error (PE) on the
remaining 20 points. BA-HSIC performs poorly in the
regime considered (small n, large p) and fails to select
many important genes (that are selected by all the
other methods) in addition to exhibiting a relatively
poor predictive error. Both NIS and DC-SIS select 8
genes, whereas the proposed approach selects 7 genes.
Also, the predictive accuracy of the proposed approach
is smaller implying that maybe the additional gene se-
lected by the other methods is not actually necessary
to explain the response considered. Thus the proposed
approach would present a biologist to work with a
more targeted set of genes for subsequent investiga-
tions.

6.5 Multi-label classification data set

For the next experiment, we choose to evaluate the
performance of sup-HSIC-SIS (using Gaussian ker-
nel), DC-SIS and BA-HSIC on 4 different yahoo

Method Cardinality PE
BA-HSIC 12.32 4.32

NIS 7.73 0.47
DC-SIS 7.21 0.45

sup-HSIC-SIS 6.76 0.39

Table 4: Gene data set: Cardinality of selected set and
predictive error (PE) under an additive model.

Data set BA-HSIC DC-SIS Proposed
Arts (967) 25.87 (658) 14.32 (435) 9.54

Business (1231) 26.32 (743) 15.64 (611) 10.11
Edu (1123) 21.02 (643) 11.31 (533) 9.21

Health (1045) 22.54 (764) 13.42 (564) 10.74

Table 5: Test set classification error on the multi-label
data sets. The number in the bracket correspond to
the cardinality of selected feature set.

multi-label data sets: arts, business, education and
health (Ueda and Saito, 2003). The task is to se-
lect features first using the above three methods
and perform classification in the next step using
one-vs-all multi-label SVM approach. For each of
the data sets, the number of samples was set at
n = 1000 during training stage. The samples were
selected such that the class labels were balanced.
The dimensionality of (X,Y ) for the data sets are
(17973, 19), (16621, 17), (20782, 14), (18430, 14) respec-
tively. Table 5 shows the classification accuracy and
the cardinality of the selected features for different
data sets. Note that the proposed approach achieves
better classification accuracy with lesser number of
features demonstrating the wide applicability of the
proposed approach.

7 Discussion

We proposed an RKHS embedding approach for fea-
ture screening of ultrahigh dimensional data. The
proposed approach, which is a strict generalization of
the procedure recently proposed in (Li et al., 2012),
is model-free and works with multivariate and non-
standard output spaces (like graphs or rankings). We
proved the feature screening consistency of the pro-
posed approach and empirically demonstrated its ca-
pability in handling ultrahigh dimensional regimes on
various synthetic and real-world data sets. Further-
more, we proposed two iterative screening methods
to counter some problems exhibited by the marginal
screening based feature selection approaches.

Future work includes a theoretical analysis of the pro-
posed iterative procedures and to develop other itera-
tive screening procedures that would also enable one to
exclude already selected features/covariates in future.
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