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Abstract

Signed permutations (also known as the hy-
peroctahedral group) are used in modeling
genome rearrangements. The algorithmic
problems they raise are computationally de-
manding when not NP-hard. This paper
presents a tractable algorithm for learning
consensus ranking between signed permuta-
tions under the inversion distance. This can
be extended to estimate a natural class of
exponential models over the group of signed
permutations. We investigate experimentally
the efficiency of our algorithm for modeling
data generated by random reversals.

1 Introduction

Our paper introduces the first family of statistical
models over the group of signed permutations. The
interest in signed permutations (SP) is intimately re-
lated to genetics; therefore, we start with the biolog-
ical motivation of our work and the role SP’s play in
genetics.

1.1 Signed permutations in genetics

One of the key molecular evolutionary mechanisms is
the rearrangement of gene order within chromosomes
or genomes. In 1984, a seminal work by [Nadeau and
Taylor, 1984] related humans and mice and estimated
the number of reversals between human and mouse
genomes. Even more remarkable was the discovery by
[Palmer and Herbon, 1988] that the genomes of cab-
bage and turnip are almost identical in primary se-
quences of genes but different in the gene order which
can be explained by as few as three reversals. It is
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also hypothesized that the rate of genome rearrange-
ment in some species (certain plants and viruses) is
much faster than the rate of point mutations of pri-
mary DNA sequences [Pevzner, 2000].

Since the pioneering works cited above, there has been
a surge of interest in computational approaches for
comparing gene orders between a pair of genomes.
[Sankoff et al., 1990] formulated the problem as a com-
binatorial problem of sorting a permutation by rever-
sals. In general, the problem of sorting by reversals
is NP hard [Caprara, 1997] and much research has fo-
cused on approximate tractable algorithms and heuris-
tics. However, owing to the directed structure (or ori-
entation) of genes, the rearrangement of genomes is
better modeled using a signed permutation and the
problem of comparing gene orders of two genomes can
be formulated as sorting a signed permutation [Bafna
and Pevzner, 1996]. A polynomial time algorithm with
good guarantees was given by Pevzner et. al. for sort-
ing a signed permutation by reversal [Hannenhalli and
Pevzner, 1999, Bafna and Pevzner, 1996].

While the problem of pairwise genome rearrangement
is well understood, the problem of multiple genome
rearrangement is still open. This problem can be
described as inferring a phylogenetic tree which ex-
plains the rearrangements between multiple species.
A key step in building such a tree is the median prob-
lem, i.e. finding a consensus rearrangement that best
agrees with the given gene orders (a.k.a. signed per-
mutations) of three genomes. The median problem is
known to be NP hard [Caprara, 1997, 1999]. Conse-
quently, most research has focused on building a bi-
nary phylogenetic tree [Bourque and Pevzner, 2002]
using tractable algorithms for pairwise comparison of
signed permutations. In this paper we address the
original problem of consensus between multiple signed
permutations, by giving a statistical formulation and
deriving an estimation algorithm basedon this formu-
lation. This allows one to have multiple splits at each
node in a phylogenetic tree which is more plausible bi-
ologically. Furthermore, it allows us to build the tree
in a top-down fashion.
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Another motivation for our work comes from the
fact that genome rearrangements are common be-
tween different individuals of the same species. It
has been observed that around 1 in 1000 individuals
have genomic rearrangements that are asymptomatic
[Pevzner, 2000]. At the same time, genome rearrange-
ments have been associated with disorders like Down
syndrome [Pevzner, 2000]. Therefore, inferring a typi-
cal rearrangement scenario within a certain population
will serve as a biomarker.

1.2 The Consensus Ranking (Median)
Problem

For comparing gene-orders and reconstructing genome
rearrangements, it is convenient to model a genome
as a signed permutation of integers {1, 2, . . . , n} where
each gene in the genome is indexed by a unique integer
and the orientation of each gene is encoded with the
sign of the corresponding integer. Let d(σ1, σ2) be a
distance function that compares two signed permuta-
tions σ1, σ2. Then, the problem of consensus ranking
with respect to the distance d(·, ·) is defined as finding
a SP σ such that the sum-distance between σ and a
set of given SP’s {σ1, σ2, . . . , σN} is minimized: i.e. σ
minimizes

∑N
i=1 d(σ, σi) over all possible signed per-

mutations.

1.3 Related Work

Since there is no natural metric on the signed per-
mutation group, a lot of work has focused on defin-
ing a useful distance between two elements of the
signed permutation group. Over the years, several dis-
tance functions including breakpoint distance, reversal
distance, transposition distance and the double-cut-
and-join (DCJ) distance have been proposed [Bader,
2011]. It has been shown that even the simplest form
of the consensus ranking problem i.e. the median
problem is NP-complete under all these distance func-
tions [Bader, 2011]. Consequently, many heuristic as
well as inexact algorithms have been proposed in re-
cent years [Bourque and Pevzner, 2002, Caprara, 2003,
Arndt and Tang, 2007, Swenson et al., 2009, Siepel
and Moret, 2001]. However, all of these algorithms
are based on pairwise distances and comparing two
genomes at a time. For instance, given N genomes
{G1, G2, . . . , GN}, these algorithms address the mul-
tiple genome rearrangement problem by building a bi-
nary phylogenetic tree based on all possible pairwise
comparisons at each level [Tannier et al., 2009, Ma,
2011].

The problem of consensus ranking for permutations
has also been studied in Information Retrieval and
Natural Language Processing [A. Klementiev et al.,
2008, O. Wu et al, 2011].

1.4 Our Approach

The main difference between our approach and exist-
ing methods is that we approach consensus ranking
as a statistical estimation problem, in the exponential
family. Thus we define a family of distributions over
SP’s, and formulate the median problem as Maximum
Likelihood estimation in this family. We design an
algorithm that can simultaneously solve the median
problem (or the more general consensus ranking) for
multiple signed permutations, under a surrogate dis-
tance called the inversion distance. We achieve this
by efficiently aggregating sum-distance over a set of
signed permutations into a sufficient statistic. Then
we verify experimentally that the algorithm is able to
solve the consensus ranking problem under the reversal
distance, being thus relevant to genetics applications.
The paper is organized as follows. We first present an
algorithmic view of our distance function and a suf-
ficient statistic matrix for distance between multiple
genomes in Section 2. The algorithms for consensus
sorting are discussed in Section 3. Section 4 discusses
the general statistical model we propose, and Section
5 presents experimental results.

2 The inversion distance on Wn: an
algorithmic view

Preliminaries The signed permutation group Wn,
also known as the hyper-octahedral group, is the group
of all permutations σ of {(−1)ki|i = 1, . . . , n; k =
1, 2}, such that σ(−i) = −σ(i) for i = 1, . . . , n. The
order of the group Wn is 2nn!. It is the semi-direct
product of the symmetric group Sn of n symbols and
the cyclic group C2 of order two. The signed per-
mutation group Wn is generated by transpositions
ri = (i, i+ 1), i.e. interchanging ith and (i+ 1)th sym-
bol, for i = 1, . . . , n − 1 and negation wi that maps
i 7→ −i, for i = 1, . . . , n.

Normal form for a signed permutation and
bubble-sort algorithms: In this section we de-
velop an algorithm for generating the word of a signed
permutation in normal form. The normal form
word for a SP π is a sequence of generators in
S = {r1, . . . rn−1, wn} that applied to the identity e
produces π, and which has a particularly natural struc-
ture [Stanley, 1997]. Conversely, the inverse of this se-
quence, applied to π, will turn it into e, the identity
element of the group. From our (algorithmic and sta-
tistical) standpoint we find the latter form more conve-
nient. For permutations and signed permutations, one
such normal form is obtained by iteratively bringing
each item i in its correct place according to e. Algo-
rithm NormalFormSort in Figure 1(a), inspired by
[Stanley, 1997], does this.
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Algorithm NormalFormSort(π)

For items i = 1 : n

1. if sign(π(i)) = −
(a) move i right n− π−1(i) position to the end of the list
(b) flip sign of i

2. move i left to rank i

Algorithm NormalFormSort2 (πref )

For items i = 1 : n

1. move i left to rank i by adjacent transpositions

2. delete i from the list πref

Figure 1: Algorithms (a) NormalFormSort and (b) NormalFormSort2

The total number of steps taken by the Normal-
FormSort algorithm is the inversion distance be-
tween π and e, denoted d(π|e). The distance d can
be decomposed as d = c1 + c2 + . . . cn, with ci rep-
resenting the number of steps needed to move item i
in place. The vector c(π) = [c1, . . . cn] uniquely de-
fines the permutation π (which can be reconstructed
from the identity by reversing the actions of algorithm
NormalFormSort) and is called the code of π.

Our definition differs from the more common definition
of the normal form word [Bjorner and Brenti, 2005]
for the hyperoctahedral group. All the results of this
paper can be immediately restated to agree with the
[Bjorner and Brenti, 2005] definition. We prefer this
form as it is more intuitive from the point of view of
consensus ranking algorithms.

An alternative formulation of NormalForm-
Sort will help us arrive at a consensus ranking
algorithm. First, we introduce the reflected form
for a signed permutation; e.g. π = [ 4 2 1 3 ] is
given as πref = [ 4 2 1 3 3 1 2 4 ]1. The reflected
form may be interpreted as a permutation of
I = [1, 2, . . . , n,−n,−n + 1, . . . ,−2,−1, ] such that
πrefj = πj and πrefj+n = −πj for j = 1, 2, . . . , n. Conse-
quently, the identity permutation will correspond to
eref = [ 1 . . . n n . . . 1 ]. We will take this particular
ordering imposed by e to be the “natural” ordering of
the set I for the rest of this paper. Algorithm Nor-
malFormSort2 in Figure 1(b) sorts the reflected
form of a signed permutation. The result will be e
(not eref ). The proof is given in the Supplement.

Pairwise distance between signed permuta-
tions: A small modification of the above algorithms
can compute the distance between two signed permu-
tations π and π0. Algorithm Distance described in
Figure 2(a) computes the pairwise distance between
signed permutations. It is easy to check that the pro-
posed distance is right-invariant [Diaconis and Gra-
ham, 1977].

The code of π with respect to π0, cj(π|π0) can be
1We use the standard mathematical convention to rep-

resent the minus sign as an underline, e.g −2 ≡ 2.

defined as the number of adjacent transpositions to
bring the element equal to π0(j) in πref in to the
j’th position. Consider the example π = [ 4 2 1 3 ],
π0 = [ 3 1 2 4 ].

π0 = [ 3 1 2 4 ]

j π0(j) action current πref cj
[ 4 2 1 3 p 3 1 2 4 ]

1 3 move 3 left 3 steps, delete 3 [ 3 4 2 1 p 1 2 4 ] 3
2 1 move 1 left 3 steps, delete 1 [ 3 1 4 2 p 2 4 ] 3
3 2 move 2 left 1 step, delete 2 [ 3 1 2 4 p 4 ] 1
4 4 4 already in place, delete 4 [ 3 1 2 4 ] 0

The matrix of sufficient statistics: The next
and final step is to represent signed permutations, dis-
tances and codes w.r.t an arbitrary π0 in an additive
form. This is provided by the inversion matrix rep-
resentation of a signed permutation. The inversion
matrix C is a 2n × 2n matrix, with rows and colums
indexed by I; Cii = 0 for all i, and Cii′ = 1 if item
i is before item i′ in πref and zero otherwise. Note
therefore that Cii′ + Ci′i = 1 for all i 6= i′, this case
including i′ = i. In C, the sum of column i represents
the number of items that precede i in πref . Hence, it
follows that algorithm CDistance (C, π0), in Figure
2(b), computes the code c(π|π0) and inversion distance
d(π|π0).

It is easy to see now that to compute the sum
of distances from a given π0 to a set of per-
mutations π(1), . . . π(m), one can perform algorithm
CDistance on

∑
k=1:m C(π(k)) where C(π(k)) is the

inversion matrix representation of the signed permu-
tation π(k). Hence, consensus ranking is equivalent to
minimizing the output of CDistance over all signed
permutations π0, i.e

minπ0∈Wn
CDistance(

m∑
k=1

C(π(k)), π0). (1)

3 Algorithms for consensus sorting

Fortunately, the iterative form of algorithm
CDistance is ideally suited for the optimiza-
tion problem in Equation (1). For instance, one could
replace Step 1 of CDistance, where (π0)j is assumed
to be known, with a search for i that minimizes the cj
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Algorithm Distance(π, π0)
Represent π in reflected form πref

For j = 1 : n ranks in π0

1. let i = (π0)j the rank j element of π0

2. move i left in πref to rank j by adjacent transposi-
tions

3. delete i from the list

Ouput: d(π, π0)=the total number of adjacent transpo-
sitions

Algorithm CDistance(C, π0)
Input: Precedence matrix C, reference permutation π0

For j = 1 : n ranks in π0

1. let i = (π0)j the rank j element of π0

2. set cj(π|π0) =
P
i′ Ci′i

3. delete rows and columns i and i from C

Ouput: c(π|π0) = (c1:n) and d(π, π0) =
P
j=1:n cj

Figure 2: Algorithms (a) Distance and (b) CDistance

calculated in Step 2. This algorithm would greedily
minimize the objective of (1) and therefore we will
refer to it forthwith as Greedy. Of course, there
is no guarantee that Greedy will find the globally
optimal π0. One can, however, obtain the optimal
solution by performing an AStar type search on the
matrix C =

∑m
k=1 C(π(k)). Let

cj(i1 i2 . . . ij) =
∑

i′ 6∈{±i1,±i2,...±ij−1,ij}

Ci′ij . (2)

This represents the value of cj in Step 2 of
CDistance for a π0 that has [i1 i2 . . . ij ] as a prefix.
The AStar search [Pearl, 1984] involves maintaining
a priority queue Q, of all the partial solution paths
p = [i1 i2 . . . ij ], sorted by their estimated costs. The
estimated cost of a partial solution p is the sum of cj(p)
and the heuristic h(C, p) i.e an optimistic estimate of∑
j′>j cj′ . The search proceeds by always exploring

the most promising p in the priority queue. The first
complete permutation π0 that is found this way is a
provably optimal solution for the optimization prob-
lem in (1)2. This algorithm is given in Figure 3(a).

An important observation is that, for each partial so-
lution p, the remaining cost will depend only on the
rows and columns of C indexed by i 6∈ ±p where
±p = {±i1, . . . ± ij}. Conceptually, at each node in
the search tree, a submatrix of C obtained by delet-
ing the rows and columns corresponding to the ele-
ments in p and their negations, is passed down. Thus,
the heuristic h(C, p) needs only be in fact a function
h(C\±p,\±p). The trivial heuristic h ≡ 0 is always
available, but now we describe a non-trivial simple
heuristic that can be very effective.

3.1 An admissible heuristic

Any AStar type algorithm is exact, provided the
heuristic h is a lower bound to the cost-to-go [Pearl,
1984]. However, the running time of the algorithm is

2Although it may not be the only one.

proportional to the number of nodes expanded in the
search. The total number of terminal nodes equals
the number of elements in Wn. Therefore, it is pro-
hibitively large for all but the smallest values of n to
exhaustively search all nodes. The hope is that the
heuristic h will help prune many partial solutions. In
this sense, the trivial heuristic is the worst possible
heuristic (although even with it, some partial solutions
are pruned).

Here we propose the following heuristic. Assume
w.l.o.g that j = 1; it is also convenient to consider
π0
ref as a permutation over the whole set I. For any

two items i, i′ with i′ 6= ±i we have that exactly two of
Cii′ , Ci′i, Cii′ , Ci,i′ , . . . will contribute to the total cost
CDistance(π0). For instance, if i ≺π0 i′, then the
cost contains the terms Ci′i, Ci′i. We now consider
the matrix C̃ defined by C̃ii′ = min(Cii′ , Ci′i). We
have trivially that C̃ii′ ≤ Cii′ for all i, i′, and that C̃
has several symmetries, i.e C̃ii′ = C̃i′i = C̃i′i = Ci′i,
and consequently for any set A ⊆ I symmetric (i.e.
−A = A),

∑
i∈A C̃ii′ =

∑
i∈A C̃ii′ . From these obser-

vations, we have:

Theorem 1. For any π0 ∈Wn, CDistance(C, π0) ≥
h(C) =

∑n
i=1

∑
i<i′<i C̃i′i.

The function h(C) defined above is the heuristic we
propose. Theorem 1 implies that it is an admissible
one and therefore the AStar algorithm will never find
a suboptimal solution. As C̃ can be pre-computed, h
is also very efficient to evaluate.

3.2 Computational issues

It may appear at first glance that creating a new node
in AStar requires O(n) operations or more. Here we
show that the AStar algorithm can be implemented
with a constant number of operations per node, for all
j > 1. Let p = [i1, . . . , ij ], p′ = [i1, . . . , ij , i] as above,
and p′′ = [i1, i2, . . . , ij−1, i] a sibling of p, representing
a path of length j. Then cj+1(p′) =

∑
i′ 6∈I\p\{i} Ci′i =∑

i′ 6∈I\p′′\{ij} Ci′i = cj(p′′)−Ciji−Ciji. Since node p′′
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Algorithm AStar(C)

Input: Inversion matrix C, heuristic function h(C, p)

Initialize p∅ ← (j = 0, c = 0, h(C, ∅), l = h(C, ∅)) the
empty path. Q← p∅

Extract p = [i1 i2 . . . ij ] the top of Q
While j < n do // (Expand node p)

• for i 6∈ {±i1,±i2, . . .± ij}

1. create node p′ = [i1 i2 . . . ij i]

2. c(p′)← c(p) + cj(p
′)

3. calculate h(C, p′);
l(p′)← c(p′) + h(C, p′)

4. store node p′ in Q

Output: p ≡ π0, c(p) ≡ CDistance(C, π0)

Algorithm AStarGMM(C)

Input: Inversion matrix C, heuristic function h(C, p)

Initialize p∅ ← (j = 0, c = 0, cost = 0, h(C, ∅), l = h(C, ∅))
the empty path. Q← p∅
Extract p = [i1 i2 . . . ij ] the top of Q
While j < n do // (Expand node p)

• for i 6∈ {±i1,±i2, . . .± ij}

1. create node p′ = [i1 i2 . . . ij i]

2. using cj(p
′), estimate θj(p

′) and
costj(p

′) = θj(p
′)cj(p

′) + lnZn−j(θj(p
′))

3. cost(p′) ← cost(p) + costj(p
′), calculate h(C, p′),

l(p′)← cost(p′) + h(C, p′)

4. store node p′ in Q

Output: p ≡ π0, θ̄(p), cost(p) ≡ L(θ̄, π0)

Figure 3: Algorithms (a) AStar and (b) AStarGMM. For AStar, each node in Q stores the path p, the path length
j, the cost c(p) and the heuristic h(C, p). The queue Q is prioritized by l(p) = c(p) + h(C, p). For AStarGMM, the
log-likelihood of partial solution p is denoted by cost(p) and is also stored at each node.

is created before p′, it means that we can calculate the
sum representing cj+1(p′) in constant time, for all but
the j = 1 nodes. A similar strategy allows to calculate
h(C, p′) in constant time, using values for previously
generated nodes.

4 Generalization to GMM type
models

Exponential models based on d. The consensus
ranking π0 can be seen as the “median” of the data
π(1) . . . π(m), and, as such, a “summary” of the data
set. But there are other useful summaries of the data,
like for instance the dispersion around π0. Going fur-
ther in this direction, one could summarize the data
by fitting a generative model. There is one statistical
model naturally associated with the inversion distance.
This is the exponential model with central permutation
π0 and concentration parameter θ given by

Pπ0,θ(π) =
1

Z(θ)
e−θd(π|π0), θ ≥ 0. (3)

In the above, Z(θ) is a normalization constant that
will be discussed shortly. The model (3) is the analog
for signed permutations of the Laplace distribution.
Its mode is at π = π0; P decays exponentially with
the distance to π0; Pπ0,0 is the uniform distribution
over Wn. For larger θ, the distribution concentrates
around π0. A similar model was introduced by [Mal-
lows, 1957] for unsigned permutations; therefore, dis-
tributions of this type over permutations are known
as Mallows Models and we will extend this terminol-
ogy to the newly defined model. The Mallows Model
has a useful generalization, called by [Fligner and Ver-

ducci, 1986] the Generalized Mallows Model (GMM),
which assigns a separate concentration parameter θj
to each component cj(π|π0) of the code of π. Since cj
is associated to the j-th element of π0, this amounts
to imposing different concentrations on the different
ranks. For instance, the top ranks of π0 may have
large θj ’s, thus being affected by low levels of noise,
while the bottom ranks, subject to more noise, could
be assigned smaller θj ’s,

Pπ0,θ̄(π) =
1

Z(θ)
e−

Pn
j=1 θjcj(π|π0), (4)

where θ̄ = [θ1 . . . θn], θj ≥ 0, Z(θ) =
∏n
j=1 Zn−j(θj).

The normalization constant Z. In (4) it is easy to
see that the normalization constant Z is computable
in closed form. Indeed, Zn−j is the sum of a finite
geometric series, i.e. Zn−j(θj) =

∑2(n−j)+1
r=0 e−θjr =

1−e−θj2(n−j+1)

1−e−θj
. This is a function of of a single vari-

able, n − j, which motivates our notation. It imme-
diately follows that for the single parameter model of
(3), Z(θ) =

∏n
j=1 Zn−j(θ).

Estimation of the θ̄ or θ parameters. For a given
π0, (4) is an exponential family model with param-
eters θ̄. Thus, the log-likelihood given a data set
{π(1) . . . π(m)} will be a concave function in θ̄.

L(θ̄, π0) =
1
m

m∑
k=1

lnPπ0,θ̄(π
(k))

= −
n∑
j=1

[
θj

c̄j(π0)︷ ︸︸ ︷
1
m

m∑
k=1

cj(π(k)|π0) + lnZn−j(θj)
]
.
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r = 1 r = 2 r=10

Figure 4: C matrices generated by random reversals with sample size N = 1000, for the permutation group of
order n = 24; Cii′ = Pr[i ≺ i′]. The variable r represents the number of reversals.

Moreover, L decomposes into a sum of terms each de-
pending on a single θj . Optimizing each term sepa-
rately can be done by solving (numerically) the im-
plicit equation c̄j = g(n′j , θj) where n′j = 2(n− j) and

g(n′j , θ) = −∂Zn−j(θ)∂θ
1

Zn−j(θ)
. This is typical of expo-

nential family models. It also follows that estimating
θ in the single parameter model amounts to solving for
θ in

∑
j cj =

∑
j g(n′j , θ). The exact form of g(n′, θ) is

given in the Appendix.

Estimation of the central permutation π0. We
now turn to estimating the discrete parameter π0 of
the Mallows model. We start with the simpler case
of the single parameter model. The log-likelihood is
given by

L(π0, θ) = −θ 1
m

m∑
k=1

d(π(k)|π0)−
n∑
j=1

lnZn−j(θ). (5)

The log-likelihood is maximized when the term
1
m

∑m
k=1 d(π(k)|π0) is minimized w.r.t π0, in other

words when π0 is the solution of the consensus rank-
ing problem. Thus, finding the Maximum Likelihood
model Pπ0,θ for a sample can be done by first running
the AStar algorithm to determine π0, then estimat-
ing θ numerically as shown above.

For the GMM in (4), the estimation of π0 and θ̄ does
not decouple. However, we note that the θj estimate
depends on π0 only via the statistic c̄j(π|π0). As shown
in Section 3, during the running of AStar, c̄j(π|π0)
is computed at each node (i.e. partial solution) as a
function of data available at that node. Thus, all we
have to do is to perform the estimation of θj every time
a node at depth j is created. The modified algorithm
is AStarGMM in Figure 3(b). Since the numerical
estimation of θj is a constant time operation, this adds
only a constant time per node. Another change from
the original AStar is in the cost function. The cost is
now the log-likelihood, and not merely the cj(p) value.

Again, this adds only a small constant time per node.
However, there is a more subtle change: the admissible
heuristic for ASTAR introduced in Section 3.1 is no
longer guaranteed to be admissible for AStarGMM.
Finding non-trivial admissible heuristics for this case
is a matter of further research.

5 Experimental results

In this section we evaluate empirically the real time
and memory requirements of the AStar algorithm,
and we gauge its appropriateness for solving consen-
sus problems in the more biologically relevant reversal
distance.

Results on synthetic data: We generate the syn-
thetic data not from the “true” underlying GMM
model, but from the biologically motivated ran-
dom reversal model. A reversal r[a,b] on π re-
places (πa, πa+1, . . . , πb) with (πb, . . . , πa+1, πa). E.g.
r[3,5](e) = [ 1 2 5 4 3 6] in W6. The reversal distance be-
tween π1 and π2 equals the minimum number of rever-
sals needed to turn π1 into π2.

We sample SP’s according to a P rπ0
(π), in which each

π is generated by a sequence of r random reversals
starting from e; the reversals have random length
l = b − a + 1, with l − 1 ∼ (truncated) Poisson(

√
n),

and the location is uniform given l. Figure 4 illustrates
such distributions by presenting their inversion matri-
ces C. Note that a single reversal can induce multiple
transpositions.

The inversion matrices in Figure 4 show that, even
though every individual π is far from e in inversion
distance the true central permutation e is visibly the
optimal π0 w.r.t (1). This supports our conjecture
that consensus ranking can be a viable alternative for
studying biological data.

We simulated synthetic data, as described above, for
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n = 24 n = 50
r N Objective Distance Objective Distance

AStar Greedy Rand AStar Greedy Rand AStar Greedy Rand AStar Greedy Rand
1 50 125.0 125.6 370.1 0 1.2 135 372.4 383.5 1684.3 0 17.1 612.8
1 100 120.8 129.0 370.1 0 16.5 134.7 363.4 414.0 1668.8 0 77.1 636.2
1 1000 125.5 125.5 365.4 0 0 140.7 370.3 370.3 1674.3 0 0 627.6
1 2000 119.1 129.9 362.0 0 25.2 136.9 382.8 455.1 1699.8 0 116.7 622.4
2 50 168.8 170.1 338.5 0 4.4 139.3 601.5 619.6 1565.4 0 39.5 619.0
2 100 175.4 186.1 336.7 0 43.3 153.4 613.0 676.3 1555.7 0 147.2 623.2
2 1000 174.5 175.0 337.7 0 1.5 146.4 601.5 613.5 1557.8 0 27 596.1
2 2000 171.4 182.5 340.2 9 47.3 149.4 595.0 666.6 1536.4 0 164 619.6
3 50 203.0 205.6 325.6 0 15.3 143.2 746.6 772.8 1480.8 0 76.6 608.4
3 100 198.1 206.4 330.1 21.1 57.1 135.7 739.5 798.8 1485.9 0 209.4 624.0
3 1000 202.9 205.3 326.0 0 14.3 125.5 748.2 768.8 1474.7 0 64.3 633.3
3 2000 201.1 210.7 324.7 49.4 94.5 132.6 744.2 806.1 1480.1 0 224.1 585.3

Table 1: Experimental results on artificial data generated by random reversals. For each algorithm, we give the
objective value in (1) and the distance Distance(π̂, π0) between the estimated median permutation π̂ and the
true median permutation π0. Both the objective and the distance are averaged over 10 runs.

N 100 1000 100 1000 100 1000
r 1 1 2 2 3 3

n = 50 3.5 3.5 3.4 3.4 3.4 3.4
n = 24 2.25 3 3 3 5 3

Table 2: We give the median of ratio of runtimes
AStar /Greedy over 10 runs for each setting.

various sample sizes and various degrees of arrange-
ments (the order of the permutation group and the
number of reversals). We ran AStar and recorded the
objective obtained and the quality of the median w.r.t.
the true median in Table 1, and the running time in
Table 2. For comparison, we also tested Greedy and
the “strawman” Rand, which choses the best out of
100 randomly sampled π0’s.

As Figure 4 shows, the difficulty of the problem in-
creases with the order n of the permutation group,
with the number of reversals r, and (not shown) with
decreasing sample size N . This is reflected strongly in
the running times of AStar, which are of the same
order as Greedy for large N , but can become large
at small N . Remarkably, the metric Distance(π̂, π0)
suggests that even for n = 50, the search is exact. The
greedy algorithm, while appealing for its speed and
simplicity, has significantly worse performance than
the AStar search.

Results on real data: We tested algorithm AS-
tar on the Metazoan mtDNA dataset [Bourque and
Pevzner, 2002] comprising 11 genomes with 36 genes.
We construct a phylogenetic tree (shown in Fig. 5)
in a recursive top-down fashion by solving a consen-
sus ranking problem at each node in the tree. Each
internal node represents an unobserved or possibly ex-
tinct ancestor. The total cost associated with a tree is
defined to be the sum of inversion distances between

every pair of nodes in the tree; the objective is to find
the tree with the smallest cost. Our consensus ranking
algorithm allows multiple splits at each internal node
compared to binary splits considered in previous work
[Bourque and Pevzner, 2002]. The phylogenetic tree
shown in Fig. 5 as a possible evolution scenario can be
explained with 3111 elementary inversions compared
to 4109 inversions required to explain the binary tree
constructed by [Bourque and Pevzner, 2002]. Note
that the reversal distances in the DNA data are much
larger than in our synthetic experiments, and yet the
phylogenetic tree reconstruction is efficient.

6 Discussion

This is, to our knowledge, the first paper offering a
solution to the consensus ranking problem for signed
permutations under the inversion distance.

We do this by formulating the problem in the broader
context of statistical estimation; we introduce a new
class of models over Wn that are intimately related to
the combinatorial structure of signed permutations; we
show that our model, the GMM, has sufficient statis-
tics for both π0 and θ̄, being thus in the exponential
family; we also derive exact algorithms AStar, AS-
tarGMM to estimate these parameters from data.

We give very efficient implementations for each step of
AStar, AStarGMM; yet, the original problem be-
ing NP-hard, these algorithms will have an intractable
number of steps in the worst case. In practice, how-
ever, we demonstrate that AStar is tractable on
problems of relevant size. This result is not without
theoretical support: indeed, for strongly modal data
one can prove (proof omitted) that the algorithm will
default to Greedy.

Finally, we propose to use consensus under the inver-
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Figure 5: Reconstructed phylogenetic tree for Metazoan mtDNA dataset

sion distance as a surrogate for the biologically moti-
vated consensus under reversal distance. We conjec-
ture that due to the symmetry of Wn, the medians
under the two distances will coincide under certain
natural conditions, even though the distances them-
selves are very different. Our experiments with real
and synthetic data explore this possibility with very
promising results.

Prior work with signed permutations (Section 1.3) has
focused on other distances, primarily the reversal dis-
tance. The techniques here are unrelated to that lit-
erature, but they have high-level similarities with the
results and consensus ranking algorithm (for unsigned
permutations) of [Meila et al., 2007] (which also ex-
pands prefixes). The main vehicle for similarity is
the existence of the code for both Sn and Wn. This in
turn is a consequence of a deeper fact relating to reflec-
tion groups [Bjorner and Brenti, 2005] of which both
Sn and Wn are examples. An interesting future di-
rection is to explore methods based on the irreducible
representations of the hyperoctahedral group, similar
to the Fourier-domain methods studied in [Kondor,
2008, Arora, 2009, Arora and Parthasarathy, 2010].

Appendix A.

Derivation of the estimation equation for θj The
gradient of the log-partition function Zn−j represents
the expectation of the variable cj given by P (cj) ∝
e−θjcj . To estimate the parameter θ we have to equate
∂L(θ̄,π0)
∂θj

= 0 where L(θ̄, π0) is given by (5) Setting the
derivative to zero gives

c̄j = −∂lnZn−j(θ)
∂θ

= g(n′j , θ)

=
e−θ

1− e−θ
[1− (n′j − 1)e−θn

′
j + n′je

−θ(n′j−1)]

where n′j = 2(n− j + 1) as stated in the main text.
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