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Abstract

Ecological systems consist of complex sets of
interactions among species and their environ-
ment, the understanding of which has implica-
tions for predicting environmental response to
perturbations such as invading species and cli-
mate change. However, the revelation of these
interactions is not straightforward, nor are the in-
teractions necessarily stable across space. Ma-
chine learning can enable the recovery of such
complex, spatially varying interactions from rel-
atively easily obtained species abundance data.
Here, we describe a novel Bayesian regression
and Mondrian process model (BRAMP) for re-
constructing species interaction networks from
observed field data. BRAMP enables robust in-
ference of species interactions considering auto-
correlation in species abundances and allowing
for variation in the interactions across space. We
evaluate the model on spatially explicit simulated
data, produced using a trophic niche model com-
bined with stochastic population dynamics. We
compare the model’s performance against L1-
penalized sparse regression (LASSO) and non-
linear Bayesian networks with the BDe scoring
scheme. Finally, we apply BRAMP to real eco-
logical data.

1 INTRODUCTION

Recent endeavours in systems biology aiming to elucidate
the structure of complex interaction networks have sparked
off a series of novel applications and methodological in-
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novations in machine learning and computational statis-
tics. This has become most evident in the field of molec-
ular systems biology, where following up on the semi-
nal paper by Friedman et al. (2000), which aimed to in-
fer gene interaction networks from mRNA abundance pro-
files with static Bayesian networks, a large variety of more
advanced methods have been developed. This includes,
for instance, approximate Bayesian inference for path-
way ranking (Vyshemirsky & Girolami, 2008), Gaussian
process models for transcriptional regulation (Honkela et
al., 2010), and non-stationary dynamic Bayesian networks
for inferring time-varying gene interactions (Lebre et al.,
2010). The latter work in particular has motivated new
machine learning research, related to the combination of
dynamic Bayesian networks and multiple changepoint pro-
cesses (Robinson & Hartemink, 2010; Grzegorczyk & Hus-
meier, 2012).

While interaction networks at the molecular level have been
at the forefront of modern biology, due to the ever increas-
ing amount of available postgenomic data, interaction net-
works at other scales are drawing growing attention from
the global research community. This concerns, in particu-
lar, ecological networks, owing to their connection with cli-
mate change and biodiversity, which poses new challenges
and opportunities for machine learning and computational
statistics.

Ecosystems are complex dynamic systems, with intercon-
nected networks of interactions among species and abi-
otic characteristics. This interconnectedness can lead to
seemingly unpredictable behaviour: changing numbers of
one species can influence unexpected others (Henneman &
Memmott, 2001); the whole system can shift between dy-
namical states (Beisner, Haydon & Cuddington, 2003). Yet
being able to predict such phenomena is of growing im-
portance in the modern world, where perturbations from
features such as climate change and invasive species can
affect both natural biodiversity and human agriculture (Fo-
ley et al., 2005). Such prediction requires understand-
ing the ecological networks underlying the system (Dunne,
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Williams & Martinez, 2002).

Unravelling these networks strains the limits of typical
ecological studies, requiring intensive observation to de-
termine trophic interactions (predator-prey interactions) in
even simple ecosystems, e.g. in Memmott et al. (2000).
And trophic interactions are not the whole story, as harder-
to-observe interactions such as competition and mutualism
(species interacting in a way that both partners benefit) also
influence ecosystem dynamics (Werner & Peacor, 2003).
Measures of such indirect interactions have been attempted
(van Veen, Brandon & Godfray, 2009), but computational
inference presents an alternative, and perhaps more com-
prehensive, route to revealing both direct and indirect in-
teractions within ecosystems.

Ecosystem interactions will leave traces in species distribu-
tion across space, a measure relatively easily obtained and
currently available for many ecosystems, e.g. by Hagemei-
jer & Blair (1997). Computational algorithms can make use
of such observational data, as has also been done in other
areas of biology (e.g. gene expression for transcriptional
regulation (Friedman et al., 2000), neural activity for infor-
mation flow in the brain (Smith et al., 2006)), to reverse
engineer the ecological interactions which produced them
(Milns et al., 2010; Faisal et al., 2010). Furthermore, as
the algorithms recover interactions based on their influence
on species distribution, they are not limited to any one par-
ticular type of interaction (e.g., trophic, competition), and
instead are capable of revealing interactions of all types si-
multaneously.

The challenges for computational inference specific to eco-
logical systems are that, first, the interactions take place
in a spatially explicit environment which must be taken
into account, and second, the interactions can vary across
this environment depending on the make-up of the ele-
ments (species and abiotic factors) present. Here, we
meet these challenges by modifying the method from Lebre
et al. (2010) for temporally explicit (1-dimensional) gene
expression data to infer ecological interactions from spa-
tially explicit species abundance data on a 2-dimensional
grid. The authors describe a non-homogeneous dynamic
Bayesian network based on the Bayesian hierarchical re-
gression model of Andrieu & Doucet (1999), using a mul-
tiple global change-point process. We replace the latter by
a Mondrian process following Roy & Teh (2008), allow-
ing a more precise partitioning of 2-dimensional space. We
make further use of the spatial explicit nature of ecological
data by correcting for spatial auto-correlation with a par-
ent node (in Bayesian network terminology) that explicitly
represents the spatial neighbourhood of a node.

We evaluate our model’s performance on data generated
from a realistic simulation, which combines a trophic niche
model of Lotka-Volterra type predator-prey interactions
with a stochastic population model on a 2-dimensional
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lattice. 'We compare the model’s performance on this
simulated data with both L1-penalized sparse regression
(LASSO) and non-linear Bayesian networks (BDe score).
We then apply our model to species counts of ground cover
flora and associated abiotic variables from a strip of land
across an environmental gradient on the western shore of
the Outer Hebrides, to assess our model’s applicability and
utility for real ecological data.

2 MODEL
2.1 Overview

This section describes briefly our modelling approach,
which combines the Bayesian hierarchical regression
model of Andrieu & Doucet (1999) and Punskaya et al.
(2002) with a spatial Mondrian process partitioning model
(Roy & Teh, 2008; Wang et al., 2011) and pursues Bayesian
inference with reversible jump Markov chain Monte Carlo
(RIMCMC) (Green, 1995). The value that the kth node in
the graph takes on at a given location represents the abun-
dance of the kth species in the population. This abundance
is determined by various biotic and abiotic determinants,
i.e. factors that influence the abundance of species k. Abi-
otic factors are related to the environment and include e.g.
temperature, humidity, soil type etc. Biotic factors repre-
sent the abundance of other species. Their influences are
indicative of how species interact, which is the primary in-
terest of the present work. The strengths of these influences
are allowed to vary geographically, based on a stochastic
process of spatial variation. More specifically, the condi-
tional probability of a species abundance at a given loca-
tion is a conditional Gaussian distribution, where the con-
ditional mean is a linear weighted sum of the abundance
levels of the biotic and abiotic determinants. The weight
parameters can vary between different segments of a spa-
tial partition, which adds extra flexibility to the model and
allows for unobserved or latent factors. The interaction
weights, the variance parameters, and the number of poten-
tial determinants are given (conjugate) prior distributions
in a hierarchical Bayesian model, and the spatial partition
is modelled non-parametrically with a Mondrian process
prior. For inference, all quantities are sampled from the
posterior distribution with RIMCMC. Note that a complete
specification of all species-determinant configurations de-
termines the structure of a regulatory network: each node
receives incoming directed edges from each node in its set
of determinants (the so-called parent set).

2.2 Species Interaction Network

We represent the N interacting species as nodes n €
{1,...,N} in a directed graph or network G
{m1,..., 7N}, where m,, denotes the parents of node n, that
is the set of nodes with a directed edge pointing to n. G,
is the subnetwork associated with target species n, which
is determined by its parent set m,. A node cannot be con-
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tained in its own parent set, n ¢ 7., i.e. we rule out self-
interactions related to e.g. cannibalism. The species are ob-
served or surveyed at T} x T5 locations defined by their (or-
thogonal) coordinates (1, 22), at which their abundance
levels y = {yn(21,72) }1<n<N 1< <7y 1<2,<T, } are de-
termined.

2.3 Nonparametric Spatial Partition with the
Mondrian Process

Interactions among species are influenced by latent effects,
which we assume to be similar in spatially adjacent loca-
tions, and we therefore introduce into our model a process
of partitioning a 2-dimensional domain ©; x Oy (longi-
tude times latitude) inhabited by the species of interest.
The Mondrian process, introduced by Roy & Teh (2008),
is a generative recursive process for self-consistently parti-
tioning the 2-dimensional domain in the following way. A
hyperparameter A (the so-called “budget”) determines the
average number of cuts in the partition. At each stage of the
recursion, a Mondrian sample can either define a trivial par-
tition @1 x O, i.e. a segment, or a cut that creates two sub-
processes m. and m~: m = (d, x, A, m<, ms), where d
is the horizontal or vertical direction and  the position of
the cut. The direction d and position y are drawn from
a binomial and uniform distribution, respectively, both de-
pending on ©; and O, as shown in line 5 of Algorithm 1.
The process of cutting a segment is limited by the budget A
associated to each segment and the cost E of a cut. Condi-
tional on halfperimeter 7 = |©1|+ |O2/, a cut is introduced
yielding m« and m- if the cost E' ~ exp(7) does not ex-
ceed the budget ), i.e. satisfies N’ = A\ — E > 0. The
process is recursively repeated on m. and m- until the
budgets are exhausted, as shown in Algorithm 1. This cre-
ates a binary tree with the initial Mondrian sample my—; as
the root node spanning the unit square [0; 1]? and sub-nodes
representing Mondrian samples m1<x<x, k € {1,..., K}
where K is the total number of nodes in the tree, e.g.
K = 15 in Fig. 1. The leaf nodes present non-overlapping
segments and are associated each with a latent variable
h(k) labeled with m/(*) (Fig. 1). These latent variables
determine the interactions among species, as described in
Subsection 2.4. We denote by Z the number of uncut seg-
ments, e.g. Z = 8in Fig. 1, and h(k) € {1,...,Z}.

The Mondrian process can be regarded as a 2-dimensional
generalization of the Poisson process, and it has the same
self-consistency property. We have chosen this approach
over a global changepoint process in order to provide vary-
ing levels of fineness of the segments and thereby account
for spatial alterations of the regulatory relationships among
species on a local scale.

2.4 Modelling Species Interactions with a Regression

Model

For all species n, the random variable Y, (x1, x2) refers to
the abundance of species n at location (x1,x2). Within
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Figure 1: Mondrian Process Example. The upper panel shows
an example partition with a Mondrian process. The lower panel
dislays the associated tree with labels of the latent variable h(k)
identifying each non-overlapping segment in the partition.

any segment h(k), this abundance depends on the abun-
dance levels of the species in the parent set of species
n, m,, which we model with a segment specific lin-
ear regression model. Define the set of parameters

{(@)peo.n,on®y, ahF) e R, o™ > 0. For all
p#0,an) =0ifp ¢ m,. For all species n, for all lo-
cations (x1,x2) in segment h(k), Y, (x1,x2) depends on

the IV variables {Y}, (21, z2) }1<p< N psn according to

Yn(.’lfl, 1‘2) azgk) + ZpEﬂ' aﬁg“) Yp(l'l, 372)

+en(z1,22) + aﬁ(:)An(xl,xz) (D

en(21,22) is assumed to be white Gaussian noise

with mean O and variance (aﬁ(k))Q, en(x1,22)
N(0, (o2™)2). We define ap™ = (al{),co.n to de-
note the vector of all regression parameters of species n.

This includes the parameters defining the strength of inter-
h(k)
Anp *,

~

actions with other species p,

specific offset term, azgk). Spatial autocorrelation effects

are represented with A, (z1, z2) weighted by an additional

edge aZEf). They reflect the influence of neighboring

cells that can have a strong effect on statistical inference
(Lennon, 2000). A, (z1,22) denotes the average densities
in the vicinity of (x1, x2), weighted inversely proportional

as well as a species-
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to the distance of the neighbors:

Ap(z1,22) =
D (i) eN (anm0) & L(@1522), (81, 82) Y5 (T1, 7o)
D (1, 50) N (wn,w0) (@1, T2), (21, E2)]

2

where N (z1,72) is the spatial neighborhood of loca-
tion (x1,x2) (e.g. the four nearest neighbors), and
d[(x1,x2), (Z1,Z2)] is the Euclidean distance between
(%1,1’2) and (fil,fg).

2.5 Prior Distribution

Interaction network: To encourage sparse network struc-
tures, we impose a truncated Poisson prior with mean s and
maximum p = 5 on the number p,, of parents for node n:
P(pn|k) x %]l{pn <p}- Conditional on p,,, the prior for
the parent set 7, is a uniform distribution over all parent
sets with cardinality p,: P(m, | |mn| = pn) = 1/() 7).
The overall prior on the network structure G is given by
factorization and marginalization in equation (3):

N
P(Gls) =[] _, Plmalw)
P
Plrali) =Y Pmalp)Ppali) )
Conditional on the parent set m, of size p,, the

pn + 2 regression coefficients, denoted by ap®

h(k) h(k) , h(k
(am() ), ,n(A),( nﬁ, ))pEM), are assumed zero-mean mul-

tivariate Gaussian distributed with covariance matrix
v (k) 22
(Un ) n,h(k)»

P(a"®|r,, oh®) §2) =
[an ™)t

2—1 aﬁ(k)
o ) @)

h(k)\2 -3 _
|27T(Un ) 2n,h(k)' 26Xp< 2(0_2(;9))2

where the symbol { denotes matrix transposition,
Srntk) = 82D} 1) (9) D ey () and Dy iy (y) s the

Snh(k) = |@§”(’“>|\®’;(’“)| x (pn + 2) matrix whose first
column is a vector of 1s, for the constant in (1), the sec-
ond column is a vector of autocorrelation variables, de-
fined in (2), and the remaining columns contain the ob-
served abundance values y,,(x1, o) for all species n and
all locations (z1,x2) that map into segment h(k). This
so-called g-prior is widely used in Bayesian statistics; see
e.g. by Andrieu & Doucet (1999). Finally, the conjugate

. . h(k)\2 - . .
prior for the variance (O’n( ))2 is the inverse gamma dis-

tribution, P((oh™)2) = ZG(vy,70). Following Lebre
et al. (2010), we set the hyper-hyperparameters for shape,
vg = 0.5, and scale, 9 = 0.05, to fixed values that give a
non-informative prior distribution. The term « can be inter-
preted as the expected number of parents and 42 is the ex-
pected signal-to-noise ratio. Following Lebre et al. (2010),
these hyperparameters are drawn from vague conjugate hy-
perpriors, which are in the (inverse) gamma distribution
family: P(k) = Ga(0.5,1) and P(6%) = ZG(2,0.2).
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Mondrian process: The prior disrtribution of the Mon-
drian process depends on the hyperparameter A and is de-
fined via the generative process described in Algorithm 1
and Section 2.3. However, for the RIMCMC scheme de-
scribed below all that is needed is the prior ratio, which is
given by (8).

Algorithm 1 MCMC Mondrian cut: Note, the Mondrian
generative process corresponds to lines 1-4 and 7, i.e. the
MCMC move extends it by considering the acceptance
probability in lines 5-6.
Input: m, A
h(k) <~ U(1,Z) > uniformly select uncut segment h(k)
A« A= E with E ~ exp(|0!*®| 4+ |@h*)))
if A" > 0 then > if budget sufficient
> draw direction d € {1, 2}, 1 is vertical and 2 is horizontal
d~ B0y /(01| +6;™))
x|d ~ U(@Z(k>) > draw cut position x
a <+ min{l,r} > acceptance probability, equation 7
if @ > u ~ U(0,1) then > accept with subtrees m« ms
m" M) (d, X e, ms)
end if
end if

RE AN A I

10:
11:

12:

2.6 Likelihood and Marginal Likelihood
Equation (1) implies that the likelihood is given by

h(k)) ~Sn,h(k) «

n

LG, a9, ah0) = (VEro
h(k) _

exp [~ (Wn™® = Do no@an®™) (yn
2(02%))2

Dn,h,(k)(y)az(m ) )

An attractive feature of the chosen model is that the
marginalization over the parameters a = {aﬁ k ,1<n<
N,1<h(k)< Ztando? = {(ch™)2 1 <n < N,1 <
h(k) < Z} is analytically tractable (Lebre et al., 2010;

Andrieu & Doucet, 1999), and we obtain a closed-form ex-
pression for the marginal likelihood:

L(yn™1Gn, 6) :/E(yﬁ(k)lgn,aﬁ(“,crﬁ(k))

P(loh® 1) P(ah® |mn, [oh ™), 6%)dal P o] (5)
For space restrictions, the reader is referred to Lebre et al.
(2010) for an explicit expression.

2.7 Posterior Distribution and Bayesian Inference

The objective of Bayesian inference is to sample from the
posterior distribution

P(m,G, 5, 8%y) o< L(yn"|Gn, 6%)P(6?) P(E)

P(G|r)P(k)P(m|A) (©6)
where E(yﬁ(k)wn, 62) is the marginal likelihood, from
(5), and all prior distributions have been defined above.
To this end, we pursue a Gibbs sampling like strat-
egy, where we iteratively sample new hyperparameters
from P(x,69G,m,y), a new network structure from
P(GJk,0% m,y), and a new Mondrian process partition of
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Figure 2: Spatial Distribution. The figure shows the spatial
distribution of growth rates r,, entering equation (9) as the spatial
[ parameter, defined in Section 3.2, decreases from -2 to -8. A
value of 0 would correspond to uniformly random noise, and -2 is
Brownian noise.

the spatial domain from P(m|G,y, A). The first distribution
is of standard form due to conjugacy of the prior, and the
hyperparameters can be sampled directly. However, direct
sampling from the other two distributions is intractable, and
we therefore apply RIMCMC (Green, 1995). To sample
new network structures G, we follow the scheme described
by Lebre et al. (2010), which is based on edge birth and
death moves. To sample from the Mondrian process, we
adopt the method proposed by Wang et al. (2011), which
we will briefly outline in the next subsection. The scheme
could be extended to infer )\, but that has not been done
yet, and we assume this hyperparameter to be fixed (and
hence have not made it explicit on the left-hand side of
equation (6)). We are primarily interested in a sample of
network structures from the posterior distribution P(G|y),
which we obtain by marginalizing over the hyperparame-
ters and Mondrian process partition. By further marginal-
ization, we get the posterior probabilities of all species in-
teractions P(n — 7|y), which defines a ranking of the in-
teractions in terms of posterior confidence. If the true net-
work structure is known, this ranking allows the computa-
tion of the areas under the ROC (AUROC) and precision-
recall (AUPRC) curves (Davis & Goadrich, 2006), which
are two measures widely used in the systems biology lit-
erature to quantify the overall network reconstruction ac-
curacy (Prill et al., 2010), with larger values indicating a
better prediction performance.

2.8 Mondrian Process RIMCMC

As described above, an essential step of the inference pro-
cedure is to sample a new Mondrian process segment m
from P(m|G,y, \). Following Wang et al. (2011), and as
described in Section 2.3, the current state of the Mondrian
process m is represented by a structure tree and a model

parameter vector ¢, which contains all previous costs Fy,
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and cut locations . Note that all budgets and domains
can be computed from that recursively. When a cut move
is proposed (marked with +), the current parameter val-
ues are augmented by supplementary random variates u;
and uo in such a way that the dimensions in the higher
and lower dimensional parameter spaces are matched. We
uniformly sample a spatial segment h(k) draw u; and us

from the density q(uq,us) and set ¢ — ¢+ = (, EMK) =
up, X"*) = wy). If EM®) does not exceed the budget
)\h(k), as described in Section 2.3, the cut move proceeds

as shown in Algorithm 1, where x"(*) defines the position
proportional to the sample domain size, which follows a
Bernoulli distribution B. The proposed new Mondrian pro-
cess state m™ is accepted with probability o« = min{1,r},

_ PN almlmt) L1668 Lw 16,67
~ PR T a(mFm) L(y" MG, 5%)
M
a(m|m*) z

g(m*m) ~ ¢(m*)q(ER®), xh(®)’
P(m+|>\) wz(k)w’;(mP(Eh(k))P(Xh(k))

P(m|n) wh (k)

@®)

Here, the subscripts > and < refer to the two new spa-

tial segments associated with the cut, y’;(k) and yz(k) are

the corresponding subsets of y(*), and y"(*) denotes the
species abundance data associated with segment/leaf node
h(k). Following the standard RIMCMC scheme (Green,
1995), the four terms in (7) are the prior ratio, inverse pro-
posal ratio, marginal likelihood ratio and Jacobian. The
latter is one, J = 1, the marginal likelihood is given by (5),
and the prior and proposal ratios are given by (8), where
¢ denotes the number of Mondrian leaf siblings, i.e. adja-
cent segments that can be merged in order to restore m, and
whk) = [ 7hK) exp(—rhFe)de = exp(—r"k) A\ K))
denotes the probability of no further cut. By setting
q(Ex, xx) = P(Er)P(xx), the expression naturally sim-
plifies. The state m is replaced by the proposal m™ in the
case the move is accepted. The probability of removing a
cut is given by the inverse of (7). A shift move replaces the
direction d and position x of a cut, which separates the ad-
jacent segments h(kq) and h(k2) yielding the proposal seg-
ments h(k1)" and h(k2)T. The acceptance probability is
o = min{1, Ly" M )LD LMY L))
after canceling the proposal and prior ratios because bud-
get, cost and number of Mondrian samples remain invari-
ant. Whenever a segment is cut or merged, the affected
regression coefficients are sampled from the posterior. A
more detailed discussion of inference in Mondrian pro-
cesses with RIMCMC can be found in Wang et al. (2011).

3 DATA
3.1 Synthetic Data

For an objective measure of network recovery, we tested
the model’s ability to recover the true network structure
from test data generated from a piecewise linear regres-
sion model following equation (1). The data grid was par-
titioned according to a single Mondrian process generated
from Algorithm 1 and the number of grid cells was selected
to be 15 in each direction. The number of nodes 7 in the
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Figure 3: Comparison on Synthetic Data. Boxplots of

AUROC (upper panel) and AUPRC (lower panel) scores ob-
tained with three methods on the synthetic data described in Sec-
tion 3.1: the proposed model (BRAMP), a Bayesian linear re-
gression model without changepoints (BR), L1-penalized sparse
regression (LASSO), and a homogeneous Bayesian network with
the BDe score (BANJO). Each boxplot shows the distribution of
scores of 30 independent data sets.

network G was set to 10 and the number of parents for each
node was sampled from a Poisson distribution. The regres-
sion coefficients af.* together with the bias ag *) of each
segment h(k) were sampled from a uniform distribution
in the interval of [—1; —0.5] and [0.5,1.0]. The noise &,
was sampled from a normal distribution. Nodes without
incoming edge were initialized to a Gaussian random num-
ber with a variance of 1. The values of the remaining nodes
were calculated at each grid cell following equation (1).

3.2 Realistic Simulation of Trophic Interactions

For a realistic evaluation, we followed Faisal et al. (2010)
and generated data from an ecological simulation that com-
bines a niche model (Williams & Martinez, 2000) with
a stochastic population model (Lande, Engen & Saether,
2003) in a 2-dimensional lattice.

Niche model and species interactions. The niche model
defines the structure of the trophic network and has two
parameters: the number of species N and the connectance
(or network density) defined as L/N 2 where L is the num-
ber of interactions (edges) in the network. Each species n
is assigned a niche value z,,, drawn uniformly from [0, 1].
This gives an ordering of the species, where higher val-
ues mean that species are higher up in the food chain. For
each species a niche range R,, is drawn from a beta dis-
tribution with expected value 2C (where C' is the desired
connectance), and species n consumes all species falling in
arange R, thatis placed by uniformly drawing the centre
of the range from [R,,/2,x,]. An illustration is given in
Figure 1 of Williams & Martinez (2000). Despite its sim-
plicity, it was shown there that the resulting networks share
many characteristics with real food webs.
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Stochastic population dynamics. The population model
is defined by a stochastic differential equation where the

dynamics of the log abundance X,,(t) of species n at time
t can be expressed as:

dX'n (t) = r,+ gd dAn(t) to dBn (t) _
dt " eXa® dt ° dt
dE(t)

YXn(t) = QX) + o8

dt ©)

where X is the set of all Xy (¢), r, is the growth rate of
species n, o4 is the standard deviation of the demographic
effect, A,,(t) is the species-specific demographic effect, o,
is the standard deviation of the species-specific environ-
mental effect, B, (t) is the species-specific environmen-
tal effect, v is the intra-specific density dependence, 2 is
the effect of competition for common resources, o is the
standard deviation of the general environmental effect and
E(t) is the general community environment. The growth
rates r,, are location dependent (depending on the cell of a
rectangular grid), with a spatial pattern that is generated by
noise with spectral density f° (with 3 < 0, and f denoting
the spatial frequency at which the noise is measured). An
illustration is given in Figure 2. To model species migra-
tion, we included an exponential dispersal model, where
the probability of a species moving from one location to
another is determined by the Euclidean distance between
the locations. To incorporate the niche model, we modified
the term €2 in (9) to include predator-prey interactions in
the Lotka-Volterra form. A detailed description is available
by Faisal et al. (2010).

Simulation. We applied this model to 10 species living
in a 25-by-25 rectangular grid. We simulated the dynam-
ics of this model for 3000 steps and then recorded species
abundance levels in all grid cells at the final step; this cor-
responds to an ecological survey carried out at a fixed mo-
ment in time. For each grid cell we counted the number of
species that went extinct. These counts were added up over
all cells, yielding a total number of extinctions. A simula-
tion was rejected if these extinctions exceeded the value 50.
For each of the spatial 3 parameters displayed in Figure 4,
30 surveys were collected by running the simulation repeat-
edly with different networks and parameter initializations.

3.3 Real World Plant Data

We have applied the method to real-world data from
Lennon et al. (2011), including 106 vascular plants and
12 physical variables collected from a 200m x 2162m land
stripe at the western shore of the Outer Hebrides. Samples
were taken at 217 locations, each 1m x 1m in size, equally
distributed with a 50m spacing. Plant samples were mea-
sured as ground coverage in percentage and physical sam-
ples as absolute values (such as moisture, pH value, organic
matter and slope). The data was log-normal transformed
after observing substantial skewness in the distributions.
Each sample point was mapped into a 2D grid ignoring lo-
cations with no sample data available. The single spatial
autocorrelation value for each plant and location was cal-
culated with equation 2 using neighbors inside a radius of
70m. Since we are interested only in plant interactions, we
defined each plant to have all 12 physical soil variables as
fixed input, i.e., permanent predictor variables.
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Figure 4: Comparative Evaluation of Five Network Recon-
struction Methods for the Parasitism Data. AUROC (upper
panel) and AUPRC (lower panel) scores obtained on the realis-
tic simulated data described in Section 3.2. Box color scheme:
BRAMP (white), BR (light gray), BR-0 (gray), LASSO (dark
gray), Banjo (darkest gray).

4 COMPARATIVE EVALUATION

We followed Wang et al. (2011) and set the hyperparam-
eter of the Mondrian process to the fixed value A = 1
for all our simulations. We compared the performance
of BRAMP with two alternative Bayesian regression mod-
els: a Bayesian regression without changepoints (BR) al-
lowing for spatial autocorrelation and Bayesian regression
without changepoints and without allowing for spatial au-
tocorrelation (BR-0). We included a comparison with L1-
penalized sparse regression (LASSO: Tibshirani (1996)),
using the optimization algorithm proposed by Grandvalet
(1998). This method is widely applied in molecular sys-
tems biology van Someren et al. (2006), has been rec-
ommended to be used more widely in ecology (Dahlgren,
2010), and was found to outperform all competing meth-
ods in Faisal et al. (2010). The L1 regularization pa-
rameter, which controls the network sparsity, was inferred
with 10-fold cross-validation, which led to better results
than optimizing the BIC score. The method produces edge
weights indicating the strength and sign of interactions
among species. For obtaining the ROC and precision-recall
curves, we ranked the potential interactions based on the
absolute values of the non-zero interaction parameters. We
further included a comparison with a non-linear Bayesian
network, as implemented in the software package BANJO.
We discretized the data with Hartemink’s pairwise mutual
information method (Hartemink, 2001) (implemented in R
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Network Graph of Interactions

Figure 5: Species Interaction Network. Species interactions
as inferred with BRAMP, described in Section 3.3, with an in-
ferred marginal posterior probability of 0.5 (thick lines) and 0.1
(thin lines). Solid lines are positive (e.g. mutualism, facilitation)
and dashed are negative interactions (e.g. resource competition).
Species are represented by numbers and have been ordered phy-
logenetically (see Supplementary Material).

package bnlearn)'. Search was done using simulated an-
nealing with random walk proposals. Simulated anneal-
ing was run on each dataset until convergence. Using the
top 100 high-scoring (BDe score) networks we computed
edge probabilities for ranking. Application of both LASSO
and BANJO included taking spatial autocorrelation into ac-
count. Finally, we applied BRAMP to real world data, re-
vealing putative plant interactions.

S RESULTS

On the synthetic data of Section 3.1, BRAMP outperforms
all competing schemes (Figure 3). This is not surprising, in
that the data have been generated from a process that is con-
sistent with the modeling assumptions of BRAMP. How-
ever, it is reassuring both that the MCMC inference scheme
can successfully deal with the increased model complex-
ity, and that it leads to an improvement over the competing
models in terms of actual network reconstruction accuracy.
For the data simulated from the realistic niche model, de-
scribed in Section 3.2 we found that BRAMP consistently
outperforms the other methods (Figure 4). Table 1 shows
the corresponding p-values of paired Wilcoxon tests for the
AUROC and AUPREC values comparing BRAMP against
the other methods. The low p-values indicate significant
performance gain of BRAMP and suggest that the Mon-
drian process better captures spatial heterogeneity. The im-
provement over BANJO underlines the detrimental effect
of the information loss inherent in data discretization.

We have applied BRAMP to the plant abundance data from
the ecological survey described in Section 3.3. We sam-
pled interaction network structures from the posterior dis-
tribution with MCMC and computed the marginal poste-
rior probabilities of the individual potential species inter-
actions, as described in Section 2.7. We kept all species
interactions with a marginal posterior probability greater

!There are 3 discretization levels following Yu et al. (2004).
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than 0.1 , resulting in 39 out of 106 species with relevant
interaction in the reconstructed network shown in Figure 5.
Since we had defined the 12 soil attributes as fixed predic-
tors to each plant, the interactions in this network represent
plant-plant interactions not mediated by similar soil pref-
erences. This network can lead to the formation of new
ecological hypotheses. For instance, Ranunculus bulbo-
sus (species 14) is densely connected with four interspe-
cific links above the posterior threshold of 0.5. A pos-
sible explanation for this observation might be a relation
to its tolerance for nutrient-poor soil and preferred occur-
rence in species-rich patches. There is a noticeable imbal-
ance between positive and negative interactions. An initial
consultation with ecologists indicates that the fact that our
analysis tends to find more positive than negative links is
interesting in that it points to a dominance of facilitation
over competition. The importance of facilitation was em-
phasised by Bruno, Stachowicz & Bertness (2003). Ecol-
ogists also suggest that positive interactions may be more
characteristic for harsh environments (e.g. by Brooker &
Callaghan (1998)) as it is found in the Marchair-vegetation.
These results demonstrate that the proposed method pro-
vides a useful tool for exploratory data analysis in ecology
with respect to both species interactions and spatial hetero-
geneity.

6 CONCLUSION

We have addressed the problem of reconstructing species
interaction networks from species abundance data. To
this end, we have proposed a Bayesian model combining
Bayesian piecewise linear regression with a Mondrian pro-
cess. The work is motivated by a model recently proposed
in the molecular systems biology literature (Lebre et al.,
2010), but has been adapted from the temporal domain
(gene expression time series) to the spatial one (snapshot
of species distributions in space, typical of ecological sur-
veys). We have introduced and tested two essential mod-
ifications: Firstly, we have expanded the data space into
2-dimensions and applied a Mondrian process following
(Roy & Teh, 2008), which corresponds to a richer latent
variable structure that allows modeling unobserved effects
with smooth geographical variation. Secondly, we have ex-
plicitly introduced an additional enforced parent node for
each species, which represents the average species abun-
dance from the spatial neighborhood of the current loca-
tion and thereby allows a correction for spatial autocor-
relation. We have tested our model on data from a real-
istic simulation, which combines spatial species dispersal
with demographic and environmental effects and predator-
prey interactions of the Lotka-Volterra form defined by a
trophic network obtained from a realistic niche model. Our
results show that the proposed model consistently outper-
forms competing models (Figure 4 and Table 1). An appli-
cation to plant species abundance data from a recent eco-
logical survey has demonstrated how the proposed method
can be used as a tool for hypothesis generation with respect
to species interactions and spatial distribution patterns.
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Table 1: Improvement of BRAMP on Lotka-Volterra
Data. P-values for paired one-sided Wilcoxon test of AU-
ROC and AUPREC values for several spatial 5 values.
The alternative hypothesis states that BRAMP scores are
greater than the competing methods with low p-values in-
dicating significant performance gain of BRAMP.

SPATIAL g: -2 -4 -6 -8
AUROCS

BR 1.1e-06 2.8e-07 1.0e-07 1.8e-09
LASSO 6.1e-04 7.2e-04 1.3e-08 9.3e-10
BANJO 9.3e-10  9.3e-10 9.3e-10 9.3e-10
AUPRECS

BR 1.7e-08 9.3e-10 1.8e-09 9.3e-10
LASSO 2.8e-07 5.3e-06 4.6e-09 9.3e-10
BANIJO 9.3e-10 9.3e-10 9.3e-10 9.3e-10

7 FUTURE WORK

The Mondrian process is intrinsically based on two distin-
guished perpendicular directions. This may be more ap-
propriate for some applications than for others. For the
application in our study, the plant ecosystem on the is-
land of Uist, these two distinguished perpendicular direc-
tions exist. The island’s ecogeography, with the open sea
in the west, and abutting land in the other directions, im-
plies that the east-west soil profile (longitudinal coordinate)
differs systematically from the north-south profile (latitu-
dinal coordinate); see Lennon et al. (2011). Similar pat-
terns can be found on many other coastal islands, where
for principal directions that do not coincide with latitude
and longitudinal, the Mondrian process can be formulated
in terms of a local, rotated coordinate system. However, the
Mondrian process will not always be the most appropriate
model. For instance, for applications with rotational in-
variance other models, e.g. based on a Voronoi tesselation,
might be more appropriate. While this provides a direction
for future research, we expect that small model inadequa-
cies, e.g. related to a violation of rotational invariance, have
comparatively little effect compared to the clear advantage
of the Mondrian process over a global changepoint model:
namely, that it adapts the number of segments locally and
therefore can deal with ecosystems that change rapidly in
some areas, but slowly in others.

Further future work will explore different priors on the in-
teraction parameters. The present prior, expressed in (4), is
independent among segments and symmetric around zero.
This is the most cautious approach, which allows mutualis-
tic interactions to become neutral or antagonistic over parts
of the range of the interacting species, as occasionally ob-
served (Brooker & Callaghan, 1998). Such drastic changes
in the interactions appear to be rather infrequent, though,
and one may therefore want to assume that, a priori, inter-
actions in adjacent spatial segments are, in general, more
likely to be similar than different. This idea can be im-
plemented with some mechanism of information sharing,
as recently proposed in the context of time series segmen-
tation (Grzegorczyk & Husmeier, 2012), and generalizing
this method to the spatial domain provides an interesting
avenue for future research.
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A APPENDIX-SUPPLEMENTARY
MATERIAL

Table 2: Indices with full scientific names as appearing in
Figure 5. These plants can be assigned to four taxonomies
of forbs (1-19), grasses (20-29), rushes (30-33) and sedges

(34-39).
ID Name
1 Anagallis tenella
2 Calluna vulgaris
3 Drosera rotundifolia
4 Epilobium palustre
5 Galium verum
6 Hypochaeris radicata
7 Leontodon autumnalis
8 Lychnis flos-cuculi
9 Odontites verna

10 Plantago lanceolata
11 Potentilla erecta

12 Potentilla palustris
13 Prunella vulgaris

14 Ranunculus bulbosus
15 Ranunculus repens
16  Sagina procumbens
17 Succia pratensis

18  Trifolum repens

19 Viola riviniana

20  Agrostis capillaris
21 Aira praecox

22 Anthoxanthum odoratum
23 Cynosurus cristatus
24 Festuca rubra

25  Festuca vivipara

26  Holcus lanatus

27  Koeleria macrantha
28  Molinia caerulea

29  Poa pratensis

30  Juncus effusus

31 Juncus kochii

32 Luzula campestris
33 Luzula pilosa

34  Carex arenaria

35  Carex demissa

36  Carex dioica

37  Carex flacca

38  Carex nigra

39  Eriophorum angustifolum



