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Abstract

In physical experimentation, the resources available to discover new knowledge are typically
extremely small in comparison to the size and dimensionality of the parameter spaces that
can be searched. Additionally, due to the nature of physical experimentation, experimental
errors will occur, particularly in biochemical experimentation where the reactants may
undetectably denature, or reactant contamination could occur or equipment failure. These
errors mean that not all experimental measurements and observations will be accurate
or representative of the system being investigated. As the validity of observations is not
guaranteed, resources must be split between exploration to discover new knowledge and
exploitation to test the validity of the new knowledge. Currently we are investigating
the automation of discovery in physical experimentation, with the aim of producing a
fully autonomous closed-loop robotic machine capable of autonomous experimentation.
This machine will build and evaluate hypotheses, determine experiments to perform and
then perform them on an automated lab-on-chip experimentation platform for biochemical
response characterisation. In the present work we examine how the trade-off between
exploration and exploitation can occur in a situation where the number of experiments that
can be performed is extremely small and where the observations returned are sometimes
erroneous or unrepresentative of the behaviour being examined. To manage this trade-off
we consider the use of a Bayesian notion of surprise, which is used to perform exploration
experiments whilst observations are unsurprising from the predictions that can be made
and exploits when observations are surprising as they do not match the predicted response.

Keywords: Limited resources, exploration–exploitation, Bayesian surprise

1. Introduction

In physical experimentation, the resources typically available are generally small in com-
parison to the size and scale of the parameter space. For example there may perhaps be
only a handful of experiments available per parameter dimension. In general the amount of
resources can be considered as being ‘not enough’ to provide a highly confident prediction
of the behaviour being observed. Therefore the goal is to get a good reliable prediction of
the observable behaviours, with as few experiments as possible. To aid the experimenter,
statistical machine learning techniques can be employed to perform pattern analysis on the
data available and choose the experiments to perform, with the goal of maximising the
information gained whilst minimising the resources spent. These techniques are similar
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Figure 1: Overview of an artificial experimenter combined with an automated experimen-
tation platform to allow for autonomous experimentation. The artificial experi-
menter uses the information available to build hypotheses and determine experi-
ments to perform. It provides experiment parameters to perform and is provided
the observational results for those experiments. Also shown is a fully automated
lab-on-chip based experimentation platform under development. The syringes
on the right of the device hold the liquid reactants available. The flow of re-
actants is controlled by on-chip valves driven by computer controlled solenoids.
The platform contains a UV photometer that allows for measurements of optical
absorbance to be taken for reactants flowing within the microfluidic chip. The
measurements are the observations returned.

to computational scientific discovery (Langley et al., 1987) and active learning (MacKay,
1992; Cohn et al., 1994; Settles, 2009). We label the combination of techniques that are
implemented to perform this pattern recognition and adaptive experiment selection within
a laboratory problem, as an artificial experimenter (Lovell et al., 2010). When combined
with automated hardware capable of performing the experiments requested, an autonomous
experimentation machine can be created as illustrated in Figure 1.

Additionally to the limited resources problem, physical experimentation has the problem
that experimental errors or unexpected undetectable physical changes in the reactants can
occur, which can yield observations not representative of the behaviour being investigated.
These erroneous observations can be thought of as being outliers, except that there will
be insufficient data available to identify them as such with any degree of confidence. One
approach to handling this uncertainty in the observation validity, is to consider multiple
hypotheses in parallel that have different views about the data (Lovell et al., 2010). The
information within these hypotheses can be exploited to select experiments where they
most disagree, in order to obtain experiments that can dismiss invalid hypotheses. However
experiments must also be performed that can search for features of the behaviour that have
not yet been characterised. The artificial experimenter has to make a continual trade-off
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between performing experiments to discover features of the behaviour not yet identified, with
spending resources to ensure that the current models of the behaviour being investigated
are accurate. With too little exploration, features of the behaviour such as local maxima
and minima will be missed, resulting in poor scope of the hypotheses. Whilst with too little
exploitation, inaccuracies and errors will occur in the hypotheses caused by the erroneous
observations, resulting in hypotheses with poor accuracy.

We argue that in a situation where the resources are extremely limited and the obser-
vations may not always be representative of the true underlying behaviour, an experiment
selection strategy will want to disprove invalid hypotheses when there is disagreement about
the behaviour or validity of an observation and search for new discoveries when they agree.
In other words, exploit the information held within the hypotheses to select experiments
that maximise the discrimination between the hypotheses when there are good hypothe-
ses supported by the experimental evidence that disagree. Whilst exploring the parameter
space when there is no disagreement between good hypotheses. To manage this trade-off we
use a Bayesian formulation of surprise, first used to identify surprising occurrences in video
sequences (Itti and Baldi, 2009). In this work, the surprise is used such that exploitation
occurs when the previous experiment was surprising and exploration occurs when the previ-
ous experiment was not surprising. The use of surprise to manage this trade-off is analogous
to techniques performed by successful human scientists, who will perform focussed experi-
ments to learn why an experiment yielded a surprising or unexpected observation (Kulkarni
and Simon, 1990).

Here we discuss how the trade-off between exploration and exploitation has been consid-
ered within an artificial experimenter that can perform automatic response characterisation
with a small, noisy and potentially erroneous set of observations. In particular enzymatic
responses has been considered as the domain to evaluate the techniques, however the design
of the artificial experimenter is domain independent. As current active learning techniques
do not fully capture the problems and uncertainties faced in physical experimentation, we
take the approach of addressing the problem and filling the gaps through attempting to cap-
ture how successful scientists operate and make decisions, which make the techniques for
managing the trade-off presented here driven more from practise than theory. In Section 2
we briefly re-pose the problem within a multi-armed bandit framework. In Section 3 we
briefly discuss how hypotheses are represented within the system. In Section 4 we discuss
different methods that have been used for managing the exploration–exploitation trade-off
within our artificial experimenter. These techniques are evaluated through a 1-dimensional
simulated trial and laboratory trial in Section 5, along with a 2-dimensional simulated trial
in Section 6. In Section 7 we discuss how previous systems have addressed the exploration–
exploitation trade-off.

2. Description of the Problem within a Multi-Armed Bandit Framework

For ease of understanding the present problem within the exploration-exploitation com-
munity, we abstract the problem to one within a multi-armed bandit framework. In the
multi-armed bandit problem there are a number of levers, which correspond to different
possible experiments, which when pulled return some reward. The reward obtained in
experimentation is not directly a monetary reward, but rather an information reward. As-
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suming we have multiple hypotheses in consideration and that we take the philosophy of
science view that information is obtained by disproving hypotheses (Chamberlin, 1890), an
example of a rewarding experiment would be one that will provide information to discrimi-
nate between a number of good hypotheses. A prediction of the minimum expected reward
can be made by examining the current hypotheses under consideration and determining the
difference in predictions for them across the possible experiment parameters. However the
actual reward may be much higher than predicted in regions where few experiments have
been performed and where the predictions of the hypotheses are not representative of the
true behaviour being investigated. Selecting where the hypotheses are maximally different
will therefore be equivalent to exploitation. The goal therefore for experimentation is the
same as a multi-armed bandit problem, to maximise the reward, or information obtained,
over a number of trials or experiments. However not all experiments will produce a reward,
take for example the case where all hypotheses agree with the observation obtained and no
new information is learnt. Additionally the number of experiments that can be afforded will
be many times smaller than the total number of unique experiment parameters or levers.
Furthermore the reward available on a particular experiment will generally reduce over time,
as the hypotheses under consideration become more accurate in predicting the outcome of
an experiment. Although there will be cases where the reward available on a particular
experiment may increase over the previous experiment, for example where an erroneous
observation occurs that seemingly provides information to disprove a large number of good
hypotheses. In cases where a large information gain has occurred, repeat experiments may
be useful to determine the validity of an observation, however multiple repeats will lead
to a reward tending towards zero. Therefore it is clear that the reward actually obtained
by pulling a lever or performing an experiment, would not be modelled by a single static
normal distribution within a multi-armed bandit abstraction, but by a distribution where
the mean alters over time and there are perhaps two variances, one small variance that
provides experimental noise on all experiments, with a second larger variance that pro-
vides erroneous observations to some experiments. Due to the differing rewards available
over time, the regret function will be similar to that used by Auer (2002), to compare the
maximum reward available at time t with the actual reward obtained:

ρ =
T∑
t=1

(
max
x∈X
{It(x)} − ît

)
(1)

where maxx∈X {It(x)} is the maximum reward possible at time t, X is the set of possible
experiments, and ît is the actual reward at time t. Although due to the resource limitation
an upper confidence bound approach will not be suitable as it will be unable to initialise
the predicted means.

3. Predicting the Behaviour Under Investigation

The present problem of response characterisation can be clearly addressed through using
a regression technique. Here spline based regression techniques form the foundation of the
hypothesis representation, although alternate techniques could be substituted. Specifically,
the techniques used are the smoothing spline in the 1-dimensional problem and thin plate
splines in higher dimensions (Wahba, 1990). However, a single hypothesis or distribution
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will perform poorly in situations where there are limited observations, with the validity of
those observations not guaranteed (Lovell et al., 2010). The poor performance is due to the
single hypothesis having to decide on the validity of observations. With little experimental
data available, the technique may not be able to correctly identify an outlying observation
that is erroneous, causing it to overfit to the error. Alternatively the opposite could oc-
cur, where a parameter selection technique like cross-validation may incorrectly identify an
apparent outlying observation and ignore it, even though the observation is representative
of the behaviour being investigated and it is the hypothesis that it incorrect. Instead we
consider the use of multiple hypotheses, similar to query-by-committee (Seung et al., 1992).
The multiple hypotheses are used to provide different views about the data that can be
considered in parallel, with decisions made about which was the correct decision when more
data becomes available. Additionally the multiple hypotheses can be used later in experi-
ment selection, to provide a method for exploitation through selecting where the hypotheses
with the most supporting experimental evidence disagree the most.

To deal with the uncertainty caused by only having a limited number of noisy and po-
tentially erroneous observations, a hypothesis manager is used to consider many hypotheses
in parallel (Lovell et al., 2010). Each hypothesis can maintain a different view of the be-
haviour being investigated, along with different views about the validity of observations.
In our design, hypotheses go through a process of refinement in cases where observations
do not agree with hypotheses, to develop hypotheses that should be more representative
of the true underlying behaviour. An observation and hypothesis are identified as being
in disagreement when the observation falls outside of the 95% error bar interval for the
prediction of the hypothesis. When refining a hypothesis under these circumstances, the
system must take into consideration the problem that it will not know whether the dis-
agreement between observation and hypothesis is because the hypothesis is incorrect, or if
the observation is erroneous. The refinement process handles this consideration by creating
two new refinements of the original hypothesis that the observation disagreed with. In one
refinement the disagreeing observation will be declared to be erroneous and the observa-
tion will receive a weight of 0, with all other parameters remaining the same. In the other
refinement, the observation will be declared to be valid and the observation will be given
a high weight, with all other parameters remaining the same. The zero weight will cause
the regression to ignore the observation, whilst a high weight will draw the output of the
regression curve closer to the observation. The original and two refined hypotheses are all
kept in consideration by the hypothesis manager within a working set of hypotheses.

After each experiment is performed, the hypothesis manager creates a new set of hy-
potheses with random initial parameters to give different starting views of the behaviour
being investigated. These hypotheses are added to the working set of hypotheses that were
kept in consideration in previous rounds of experimentation. All hypotheses are then com-
pared to all observations to identify any disagreements, where refinements are made to the
hypotheses in cases where there are disagreements. Finally all hypotheses are evaluated
against all of the previous observations to determine their confidence and quality. By main-
taining a working set, or committee of different hypotheses, decisions about the shape of
the response or validity of observations can be postponed until sufficient data is available
to reject incorrect assumptions. For computational performance, a number of the worst
performing hypotheses can be removed.
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4. Experiment Selection

The experiment manager determines the experiments to perform using the information
available within the hypotheses along with information about where in the parameter space
previous experiments have been performed. In choosing experiments, the experiment man-
ager needs to ensure that the parameter space is explored to allow for the discovery of new
features of the behaviour being investigated, whilst also making sure that data is obtained
that can differentiate between the different hypotheses under consideration to identify the
most likely candidate. We do not consider the case where the experiment manager is aware
of how many more experiments are available, instead it must assume that the next exper-
iment may be the last experiment so perform the experiment that it decides most useful
next. This assumption is made as in experimentation it may not always be clear how many
resources will be allocated to a particular problem and may dependent on the observations
made. For example experimentation that is obtaining little new information may be termi-
nated earlier than one that is obtaining a large amount of information. Deciding on stopping
criteria is also outside of the current investigation into the exploration-exploitation trade-off
within experiment selection. Before we consider the trade-off between exploration and ex-
ploitation, we briefly define what we mean by a purely exploration and purely exploitation
experiment.

Experiments that explore the parameter space should be placed in regions where there
are currently no observations available. Often random strategies are used to perform ex-
ploration, however with limited resources this may lead to wasted resources in situations
where experiments are performed near previously performed experiments that the hypothe-
ses predict well for. The strategy for exploration is therefore to perform experiments whose
parameters are maximally distant from any previously performed experiment:

maxE(x) = min
p∈X
‖x− p‖ (2)

where X is the set of previously performed experiments.
Experiments that exploit the information held within the hypotheses are used to evaluate

the hypotheses. This exploitation should occur through differentiating between as many
hypotheses as possible per experiment. To differentiate between hypotheses, the experiment
should be chosen where there is the most disagreement between the predictions of the
hypotheses. At first glance it may appear that taking the variance of hypothesis predictions
would provide the suitable measure of disagreement. However variance can be made to
be artificially large in the presence of a single outlying hypothesis prediction, which can
cause experiments to be chosen that only differentiate between the outlying hypothesis and
all other hypotheses under consideration (Lovell et al., 2010). Alternatively maximising
the expected information gain can be used (MacKay, 1992), although for large numbers of
hypotheses the calculation can become inefficient. Instead we use a maximum disagreement
measure that places experiments where there are differences between high quality hypotheses
that currently agree on the previous observations obtained, defined in (Lovell et al., 2010):

D(x) =

|H|∑
i=1

|H|∑
j=1

(
1− Phi

(
ĥj(x)|x

))
Q(hi, hj) (3)
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where H is the set of working hypotheses under consideration, Phi
is the probability that

hypothesis hi agrees with the prediction of hypothesis hj for experiment parameter x,
defined as:

Phi

(
ĥj(x)|x

)
= exp

−
(
ĥi(x)− ĥj(x)

)2
2σ2i

 (4)

where ĥ(x) is the prediction of a hypothesis for x, σi is the error bar at x for hypothesis hi.
The term Q(hi, hj) is the measure of quality and agreement between hypotheses, defined
as:

Q(hi, hj) = C(hi)C(hj)A(hi, hj) (5)

where C(hi) is the confidence of hypothesis hi based on the previous N observations, defined
as:

C(h) =
1

N

N∑
n=1

exp

−
(
ĥ(xn)− yn

)2
2τ2

 (6)

with τ kept constant at 1.96. The function A(hi, hj) is the agreement between the hypothe-
ses for the previous observations obtained, defined as:

A(hi, hj) =
1

N

N∑
n=1

exp

−
(
ĥi(xn)− ĥj(xn)

)2
2σ2i

 (7)

with σi again being the error bar value of hypothesis hi for experiment parameter x. The
value of D(x) will be high where there are confident hypotheses, which agree on the current
available data, but disagree on the outcome of the proposed experiment. By performing an
experiment where D(x) is maximal, evidence should be obtained to identify faults within
currently well performing hypotheses that have been identified by other hypotheses. This
maximum disagreement measure appears to make similar evaluations about disagreement
between hypotheses as maximising the information gain, but provides a more efficient cal-
culation.

Next we consider the trade-off between experiments that explore the parameter space
and experiments that exploit the information within the hypotheses. In the present problem
there is no a-priori experimental evidence available for hypotheses to be built from. There-
fore an initial dataset must be obtained. The initial observations are obtained through per-
forming a set of exploratory experiments, which are equidistant across the parameter space.
In all trials described here, there are 5 initial exploratory experiments performed, chosen
to allow for more resources to be spent on active experiment selection. In the following
we consider two techniques for active experiment selection that manage the exploration–
exploitation trade-off in different ways. The surprise technique evaluates how surprising
the last experiment obtained was, using the surprise to determine whether the next exper-
iment should be a purely exploration or exploitation experiment. Whilst the discrepancy
peaks technique attempts to select experiments that have a combined ability to explore
and exploit. In both strategies, the artificial experimenter requires a number of exploratory
experiments that can be used to generate an initial set of hypotheses. In the 1-dimensional
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case presented here the technique performs 5 initial experiments that are equally spaced
across the parameter space.

4.1. Selecting Experiments by the Surprise of the Last Experiment

Several previous artificial experimenter techniques discuss the notion of surprise in scien-
tific discovery, and have employed different formulations of surprise to base their experiment
selection strategy (Kulkarni and Simon, 1990; Pfaffmann and Zauner, 2001). These tech-
niques are explored further in the related work in Section 7. Surprising observations are
important, as they signify that an outcome occurred that was not expected. It could be that
the observation was surprising because it was erroneous, which would require investigation
to identify the error and remove it from consideration in the hypotheses. Alternatively an
observation could be surprising because the current hypotheses are invalid for the behaviour
being investigated. In this instance, further investigation should be made in the region of
the parameter space where the surprising observation was found, to allow for more represen-
tative hypotheses to be made. Regardless of the cause of a surprising observation, further
experiments should be performed when a surprising observation is obtained, to investigate
why the observation was surprising.

A Bayesian formulation for surprise exists within the background literature, which uses
a Kullback-Leibler divergence to identify surprising differences between prior and posterior
hypotheses to identify surprising occurrences in video sequences (Itti and Baldi, 2009):

So =

∫
H
P (h|D) log

P (h|D)

P (h)
dH (8)

where P (h|D) is the posterior probability for the hypothesis and P (h) is the prior prob-
ability. However, for use in an artificial experimenter, this surprise function requires an
adjustment. In the current form, the equation identifies surprising improvements to the
posterior model and scales the result by the posterior confidence. In an experimental set-
ting, as hypotheses can only be disproved (Chamberlin, 1890), we are more interested in
those observations that provide evidence that reduce the confidence in previously good hy-
potheses. In other words, we are interested in observations that disagree with the hypotheses
that are currently viewed as being the most accurate representations of the underlying be-
haviour under investigation. To make this adjustment, we swap the prior and posterior
terms in the function (Lovell et al., 2011). Although it may appear counter intuitive to pre-
fer experiments that weaken the confidence of hypotheses, by identifying the inaccuracies
of a hypothesis, the hypothesis will subsequently be refined into a new hypothesis that is
more representative of the true underlying behaviour being investigated.

We use this metric to calculate the surprise of the most recently obtained observation.
To calculate surprise, we take the confidence of the hypotheses before an experiment is
performed to provide the prior probability. The posterior probability is taken as the con-
fidence of the same set of hypotheses directly after the experiment has been performed,
where the set of observations to evaluate with will now include the observation obtained in
that experiment. This allows the surprise of the most recent experiment across the set of
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working hypotheses under consideration to be calculated as:

S =

|H|∑
i

C(hi) log
C(hi)

C ′(hi)
(9)

From this measure of surprise, the decision about whether to explore or exploit next can
be made by exploiting when the last observation is surprising, and exploring when the last
observation was not surprising, as defined as:

x =

{
D(x) if S > 0

E(x) otherwise
(10)

where E(x) is a method for choosing an exploration experiment, for example the maximum
distance in the experiment parameter space from any previously performed experiment. The
value of S can be negative as the two distributions being used within the KL-divergence
are not guaranteed to be equal.

The reasons for this trade-off are that when an observation is obtained that is not
surprising, so agrees with the current hypotheses, we can infer that the confident hypothe-
ses under consideration agree and a good representation of the behaviour for the features
discovered has been made. If a good representation exists for the data available, then fea-
tures of the behaviour not yet discovered should now be sought after through exploration.
Whilst when an observation is surprising, the hypothesis manager will ensure that there are
hypotheses that will have opposing views of the surprising observation, meaning that an
exploitation experiment can be performed to identify the hypotheses that make the correct
assumption about the surprising observation. It may be that several exploitation experi-
ments are performed in a row that investigate one particular feature repeatedly, to allow
for refinements of the hypotheses to be made. Once the most confident hypotheses provide
a representation that describes that feature well, the observations will become unsurprising
again and exploration will occur. Another way to consider this surprise technique is that
exploitation will occur whilst the information gain is increasing to continue to obtain the
information available, where information gain is measured through monitoring the change
in prior and posterior confidences across the KL-divergence. When the information gain
stops increasing, the technique will explore to try and obtain new sources of information.

The process of experiment selection occurs as follows. On the final experiment of the ini-
tial experiments and all subsequent experiments, the surprise of the observation obtained
is calculated. After the surprise of the observation has been calculated, the hypothesis
manager updates and refines the hypotheses using the process described previously. If S
is positive, meaning the observation was surprising, then then next experiment will be an
exploitation experiment chosen as the maximum of D(x). If S is not positive, then the
observation was not surprising and the next experiment will be an exploration experiment,
chosen as the experiment that is maximally away from all other previously performed ex-
periments in the experiment parameter space.

4.2. Selecting Experiments at Peaks of the Discrepancy Equation

As an alternative active strategy for the exploration–exploitation trade-off, we consider a
strategy of combined exploration and exploitation based on the discrepancy between hy-
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Figure 2: Underlying behaviours used to evaluate the artificial experimenter within a 1-
dimensional experiment parameter space.

potheses. The exploitation function D(x) in Equation 3, will give a maximal value where
the hypotheses most disagree. Performing these experiments when there are good hypothe-
ses in consideration, will identify the hypothesis that most suitably describes the underlying
behaviour by disproving the alternate hypotheses. However these exploitation experiments
will likely focus on particular areas of the parameter space and may place experiments close
to each other in the parameter space. This will mean that little exploration will occur and
features of the behaviour may be missed, or only a small number of the differences between
hypotheses are examined.

Instead if we consider D(x) across the parameter space, we may expect to see local max-
ima, or peaks, in the function. Each of these peaks should provide an area of the parameter
space where the hypotheses disagree, potentially for different features of the behaviour. If
experiments are placed at these peaks, there are three potential benefits. First, there will
be a guaranteed information gain through identifying a difference between the hypotheses.
Second, different differences between hypotheses will be examined. Finally, experiments
will be placed across the parameter space allowing for some additional exploration.

The process of this technique is as follows. After building the initial set of hypotheses,
a set of experiments are then chosen that are at the peaks of the discrepancy equation
D(x). These experiments are performed sequentially, with the hypotheses updated after
each experiment is performed. When all experiments in the set have been performed,
the discrepancy equation is recalculated and the next set of experiments are selected and
performed.

5. Evaluation in 1-dimensional Parameter Space

To perform a simulated evaluation of the experiment selection techniques, we consider that
characterisation experimentation can be described as a function:

y = f(x) + ε+ φ (11)

where y is the observation, x is the parameter for the experiment to perform on some
system described by f , ε is observational noise present in all experiments and φ is shock
noise present only in experiments that yield erroneous observations.

In previous work we demonstrated that selecting experiments at the peaks of the dis-
crepancy equation (referred from here as discrepancy peaks) was consistently one of the best
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strategies to perform in a 1-dimensional problem (Lovell et al., 2010). However in the more
complex nonmonotonic behaviours, random selection of observations performed similarly to
the discrepancy peaks technique. Using the same methodology described in that work, we
evaluated the artificial experimenter on a set of simulated behaviours in a 1-dimensional
problem (further details of this trial in 1-dimension can be found in Lovell et al. (2011)).
To do this, 15 experiments were performed per trial, where the first 5 experiments were
equally spaced across the experiment parameter space and the remaining 10 were actively
selected using the technique being examined. Five initial experiments are chosen to allow
a reasonably diverse set of initial hypotheses to be created. Of those 15 experiments, all
observations were adjusted with Gaussian noise ε = N(0, 0.52) and 3 experiments produced
erroneous observations by applying additional noise from φ = N(3, 1). The mean squared
error between the most confident hypothesis and the true underlying behaviour for the set
of possible experiment parameters were then calculated after each experiment, across 100
trials of each strategy using:

E = k

∫
X

(
b̂(x)− f(x)

)2
dx,

=
1

|X |

|X |∑
n=1

(
b̂(xn)− f(xn)

)2 (12)

where b̂(x) is the prediction of the most confident hypothesis for the experiment parameter
x, which are drawn from the set of possible experiment parameters X = {x1, x2, . . . , xn}.
Importantly the set of hypotheses that b is chosen from is not complete and will change over
time such that the set may not contain a good representation of the underlying function on
a particular evaluation, making the problem not one of simply selecting experiments where
the hypotheses maximally disagree, which would be appropriate if a good hypothesis was
guaranteed within the set of possible hypotheses.

The behaviours used, shown in Fig. 2, tested the ability of the artificial experimenter to
build models of behaviours representative of possible biological responses. The results, as
shown in Fig. 3, demonstrate that the surprise technique was able to outperform the other
techniques across the behaviours tested. Additionally, by performing a two-tailed t-test with
95% confidence tabulated in Table 1, the surprise technique is shown to provide statistically
significant improvements over random selection in all cases and over the discrepancy peaks
technique in most.

5.1. Laboratory Evaluation of Surprise Experiment Selection

Further to the simulated trial, a laboratory characterisation of the coenzyme NADH was
performed. The coenzyme NADH was chosen for the trial as it is often used to monitor
enzyme catalytic activity and the response can in-part be compared to the theoretical Beer-
Lambert law in the linear region of the response (Nelson and Cox, 2008). The results for
this evaluation comparing the surprise and discrepancy peaks experiment selection tech-
niques are shown in Fig. 4. In each trial 5 initial exploratory experiments were performed
followed by a further 10 actively selected experiments. A tabulation of whether the active
experiments selected were exploration or exploitation experiments for the surprise technique
are given in Table 2.
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Figure 3: Mean error from 100 trials over number of active experiments performed, for the
three behaviours and three experiment selection techniques being evaluated in
the 1-dimensional parameter space evaluation. The error over time is shown for
the active experiments that occur after the 5 initial experiments. In (a) the result
for the behaviour shown in Fig. 2(a) is shown, (b) corresponds to Fig. 2(b) and
(c) corresponds to Fig. 2(c). In each case the surprise technique outperforms the
alternative techniques.

Behaviour Technique Active experiments with significant difference

A
Random all

Discrepancy Peaks 3, 5–14

B
Random 10, 11, 13–15

Discrepancy Peaks 6, 8–15

C
Random 11–15

Discrepancy Peaks none

Table 1: Identification of statistically significant results in the 1-dimensional evaluation. In
each a comparison is made between the surprise technique and the one stated.
In all cases the surprise technique provides a significant improvement over the
alternate technique. The behaviours correspond to the ones shown in Fig. 2.
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5.1.1. Surprise

After performing the initial exploratory experiments the artificial experimenter requested
an experiment to be performed with concentration 0.42 mM, to examine the change in
behaviour from a linear response in the lower concentrations. The observation obtained
for that experiment agreed with the other experiment at 0.38 mM, causing the most con-
fident hypotheses in that region to have a similar response. Next the experiment selection
technique chose experiments to evaluate the region between 0.75 mM and 1.13 mM. In this
region it found noisy observations, causing several exploitation experiments to be performed
to investigate the different hypotheses within in this region. After 6 actively chosen exper-
iments, the most confident hypothesis produced a good representation of response curve,
with the initial linear component of the response prediction between 0 mM and 0.4 mM be-
ing similar to the theoretical prediction. After 8 actively chosen experiments, the response
curve of the most confident hypothesis was essentially the same as it was after 6 actively
chosen experiments, suggesting that too many exploitation experiments were performed at
this stage of experimentation.

On the penultimate experiment the artificial experimenter performed an exploration
experiment, as the extensive examination of the region between 0.75 mM and 1.13 mM
ended with hypotheses that represented that region well, which caused the final experiment
performed in that region to not be surprising. This exploration experiment at 0.18 mM
produced an observation much higher than the hypotheses predicted, which caused the ob-
servation to be surprising. This surprising observation caused the final experiment to be an
exploitation experiment to examine why the observation differed from the predictions of the
hypotheses. The final experiment obtained an observation that agreed with the previous
observation, causing the most confident hypotheses to believe that the behaviour passes
through those observations and away from the Beer-Lambert law’s theoretical prediction.
This difference between the prediction and theoretical value should not be classed as a
problem caused by the surprise technique, but rather due to the experimental observations
obtained. It is likely that these two final observations were not representative of the true un-
derlying behaviour, but because they both agreed with each other, the hypothesis manager
believed the observations to be true.

5.1.2. Discrepancy Peaks

The discrepancy peaks technique initially chose experiments to examine near the stationary
points of the curve, where the shape of the behaviour changes. In the region 1 mM and 1.3
mM, the observations obtained were fairly noisy, which resulted in continual exploitation of
the the differences in hypotheses in this region. Throughout experimentation the technique
also placed a large number of observations near a concentration of 0 mM. The repeated
placement of experiments in this region is a weakness, as the observations were of similar
absorbance measurements, with no new information being gained from the repeated trials.
However, by the final active experiment, the technique had produced a good fit of the data,
with a prediction of the linear region that was near identical to the Beer-Lambert theoretical
prediction.
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Figure 4: Most confident hypothesis over 10 actively chosen experiments for the discrepancy
peaks and surprise explore-exploit switching experiment selection technique in a
laboratory trial. Figures show intervals of 2 actively chosen experiments.
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Active Experiment No. Explore or Exploit

1 Exploit
2 Explore
3 Exploit
4 Exploit
5 Exploit
6 Exploit
7 Exploit
8 Exploit
9 Explore
10 Exploit

Table 2: Listing of whether surprise explore-exploit switching technique chose an explo-
ration or exploitation experiment to perform.

5.1.3. Comparison

Both techniques first used experiments to investigate the region of the parameter space
where the behaviour curves, roughly between 0.6 mM and 1.3 mM. In both trials, noisy
observations were observed in the region 0.8 mM to 1.3 mM, leading to both techniques
focussing experiments in this region. The surprise technique was able to determine quicker
than the discrepancy peaks technique that this noisy region had an underlying behaviour
that was roughly linear. This was due to the discrepancy peaks technique placing repeated
experiments near 0 mM, caused by exploiting small differences between hypotheses.

Whilst the discrepancy peaks technique failed to allow much exploration of the param-
eter space in this trial, the experiment parameters it chose for the majority of experiments
were in good regions of the parameter space to identify the features of the behaviour. In
contrast the surprise technique identified the behaviour quicker and was able to perform
further exploration. In the surprise trial it was only due to the final two observations being
erroneous and in agreement, which led to the final hypothesis to be produced that incor-
rectly characterised the part of the behaviour that could be theoretically defined. Overall
it appears that the surprise technique provided the better strategy in this trial, because
it was able provide data that led to agreement about the noisy region quickly, allowing it
to redirect resources back to exploration to search for features of the behaviour not yet
characterised.

5.1.4. Materials and Methods

A stock solution of 5 mM NADH and a 10 mM Tris buffer at pH 8.5 were prepared. Dilutions
of NADH requested by the artificial experimenter were produced by mixing volumes taken
from the stock solution and the buffer. Measurements of optical absorbance at 340 nm
were recorded with a PerkinElmer Lambda 650 UV-Vis Spectrophotometer to provide the
observations. The photometric range of the spectrophotometer was 6 A.
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6. Evaluation in 2-dimensional Parameter Space

We now evaluate the experiment selection techniques within a 2-dimensional parameter
space. In each case the multiple hypotheses based hypothesis manager was used, combined
with either the random, discrepancy peaks or surprise based technique for experiment se-
lection. The protocol for the hypothesis manager remained the same as the 1-dimensional
version, except that for performance 40 new hypotheses were created in each iteration
(down from 200 in the 1-dimensional version), with the best 100 hypotheses kept into the
next round of experimentation (where the top 20% of the hypotheses were kept on each
iteration in the 1-dimensional version). Hypotheses were represented using a thin plate
spline (Wahba, 1990):

h = min
n∑
i,j

(y − f(x1, x2))
2

+ λ

∫ ∞
−∞

∫ ∞
−∞

(
f ′′(x1, x1)

2 + 2f ′′(x1, x2)
2 + f ′′(x2, x2)

2
)
dx1dx2 (13)

with a choice of smoothing parameters (λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}). All independent pa-
rameters were coded between 0 and 1, from behaviours with uncoded x1 and x2 parameters
both ranging between 0 and 50. The underlying behaviours used are presented in Fig. 5,
where (a) provides a single feature, (b) a behaviour where only the x2 factor provides a
role in determining the response, and (c) a behaviour with two peaks and a trough. In
each case the behaviours were between 0 and 8 on the dependent variable, so that the noise
parameters ε and φ could remain the same for both the 1 and 2-dimensional evaluations.

The three experiment selection strategies were tested over 100 trials per behaviour. In
each behaviour, 5 initial experiments were performed, which were equally spaced around the
parameter space ([0,0], [1,0], [0,1], [1,1] and [0.5,0.5] in coded values). After the exploratory
experiments, a further 25 actively chosen experiments were performed per trial, where
3 of the experiments produced erroneous observations. Gaussian noise was added to all
observations with ε = N(0, 0.52), whilst the noise applied to erroneous observations was
φ = N(3, 1). The techniques were again evaluated by comparing the mean over 100 trials
of the error between the most confident hypothesis and the true underlying behaviour.

6.1. Results

In the 2-dimensional problem, the results show there is less difference between the surprise
and random experiment selection techniques than in the 1-dimensional case, whilst the dis-
crepancy peaks technique again generally performs the worst, as shown in Fig. 9. However,
overall it appears that the surprise technique is still a more robust technique than the others
considered, with the technique providing significant improvements over a random strategy
in two of the three underlying behaviours. In Fig. 6, 7 and 8, a comparison of most confi-
dent hypotheses for each technique and behaviour after 25 active experiments are shown.
In each case the error between the hypothesis shown and the true underlying behaviour is
representative of the mean error given in Fig. 9.

For the single feature behaviour, A, the random technique outperforms the surprise
technique between the 7th and 23rd active experiments, as shown in Fig. 9(a). During
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(a) (b) (c)

Figure 5: Underlying behaviours used for simulated 2-dimensional parameter space trials.

(a) (b) (c)

Figure 6: Representative hypotheses produced by random experiment selection.

(a) (b) (c)

Figure 7: Representative hypotheses produced by discrepancy peaks experiment selection.

(a) (b) (c)

Figure 8: Representative hypotheses produced by surprise experiment selection.
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Figure 9: Mean error from 100 trials over number of active experiments performed, for the
three behaviours and three experiment selection techniques being evaluated in
the 2-dimensional parameter space evaluation. The error over time is shown for
the active experiments that occur after the 5 initial experiments. In (a) the result
for the behaviour shown in Fig. 5(a) is shown, (b) corresponds to Fig. 5(b) and
(c) corresponds to Fig. 5(c).

these experiments, the surprise technique spends more time investigating smaller differ-
ences between the hypotheses, causing a greater amount of exploitation early on than is
perhaps necessary. Whilst the random technique is able to explore the parameter space
more early on, allowing it to form a better general understanding of the behaviour quicker
than the surprise technique. However, the random technique can perform poorly if it sam-
ples a region of the parameter space only once and obtains an erroneous observation, which
can cause it to include an additional feature in the prediction that is not present in the
underlying behaviour, as shown in Fig. 6(a). The discrepancy peaks technique performs
poorly throughout, by over exploiting the information obtained rather than exploring. This
causes discrepancy peaks technique to continually investigate small differences between the
hypotheses, caused by the Gaussian noise applied to each observation.

For the single factor behaviour, B, the initial 5 data points, if error free, are capable of
providing all of the techniques with data suitable for producing a good representation of the
behaviour. Therefore this behaviour tests the ability of the experiment selection techniques
to deal with erroneous observations in a 2-dimensional parameter space. The random tech-
nique fails to improve the performance of the most confident hypothesis throughout the
25 actively chosen experiments. In part this is caused by the technique not investigating
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erroneous observations, so any improvements to understanding the behaviour are lost by er-
roneous observations that misguide hypothesis formation. The surprise technique performs
well early on, as it is able to investigate erroneous observations. However the mean error
increases again between 7 and 15 experiments because the technique over investigates some
observations, causing the hypotheses to overfit some of the noise. The discrepancy peaks
technique also suffers the problem of over sampling a region, causing lots of hypotheses with
differences of opinion in a small area, which leads to hypotheses overfitting in those areas
the ε noise applied to the observations. However, over time the discrepancy peaks technique
lowers the error to slightly below the surprise error in the latter stages of experimentation.
By 25 experiments the performance of the surprise and discrepancy peaks techniques are
nearly equal.

For the behaviour with multiple features, C, the resources available were too few to get a
good representation of the behaviour. The surprise and random techniques reduce the error
at a similar rate for the first 18 active experiments. However after 18 active experiments
the error for the random technique levels out, whilst it continues to reduce for the surprise
technique. In the random technique the experiments are spread out across the parameter
space, allowing for the different features to be identified quickly, albeit at a low resolution.
However, as the experiments are not directed, increasing the understanding of any partic-
ular behaviour is by chance and potentially erroneous observations are ignored. These two
factors prevent the error from reducing further later on in experimentation. The surprise
technique through performing exploitation experiments, performs more experiments near
the features it discovers, causing better representations of the behaviour to be formed. Ad-
ditionally, the technique is able to investigate and identify erroneous observations, whilst
also performing experiments to further search the parameter space. The discrepancy peaks
technique performs worse than the other two techniques, because it over exploits and be-
comes focussed in particular regions of the parameter space where the first unexpected
behaviours were obtained. Unlike the other two behaviours where all techniques provided
a somewhat representative prediction of the underlying behaviour, the surprise based tech-
nique is the only technique to provide a good representation of underlying behaviour C,
shown in Fig. 5(c), 6(c), 7(c) and 8(c).

Like the 1-dimensional case, the results for the 2-dimensional parameter space have been
analysed using a two-tailed t-test with α = 0.05 to determine if the results are significant
at the 95% confidence interval, shown in Table 3. The surprise technique provided sig-
nificant improvements over a random selection strategy for behaviours B and C, although
only in the latter stages of experimentation. These improvements are in part due to the
surprise technique being able to better identify erroneous observations than the random
technique. Additionally the surprise technique is able to investigate the new features it
discovers further, which allows it to provide a better representation of the more complex
behaviour C. The random strategy performs significantly better than the surprise technique
for the majority of the experimentation performed using behaviour A. This is due to the
random technique being able to explore the parameter space more, where the surprise tech-
nique spends some additional time investigating small differences between the hypotheses
that only provide small benefits for developing a representation of the behaviour. The
discrepancy peaks technique performs significantly worse than the surprise technique for
behaviours A and C by the end of the experimentation performed. However, the technique
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Behaviour Technique Active experiments with significant difference

A
Random 3, 4, (7–23 surprise is significantly worse)

Discrepancy Peaks 2–25

B
Random 3, 21–25

Discrepancy Peaks 3–6

C
Random 23–25

Discrepancy Peaks 18–25

Table 3: Identification of statistically significant results in the 2-dimensional evaluation. In
each a comparison is made between the surprise technique and the one stated.
Except where stated, the surprise technique provides a significant improvement
over the alternate technique. The behaviours correspond to the ones shown in
Fig. 5.

performs similarly well compared to the surprise technique for the behaviour B, due to little
exploration being required, which the technique is poor at providing.

7. Related Work

The exploration vs. exploitation trade-off, although not always specifically mentioned, has
been addressed by many of the computational scientific discovery systems in the literature.
In this section we first provide a brief review of the techniques employed in these systems to
address the exploration–exploitation trade-off. Then we consider active learning techniques
and their current limitations within autonomous experimentation.

The KEKADA system was one of the first examples of an artificial experimenter, which
formed more structural hypotheses about the mechanisms of reactions (Kulkarni and Simon,
1990). The system attempted to follow the heuristics used by Hans Krebs to discover
the urea cycle, to determine whether a computational system could rediscover knowledge
obtained in physical experimentation. A key part of the KEKADA system was reacting to
surprising observations, which are those observations that do not agree with the current
view of the behaviour being investigated. When a surprising observation was obtained, the
system would follow several strategies for reacting to the surprise that would exploit the
information available. Examples of the strategies employed are: identifying the independent
parameter that caused the surprise and identifying errors in the current hypotheses. The
system was able to provide a good model of the heuristics used by Hans Krebs, however it
could be easily outperformed by human experimenters who had far more heuristics available
to them.

The FAHRENHEIT system, an extension of BACON (Langley et al., 1987), was designed
to find an empirical theory that could describe an observed behaviour within a parameter
space (Żytkow et al., 1990). FAHRENHEIT was demonstrated to work in an autonomous
experimentation machine in the field of electro-chemistry (Żytkow et al., 1990). To begin the
system performed experiments that explored the parameter space, to allow it to produce
models of regularities in the behaviour. When the system discovered an irregularity, for
example a rapid change in phase such as a discontinuity, the system would then focus
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experiments on investigating the extent of the irregularity, producing separate models for
the regions of regularity adjacent to the irregularity. However this system would require a
large number of experiments to be performed to provide the data required.

A system developed to automate a chemistry workstation, employed a grid search with
decreasing grid size as part of its strategy to manage the exploration–exploitation trade-
off (Dixon et al., 2002). The goal of the system was to discover the parameters that produced
the highest yield within the experiment parameter space. Initially experiments were placed
spread out across the parameter space to provide exploration by a grid with large grid
squares. The size of the grid squares decreased over subsequent experiments, to provide a
more detailed analysis of the behaviour. Additionally a simplex based experiment selection
technique was employed in later stages of experimentation, where experiments would focus
towards areas of the parameter space where previously high yields were obtained (Du and
Lindsey, 2002). Like many evolutionary algorithms, the technique had the potential for
becoming stuck within a local maxima.

Scouting was an evolutionary algorithm that evolved parameters based on an adap-
tive measure of surprise, which was able to manage the trade-off between exploration and
exploitation (Pfaffmann and Zauner, 2001). Like KEKADA, surprising observations were
those that differed from the hypothesis under consideration. When no observations were
surprising, experiments would be placed randomly within the parameter space. When a
surprising observation was obtained, the evolutionary algorithm would then place experi-
ments near the surprising observation. Importantly, as more experiments were placed near
the initially surprising observation, so the model would better represent the behaviour and
the observation would become less surprising. This adaptivity of surprise, meant that once
sufficient information had been obtained to investigate why the observation was surprising,
the algorithm would again place experiments in other areas of the parameter space, au-
tomatically addressing the exploration-exploitation trade-off. The scouting approach was
demonstrated within an autonomous experimentation machine to characterise enzymatic
response behaviours (Matsumaru et al., 2002). A problem with this technique was that if
an observation was erroneous, then it could remain surprising as subsequent observations
would not agree with it, meaning that the system could remain performing exploitation
experiments in that region.

The robot scientist (King et al., 2004) does not algorithmically consider the trade-off
between exploration and exploitation. Instead the system is provided with a large body of
information within a relatively small domain, which is then used to formulate hypotheses
that can be tested to determine their validity. Essentially the initial information provided
by the user is the only exploration that occurs. The active learning technique the system
uses to select experiments to examine the hypotheses is purely exploitative, by choosing
experiments that will reduce the likely cost to determine the most representative hypothesis.

Another technique that investigates automatically characterising enzymatic response
characterisation, performs a largely exploration focussed experiment selection (Bonowski
et al., 2010). Initially the technique is explorative through placing experiments using a
space fitting algorithm to ensure a good distribution of experiments across the experiment
parameter space. Later experiments combine exploitation and exploration through placing
experiments where the uncertainty in the hypothesis is greatest, but also explorative through
requiring experiments to fulfil a minimum distance requirement between experiments in
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the parameter space. The minimum distance required decreases over time, to allow finer
examination of the parameter space. However the technique does not consider erroneous
observations.

7.1. Active Learning

Active learning seeks to address the same issues as those in autonomous experimentation.
That is to minimise the number of labels to obtain, or experiments to perform, whilst max-
imising the information obtained. In comparison to present autonomous experimentation
techniques, active learning is more theoretically grounded and mathematically sound than
the often ad-hoc techniques found in autonomous experimentation. However at present
the theoretical assumptions made in active learning mean the problems addressed are not
always representative of physical experimentation, which limits their potential applications.
In particular the assumption that experiments occur without noise, is an assumption that
is made too frequently (Cohn et al., 1994; Freund et al., 1997), or that a hypothesis is
already in consideration that provides a suitable representation of the behaviour being in-
vestigated (MacKay, 1992; Settles, 2009).

The work by MacKay (1992) places experiments where the predicted information gain is
highest, either in a single hypothesis or to discriminate between multiple models. In order to
do this, the assumption is made that at any particular point in the experimentation, a model
exists that is representative of the underlying behaviour being investigated. This makes
experiment selection purely exploitation based and is honing in on the most appropriate
model or hypothesis. In physical experimentation this will often not be the case. Whilst the
method for discriminating between hypotheses proposed by MacKay is useful in autonomous
experimentation, and is similar to the discrepancy function we use in Eqn. 3, the technique
as a whole cannot be used as is within physical experimentation, due to the assumption
about a complete model space.

Query-by-committee provides a way of managing the uncertainty in predictions through
allowing an ensemble of hypotheses to be considered in parallel, similar to how the multiple
hypotheses are used within the approach considered here (Seung et al., 1992). The tech-
nique takes an ensemble of hypotheses and performs experiments in the locations where
there is the maximal disagreement between hypotheses. The disagreement is considered
maximal where there are equal votes for the two options within a binary classification prob-
lem. However the query-by-committee is stated to have limitations that restrict the use of
the algorithm within practical applications, with the primary limitation being the assump-
tion that experiments are noise free (Freund et al., 1997). The idea of considering multiple
hypotheses is important in managing the uncertainty presented within autonomous exper-
imentation problems, therefore query-by-committee is a highly appropriate technique to
apply within such active learning tasks. Although alterations are required to the technique
in terms of hypothesis management and discrepancy calculation, like those presented here,
before this technique can be more widely used within autonomous experimentation.

Active learning has considered the possibility of erroneous observations, described in
the literature as noisy oracles (Settles, 2009). However research into this particular area is
currently extremely limited and do not address the issue found in experimentation where
erroneous observations occur sporadically, with no particular distribution or consistency.
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8. Conclusion

In physical experimentation, the costs per experiment prevent large numbers of observations
from being obtained. With the validity of observations not guaranteed, experiments must be
performed that test the validity of the hypotheses produced and also search the parameter
space under investigation for features of the behaviour not yet discovered. This trade-off
between feature discovery and hypothesis evaluation is an exploration–exploitation trade-off,
where differences between competing hypotheses is used in the exploitation. The resources
available prevent a large number of repeated experiments in an area to get a highly accurate
prediction. Likewise the resources limit the exploration that can be performed to find all
the different features of the behaviour. Techniques are therefore required that will search for
features of the behaviour under investigation, whilst ensuring a reasonable level of confidence
that the hypothesised feature observed is genuine.

To manage this trade-off we consider a technique that is similar to how successful hu-
man experimenters address the problem in physical experimentation, by using the surprise
of the last observation obtained to determine whether the next experiment will explore or
exploit. A Bayesian formulation of surprise has been used, where an exploration experiment
is performed when the last experiment was not surprising and an exploitation experiment
is performed when the last experiment was surprising. This use of surprise ensures that
experiments are performed to evaluate hypotheses when an observation is discovered that
the hypotheses did not expect, to determine why the hypotheses did not expect that obser-
vation, either due to the observation being erroneous or the hypotheses inaccurate. Whilst
when observations are obtained that are similar to the predictions of the most confident
hypotheses under consideration, then exploration is performed to look for features of the
behaviour not yet captured by the hypotheses.

Expanding to higher dimensions, the surprise technique was in some cases able to pro-
vide a significant improvement over the alternate techniques considered. However the degree
of benefit was less than in the 1-dimensional case. A limitation of the surprise technique in
the higher dimension problems, was that it performs little exploration early on. As the thin
plate splines tended to overfit observation noise more than the smoothing splines did with
1-dimensional data, there was greater discrepancy between the hypotheses, which caused
the surprise technique to exploit more often, especially in early experiments where most ob-
servations would be surprising to the hypotheses. This led to some of the early experiments
being focussed within a particular area. However, unlike the discrepancy peaks technique
that could also focus the placement of experiments within a small area, the surprise tech-
nique adapted over time and explored the parameter space, leading to it providing more
accurate hypotheses than the other techniques later on in experimentation. The surprise
technique could benefit from additional initial exploration, however care would have to be
taken to ensure that this exploration does not bias particular regions of the parameter space.
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