
JMLR: Workshop and Conference Proceedings vol 23 (2012) 37.1–37.18 25th Annual Conference on Learning Theory

Exact Recovery of Sparsely-Used Dictionaries

Daniel A. Spielman SPIELMAN@CS.YALE.EDU
Huan Wang HUAN.WANG@YALE.EDU
Department of Computer Science, Yale University

John Wright JOHNWRIGHT@EE.COLUMBIA.EDU

Department of Electrical Engineering, Columbia University

Editor: Shie Mannor, Nathan Srebro, Robert C. Williamson

Abstract
We consider the problem of learning sparsely used dictionaries with an arbitrary square dictio-
nary and a random, sparse coefficient matrix. We prove that O(n log n) samples are sufficient to
uniquely determine the coefficient matrix. Based on this proof, we design a polynomial-time algo-
rithm, called Exact Recovery of Sparsely-Used Dictionaries (ER-SpUD), and prove that it proba-
bly recovers the dictionary and coefficient matrix when the coefficient matrix is sufficiently sparse.
Simulation results show that ER-SpUD reveals the true dictionary as well as the coefficients with
probability higher than many state-of-the-art algorithms.
Keywords: Dictionary learning, matrix decomposition, matrix sparsification.

1. Introduction

In the Sparsely-Used Dictionary Learning Problem, one is given a matrix Y ∈ Rn×p and asked to
find a pair of matrices A ∈ Rn×m and X ∈ Rm×p so that ‖Y −AX‖ is small and so that X
is sparse – X has only a few nonzero elements. We examine solutions to this problem in which
A is a basis, so m = n, and without the presence of noise, in which case we insist Y = AX .
Variants of this problem arise in different contexts in machine learning, signal processing, and even
computational neuroscience. We list two prominent examples:

• Dictionary learning [16; 12]: Here, the goal is to find a basis A that most compactly repre-
sents a given set of sample data. Techniques based on learned dictionaries have performed
quite well in a number of applications in signal and image processing [3; 18; 20].

• Blind source separation [22]: Here, the rows of X are considered the emissions of various
sources over time. The sources are linearly mixed by A (instantaneous mixing). Sparse
component analysis [22; 8] is the problem of using the prior information that the sources are
sparse in some domain to unmix Y and obtain (A,X).

These applications raise several basic questions. First, when is the problem well-posed? More pre-
cisely, suppose that Y is indeed the product of some unknown dictionary A and sparse coefficient
matrix X . Is it possible to identify A and X , up to scaling and permutation. If we assume that the
rows ofX are sampled from independent random sources, classical, general results in the literature
on Independent Component Analysis imply that the problem is solvable in the large sample limit
[4]. If we instead assume that the columns of X each have at most k nonzero entries, and that for

c© 2012 D.A. Spielman, H. Wang & J. Wright.

SPIELMAN WANG WRIGHT

each possible pattern of nonzeros, we have observed k + 1 nondegenerate samples yj , the problem
is again well-posed [13; 8]. This suggests a sample requirement of p ≥ (k + 1)

(
n
k

)
. We ask: is

this large number necessary? Or could it be that the desired factorization is unique1 even with more
realistic sample sizes?

Second, suppose that we know that the problem is well-posed. Can it be solved efficiently?
This question has been vigorously investigated by many authors, starting from seminal work of Ol-
shausen and Field [16], and continuing with the development of alternating directions methods such
as the Method of Optimal Directions (MOD) [5], K-SVD [1], and more recent, scalable variants
[14]. This dominant approach to dictionary learning exploits the fact that the constraint Y = AX
is bilinear. Because the problem is nonconvex, spurious local minima are a concern in practice,
and even in the cases where the algorithms perform well empirically, providing global theoretical
guarantees would be a daunting task. Even the local properties of the problem have only recently
begun to be studied carefully. For example, [10; 7] have shown that under certain natural random
models for X!, the desired solution will be a local minimum of the objective function with high
probability. However, these results do not guarantee correct recovery by any efficient algorithm.

In this work, we contribute to the understanding of both of these questions in the case whenA is
square and nonsingular. We prove that O(n log n) samples are sufficient to uniquely determine the
decomposition with high probability, under the assumptionX is generated by a Bernoulli-Gaussian
or Bernoulli-Rademacher process.

Our argument for uniqueness suggests a new, efficient dictionary learning algorithm, which we
call Exact Recovery of Sparsely-Used Dictionaries (ER-SpUD). This algorithm solves a sequence
of linear programs with varying constraints. We prove that under the aforementioned assumptions,
the algorithm exactly recoversA andX with high probability. This result holds when the expected
number of nonzero elements in each column ofX is at mostO(

√
n) and the number of samples p is

at least Ω(n2 log2 n). To the best of our knowledge, this result is the first to demonstrate an efficient
algorithm for dictionary learning with provable guarantees.

Moreover, we prove that this result is tight to within a log factor: for the Bernoulli-Gaussian
case, when the expected number of nonzeros in each column is Ω(

√
n log n), algorithms of this

style fail with high probability.
Our algorithm is related to previous proposals by Zibulevsky and Pearlmutter [22] (for source

separation) and Gottlieb and Neylon [9] (for dictionary learning), but involves several new tech-
niques that seem to be important for obtaining provable correct recovery – in particular, the use of
sample vectors in the constraints. We will describe these differences more clearly in Section 5, after
introducing our approach. Other related recent proposals include [17; 11].

The remainder of this paper is organized as follows. In Section 3, we fix our model. Section
4 discusses situations in which this problem is well-posed. Building on the intuition developed in
this section, Section 5 introduces the ER-SpUD algorithm for dictionary recovery. In Section 6, we
introduce our main theoretical results, which characterize the regime in which ER-SpUD performs
correctly. Section 7 describes the key steps in our analysis. Technical lemmas and proofs are
sketched; for full details please see the full version. Finally, in Section 8 we perform experiments
corroborating our theory and suggesting the utility of our approach.

1. Of course, for som! e applications, weaker notions than uniqueness may be of interest. For example, Vainsencher
et. al. [19] give generalization bounds for a learned dictionary Â. Compared to the results mentioned above, these
bounds depend much more gracefully on the dimension and sparsity level. However, they do not directly imply that
the “true” dictionary A is unique, or that it can be recovered by an efficient algorithm.

37.2

ER-SPUD

2. Notation

We write ‖v‖p for the standard `p norm of a vector v, and we write ‖M‖p for the induced operator
norm on a matrix M . ‖v‖0 denotes the number of non-zero entries in v. We denote the Hadamard
(point-wise) product by �. [n] denotes the first n positive integers, {1, 2, . . . , n}. For a set of
indices I , we let P I denote the projection matrix onto the subspace of vectors supported on indices
I , zeroing out the other coordinates. For a matrixX and a set of indices J , we letXJ (XJ) denote
the submatrix containing just the rows (columns) indexed by J . We write the standard basis vector
that is non-zero in coordinate i as ei. For a matrix X we let row(X) denote the span of its rows.
For a set S, |S| is its cardinality.

3. The Probabilistic Models

We analyze the dictionary learning problem under the assumption thatA is an arbitrary nonsingular
n-by-n matrix, but that X is a random sparse n-by-p matrix with i.i.d. entries. In the Bernoulli(θ)-
Gaussian model, the entries of X are independent random variables, each of which has the form
Xi,j = ςτ , where ς ∼ N(0, 1) is a standard Gaussian, and τ is 1 with probability θ and 0 with
probability 1− θ, independent of ς . We also consider a Bernoulli(θ)-Rademacher model, in which
the non-zero entries are chosen uniformly in ±1.

4. When is the Factorization Unique?

At first glance, it seems the number of samples p required to identify A could be quite large. For
example, Aharon et. al. view the given data matrix X as having sparse columns, each with at most
k nonzero entries. If the given samples yj = Axj lie on an arrangement of

(
n
k

)
k-dimensional

subspaces range(AI), corresponding to possible support sets I ,A is identifiable.
On the other hand, the most immediate lower bound on the number of samples required comes

from the simple fact that to recover A we need to see at least one linear combination involving
each of its columns. The “coupon collection” phenomenon tells us that p = Ω(1θ log n) samples are
required for this to occur with constant probability, where θ is the probability that an elementXij is
nonzero. When θ is as small as O(1/n), this means p must be at least proportional to n log n. Our
next result shows that, in fact, this lower bound is tight – the problem becomes well-posed once we
have observed cn log n samples.

Theorem 1 (Uniqueness) Under the Bernoulli(θ)-Gaussian and Bernoulli(θ)-Rademacher mod-
els, if 1/n ≤ θ ≤ 1/C and p > Cn log n, then with probability at least 1 − exp{−c′p}, for
any alternative factorization Y = A′X ′ such that maxi ‖eTi X ′‖0 ≤ maxi ‖eTi X‖0, we have
A′ = AΠΛ and X ′ = Λ−1ΠTX , for some permutation matrix Π and nonsingular diagonal
matrix Λ, for some absolute constants C and c′.

4.1. Sketch of Proof

Rather than looking at the problem as one of trying to recover the sparse columns ofX , we instead
try to recover the sparse rows. AsX is non-singular with very high probability, the following lemma
tells us that for any other factorization the row spaces ofX , Y andX ′ are probably the same.

37.3

SPIELMAN WANG WRIGHT

Lemma 2 If rank(X) = n, A is nonsingular, and Y can be decomposed into Y = A′X ′, then
the row spaces ofX ′,X , and Y are the same.

We will prove that the sparsest vectors in the row-span of Y are the rows of X . As any other
factorization Y = A′X ′ will have the same row-span, all of the rows ofX ′ will lie in the row-span
of Y . This will tell us that they can only be sparse if they are in fact rows ofX . This is reasonable,
since if distinct rows of X have nearly disjoint patterns of nonzeros, taking linear combinations of
them will increase the number of nonzero entries.

Lemma 3 Let Ω be an n-by-p Bernoulli(θ) matrix with 1/n < θ < 1/4. For each set S ⊆ [n],
let TS ⊆ [p] be the indices of the columns of Ω that have at least one non-zero entry in some row
indexed by S.

a. For every set S of size 2,

P [|TS | ≤ (4/3)θp] ≤ exp (−θp/108) .

b. For every set S of size σ with 3 ≤ σ ≤ 1/θ

P [|TS | ≤ (3σ/8)θp] ≤ exp (−σθp/64) .

c. For every set S of size σ with 1/θ ≤ σ,

P [|TS | ≤ (1− 1/e)p/2] ≤ exp (−(1− 1/e)p/8) .

Lemma 3 says that every subset of at least two rows of X is likely to be supported on many
more than θp columns, which is larger than the expected number of nonzeros θp in rows of X .
We show that for any vector α ∈ IRn with support S of size at least 2, it is unlikely that αTX is
supported on many fewer columns than are in TS .

Lemma 4 If X = Ω�R for a binary matrix Ω and an i.i.d. Gaussian matrix R, then the proba-
bility that there is a vector α with support S such that∥∥αTX∥∥

0
≤ |TS | − |S|

is zero.

In the next lemma, we call a vector α fully dense if all of its entries are nonzero.

Lemma 5 For t > 200s, let Ω ∈ {0, 1}s×t be any binary matrix with at least one nonzero in each
column. Let R be an s-by-t matrix with Rademacher random entries, and let U = Ω �R. Then,
the probability that there exists a fully-dense vector α for which

∥∥αTU∥∥
0
≤ t/5 is at most

2−t/25.

Combining Lemmas 3, 4 and 5, we prove the following.

37.4

ER-SPUD

Lemma 6 If X is an n-by-p Bernoulli(θ)–Gaussian or Bernoulli(θ)–Rademacher matrix with
1/n < θ < 1/C and p > Cn log n for a sufficiently large constant C, then the probability that
there is a vector α with support of size larger than 1 for which∥∥αTX∥∥

0
≤ (11/9)θp

is at most exp(−cθp), for some constant c.

For convenience, this lemma is proved as Lemmas 16 and 17 in the Appendix. Theorem 1
follows from Lemmas 2 and 6.

5. Exact Recovery

Theorem 1 suggests that we can recover X by looking for sparse vectors in the row space of Y .
Any vector in this space can be generated by taking a linear combination wTY of the rows of Y
(here, wT denotes the vector transpose). We arrive at the optimization problem

minimize ‖wTY ‖0 subject to w 6= 0.

Theorem 1 implies that any solution to this problem must satisfywTY = λeTj X for some j ∈ [n],
λ 6= 0. Unfortunately, both the objective and constraint are nonconvex. We therefore replace
the `0 norm with its convex envelope, the `1 norm, and prevent w from being the zero vector by
constraining it to lie in an affine hyperplane {rTw = 1}. This gives a linear programming problem
of the form

minimize ‖wTY ‖1 subject to rTw = 1. (1)

We will prove that this linear program is likely to produce rows of X when we choose r to be a
column or a sum of two columns of Y .

5.1. Intuition

To gain more insight into the optimization problem (1), we consider for analysis an equivalent
problem, under the change of variables z = ATw, b = A−1r:

minimize ‖zTX‖1 subject to bTz = 1. (2)

When we choose r to be a column of Y , b becomes a column of X . While we do not know A or
X and so cannot directly solve problem (2), it is equivalent to problem (1): (1) recovers a row ofX
if and only if the solution to (2) is a scaled multiple of a standard basis vector: z? = λej , for some
j, λ.

To get some insight into why this might occur, consider what would happen if X exactly pre-
served the `1 norm: i.e., if ‖zTX‖1 = c‖z‖1 for all z for some constant c. The solution to (2)
would just be the vector z of smallest `1 norm satisfying bTz = 1, which would be ej?/bj? , where
j? is the index of the element of b = A−1r of largest magnitude. The algorithm would simply
extract the row ofX that is most “preferred” by b!

Under the random coefficient models considered here,X approximately preserves the `1 norm,
but does not exactly preserve it [15]. Our algorithm can tolerate this approximation if the largest
element of b is significantly larger than the other elements. In this case we can still apply the above

37.5

SPIELMAN WANG WRIGHT

argument to show that (2) will recover the j?-th row of X . In particular, if we let |b|(1) ≥ |b|(2) ≥
· · · ≥ |b|(n) be the absolute values of the entries of b in decreasing order, we will require both
|b|(2)/|b|(1) < 1− c/ log(n) and that the total number of nonzeros in b is at most c/θ.

In the Bernoulli-Gaussian case, when we choose r to be a column of Y and thus b = A−1r
to be a column of X , properties of the order statistics of Gaussian random vectors imply that our
requirements are probably met. In the Bernoulli-Rademacher case all the non-zero entries of a
column ofX are 1 or −1, and so there is no gap between the magnitudes of the largest and second-
largest elements. For this reason, we choose r to be the sum of two columns of Y and thus b to
be the sum of two columns of X . When θ < 1/

√
n, there is a reasonable chance that the support

of these two columns overlap in exactly one element, in which case we obtain a gap between the
magnitudes of the largest two elements in the sum. This modification also provides improvements
in the Bernoulli-Gaussian model.

5.2. The Algorithms

Our algorithms are divided into two stages. In the first stage, we collect many potential rows of X
by solving problems of the form (1). In the simpler Algorithm ER-SpUD(SC) (“single column”),
we do this by using each column of Y as the constraint vector r in the optimization. In the slightly
better Algorithm ER-SpUD(DC) (“double column”), we pair up all the columns of Y and then
substitue the sum of each pair for r. In the second stage, we use a greedy algorithm (Algorithm
Greedy) to select a subset of n of the rows produced. In particular, we choose a linearly independent
subset among those with the fewest non-zero elements. From the proof of the uniqueness of the
decomposition, we know with high probability that the rows of X are the sparsest n vectors in
row(Y). Moreover, for p ≥ Ω(n log n), Theorems 7 and 8, along with the coupon collection
phenomenon, tell us that a scaled multiple of each of the rows ofX is returned by the first phase of
our algorithm, with high probability.

ER-SpUD(SC): Exact Recovery of Sparsely-Used Dictionaries using single
columns of Y as constraint vectors.

For j = 1 . . . p

Solve minw ‖wTY ‖1 subject to (Y ej)
Tw = 1, and set sj = wTY .

2

2. Preconditioning by setting Y p = (Y Y T)−1/2Y helps in simulation, while our analysis does not require A to be
well conditioned.

37.6

ER-SPUD

ER-SpUD(DC): Exact Recovery of Sparsely-Used Dictionaries using the
sum of two columns of Y as constraint vectors.

1. Randomly pair the columns of Y into p/2 groups gj = {Y ej1 ,Y ej2}.

2. For j = 1 . . . p/2

Let rj = Y ej1 + Y ej2 , where gj = {Y ej1 ,Y ej2}.
Solve minw ‖wTY ‖1 subject to rTj w = 1, and set sj = wTY .

Greedy: A Greedy Algorithm to Reconstruct X and A.

1. REQUIRE: S = {s1, . . . , sT } ⊂ Rp.

2. For i = 1 . . . n

REPEAT

l← arg minsl∈S ‖sl‖0, breaking ties arbitrarily
xi = sl

S = S\{sl}
UNTIL rank([x1, . . . ,xi])= i

3. SetX = [x1, . . . ,xn]T , andA = Y Y T (XY T)−1.

Comparison to Previous Work. The idea of seeking the rows of X sequentially, by looking for
sparse vectors in row(Y), is not new per se. For example, in [22], Zibulevsky and Pearlmutter
suggested solving a sequence of optimization problems of the form

minimize ‖wTY ‖1 subject to ‖w‖22 ≥ 1.

However, the non-convex constraint in this problem makes it difficult to solve. In more recent
work, Gottlieb and Neylon [9] suggested using linear constraints as in (1), but choosing r from the
standard basis vectors e1 . . . en.

The difference between our algorithm and that of Gottlieb and Neylon—the use of columns of
the sample matrix Y as linear constraints instead of elementary unit vectors, is crucial to the func-
tioning of our algorithm (simulations of their Sparsest Independent Vector algorithm are reported
below). In fact, there are simple examples of orthonormal matrices A for which the algorithm of
[9] provably fails, whereas Algorithm ER-SpUD(SC) succeeds with high probability. One concrete
example of this is a Hadamard matrix: in this case, the entries of b = A−1ej all have exactly the
same magnitude, and [9] fails because the gap between |b|(1) and |b|(2) is zero when r is chosen to
be an elementary unit vector. In this situation, Algorithm ER-SpUD(DC) still succeeds with high
probability.

6. Main Theoretical Results

The intuitive explanations in the previous section can be made rigorous. In particular, under our
random models, we can prove that when the number of samples is reasonably large compared to

37.7

SPIELMAN WANG WRIGHT

the dimension, (say p ∼ n2 log2 n), with high probability in X the algorithm will succeed. We
conjecture it is possible to decrease the dependency on p to O(n log n).

Theorem 7 (Correct recovery (single-column)) Suppose X is Bernoulli(θ)-Gaussian. For some
positive constants α, c1, and n0, for all n > n0, and for p > c1n

2 log2 n, if

2

n
≤ θ ≤ α√

n log n
, (3)

then, with an exponentially small probability of failure, the Algorithm ER-SpUD(SC) recovers all
n rows ofX . That is, all n rows ofX are included in the p potential vectors wT

1 Y , . . . ,w
T
p Y .

The upper bound of α/
√
n log n on θ has two sources: an upper bound of α/

√
n is imposed

by the requirement that b be sparse. An additional factor of log n comes from the need for a gap
between |b|(1) and |b|(2) of the k i.i.d. Gaussian random variables. On the other hand, using the sum
of two columns of Y as r can save the factor of log n in the requirement on θ since the “collision”
of non-zero entries in the two columns of X creates a larger gap between |b|(1) and |b|(2). More
importantly, the resulting algorithm is less dependent on the magnitudes of the nonzero elements in
X . The algorithm using a single column exploited the fact that there exists a reasonable gap between
|b|(1) and |b|(2), whereas the two-column variant ER-SpUD(DC) succeeds even if the nonzeros all
have the same magnitude.

Theorem 8 (Correct recovery (two-column)) SupposeX is Bernoulli(θ)-Gaussian or Bernoulli(θ)-
Rademacher. For some α > 0 and for all n larger than some n0, and p > c1n

2 log2 n, if the
probability of non-zero entries θ satisfies

2

n
≤ θ ≤ α√

n
. (4)

Then with overwhelming probability, the Algorithm ER-SpUD(DC) recovers all n rows ofX . That
is, all n rows ofX are included in the p/2 potential vectors wT

1 Y , . . . ,w
T
p/2Y .

Hence, as we choose p to grow faster than n2 log2 n, the algorithm will succeed with probability
approaching one. That the algorithm succeeds is interesting, perhaps even unexpected. There is
potentially a great deal of symmetry in the problem – all of the rows of X might have similar `1-
norm. The vectors r break this symmetry, preferring one particular solution at each step, at least
in the regime where X is sparse. To be precise, the expected number of nonzero entries in each
column must be bounded by

√
n log n.

It is natural to wonder whether this is an artifact of the analysis, or whether such a bound is
necessary. We can prove that for Algorithm ER-SpUD(DC), the sparsity demands in Theorem 8
cannot be improved by more than a factor of

√
log n. Consider the optimization problem (2). One

can show that for each i, ‖eTi X‖1 ≈ θp. Hence, if we set z = ej?/bj? , where j? is the index of the
largest element of b in magnitude, then

‖zTX‖1 =
‖eTj?X‖1
‖b‖∞

≈ C
θp√
log n

.

37.8

ER-SPUD

If we consider the alternative solution v = sign(b)/‖b‖1, a calculation shows that

‖vTX‖1 ≈ C ′p/
√
n.

Hence, if θ > c
√

log n/n for sufficiently large c, the second solution will have smaller objective
function. These calculations are carried through rigorously in the full version, giving:

Theorem 9 For any fixed β and sufficiently large n, and p ≥ C(β)n, the following occurs. If the
probability of nonzeros θ satisfies

θ ≥
√
β log n

n
, (5)

then the probability (in X) that solving the optimization problem (1) with r = Y ei or r = Y ei +
Y ej recovers one of the rows ofX is at most n−c(β), where c(β) > 0.

This implies that the result in Theorem 7 is nearly the best possible for this algorithm, at least
in terms of its demands on θ.

7. Sketch of the Analysis

In this section, we sketch the arguments used to prove Theorem 7. The proof of Theorem 8 is
similar. These arguments are carried through rigorously in the full version. At a high level, our
argument follows the intuition of Section 5, using the order statistics and the sparsity property of b
to argue that the solution must recover a row ofX . We say that a vector is k-sparse if it has at most
k non-zero entries. Our goal is to show that z? is 1-sparse. We find it convenient to do this in two
steps.

We first argue that the solution z? to (2) must be supported on indices that are non-zero in b, so
z is at least as sparse as b, say

√
n-sparse in our case. Using this result, we restrict our attention to a

submatrix of
√
n rows ofX , and prove that for this restricted problem, when the gap 1−|b|(2)/|b|(1)

is large enough, the solution z? is in fact 1-sparse, and we recover a row ofX .

Proof solution is sparse. We first show that the solution z? to (2) is probably supported only
on the non-zero indices in b. Let J denote the indices of the s non-zero entries of |b|, and let
S = {j | XJ,j 6= 0} ⊂ [p], i.e., the indices of the nonzero columns in XJ , and write z0 = P Jz?
and z1 = z? − z0. By definition, z0 is supported on J and z1 on Jc. Moreover, z0 is feasible for
Problem (2). We will show that it has at least as low an objective function value as z?, and thus
conclude that z1 must be zero. Write

‖zT?X‖1 = ‖zT?XS‖1 + ‖zT?XSc‖1 ≥ ‖zT0XS‖1 − ‖zT1XS‖1 + ‖zT1XSc‖1
= ‖zT0X‖1 − 2‖zT1XS‖1 + ‖zT1X‖1, (6)

where we have used the triangle inequality and the fact that zT0X
Sc

= 0. In expectation we have
that

‖zT?X‖1 ≥ ‖zT0X‖1 + (p− 2|S|)E[‖zT1X‖1] ≥ ‖zT0X‖1 + c(p− 2|S|)
√
θ/n‖z1‖1, (7)

where the last inequality requires θn ≥ 2.

37.9

SPIELMAN WANG WRIGHT

So as long as p − 2|S| > 0, z0 has lower expected objective value. To prove that this happens
with high probability, we first upper bound |S| by the number of nonzeros in XJ , which in expec-
tation is θsp. As long as p − 2(1 + δ)θsp = p(1 − c′θs) > 0, or equivalently s < cs/θ for some
constant c2, we have ‖zT?X‖1 > ‖zT0X‖1. In the following lemma, we make this argument formal
by proving concentration around the expectation.

Lemma 10 For some positive constants η, c1, c2 and n0, if 2 < θn < η
√
n, n > n0, p >

c1n
2 log2 n and ‖b‖0 = s < c2

θ , then z? is supported only on the non-zero indices of b with proba-
bility tending to 1 as n goes to infinity.

Note in problem (2), b = A−1r. If we choose r = Y ei, then b = A−1Y ei = Xei, and
E[‖b‖0] = θn. A Chernoff bound then tells us that with high probability z? is supported on no
more than 2θn entries, i.e., s < 2θn. Thus as long as 2θn < c2/θ, i.e., θ < cθ/

√
n, we have

‖z?‖0 < 2θn = cθ
√
n.

The solution inXJ : If we restrict our attention to the induced s-by-p submatrix XJ , we observe
that XJ is incredibly sparse – most of the columns have at most one nonzero entry. Arguing as we
did in the first step, let j? denote the index of the largest entry of |bJ |, and let S = {j |XJ(j?, j) 6=
0} ⊂ [p], i.e., the indices of the nonzero entries in the j?-th row of XJ . Without loss of generality,
let’s assume bj? = 1. For any z, write z0 = P j?z and z1 = z− z0. Clearly z0 is supported on the
j?-th entry and z1 on the rest. As in the first step,

‖zTXJ‖1 ≥ ‖zT0XJ‖1 − 2‖zT1XS
J‖1 + ‖zT1XJ‖1, (8)

By restricting our attention to 1-sparse columns ofXJ , we prove that with high probability

‖zT1XJ‖1 ≥
√

2/πθp(1− sθ)(1− ε)2‖z1‖1.

We prove that with high probability the second term satisfies

‖zT1XJ,S‖1 ≤ (1 + ε)
√

2/πθ2p‖z1‖1.

For the first term, we show

‖zT0XJ‖1 ≥ ‖eTj?XJ‖1 − |bTJ z1|‖XJ‖1 ≥ ‖eTj?XJ‖1 − |bTJ z1|(1 + ε)
√

2/πθp.

If |b|(2)/|b|(1) < 1− c/ log(n), then |bTJ z1| ≤ (1− c/ log(n))‖z1‖1.
In Lemma 11, we combine these inequalities and choose the constants to show that if θ ≤

c/
√
n log n, then

‖(z0 + z1)
TXJ‖1 ≥ ‖eTj?XJ‖1 +

√
2

π
θp(1− c′

log n
)‖z1‖1. (9)

Since ej? is a feasible solution to problem 2 with a lower objective value as long as z1 6= 0, we
know ej? is the only optimal solution. The following lemma makes this precise.

Lemma 11 Set s ≤ c2
√
n. If θ < c√

n logn
, n > n0, and p > c1n

2 log2 n, then with high probability
the random matrixX has the following property:

37.10

ER-SPUD

For every J ∈
(
[n]
s

)
and every b ∈ Rs satisfying |b|(2)/|b|(1) ≤ 1 − c′/ log n, the

solution to the restricted problem,

minimize ‖zTXJ‖1 s.t. bTz = 1, (10)

is unique and 1-sparse.

Once we know that a column of Y provides us with a constant probability of recovering one
row of X , we know that we need only use O(n log n) columns to recover all the rows of X with
high probability. It turns out the dominant term of the failure probability is the one in Lemma 10.

8. Simulations

In this section we systematically evaluate our algorithm, and compare it with the state-of-the-art
dictionary learning algorithms, including K-SVD [1], online dictionary learning [14], SIV [9], and
the relative Newton method for source separation [21]. The first two methods are not limited to
square dictionaries, while the final two methods, like ours, exploit properties of the square case.
The method of [21] is similar in provenance to the incremental nonconvex approach of [22], but
seeks to recover all of the rows of X simultaneously, by seeking a local minimum of a larger
nonconvex problem. As our emphasis in this paper is mostly on correctness of the solution, we
modify the default settings of these packages to obtain more accurate results (and hence a fairer
comparison). For K-SVD, we use high accuracy mode, and switch the number of iterations from
10 to 30. Similarly, for relative Newton, we allow 1,000 iterations. For online dictionary learning,
we allow 1,000. We observed diminishing returns beyond these numbers. Since K-SVD and online
dictionary learning tend to get stuck at local optimum, for each trial we restart K-SVD and Online
learning algorithm 5 times with randomized initializations and report the best performance. We
measure accuracy in terms of the relative error, after permutation-scale ambiguity has been removed:

r̃e(Â,A)
.
= min

Π,Λ
‖ÂΛΠ−A‖F /‖A‖F .

Phase transition graph. In our experiments we have chosen A to be a an n-by-n matrix of
independent Gaussian random variables. The coefficient matrixX is n-by-p, where p = 5n loge n.
Each column of X has k randomly chosen non-zero entries. In our experiments we have varied
n between 10 and 60 and k between 1 and 10. Figure 1 shows the results for each method, with
the average relative error reported in greyscale. White means zero error and black is 1. When n is
small, the relative Newton method appears to be able to handle a denserX , while as n grows large,
ER-SpUD is more precise. In fact, empirically the phase transition between success and failure for
ER-SpUD is quite sharp – problems below the boundary are solved to high numerical accuracy,
while beyond the boundary the algorithm breaks down. In contrast, both online dictionary learning
and relative Newton exhibit neither the same accuracy, nor the same sharp transition to failure –
even in the black region of the graph, they still return solutions that are not completely wrong.
The breakdown boundary of K-SVD is clear compared to online learning and relative Newton. As
an active set algorithm, when it reaches a correct solution, the numerical accuracy is quite high.
However, in our simulations we observe that both K-SVD and online learning may be trapped into
a local optimum even for relatively sparse problems.

37.11

SPIELMAN WANG WRIGHT

(a) ER-SpUD(SC) (b) SIV

(c) K-SVD (d) Online (e) Rel. Newton

Figure 1: Mean relative errors over 10 trials, with varying support k (y-axis, increase from bottom to top)
and basis size n(x-axis, increase from left to right). Here, p = 5n loge n. Our algorithm using
a column of Y as r (ER-SpUD), SIV [9], K-SVD [1], online dictionary learning [14], and the
relative Newton method for source separation [21].

9. Discussion

The main contribution of this work is a dictionary learning algorithm with provable performance
guarantees under a random coefficient model. To our knowledge, this result is the first of its kind.
However, it has two clear limitations: the algorithm requires that the reconstruction be exact, i.e.,
Y = AX and it requires A to be square. It would be interesting to address both of these issues
(see also [2] for investigation in this direction). Finally, while our results pertain to a specific
coefficient model, our analysis generalizes to other distributions. Seeking meaningful, deterministic
assumptions onX that will allow correct recovery is another interesting direction for future work.

Acknowledgments

This material is based in part upon work supported by the National Science Foundation under Grant
No. 0915487. JW also acknowledges support from Columbia University.

References

[1] M. Aharon, M. Elad, and A. Bruckstein. The K-SVD: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):
4311–4322, 2006.

37.12

ER-SPUD

[2] F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. Techni-
cal report, Technical report HAL-00345747, http://hal.archives-ouvertes.fr/
hal-00354771/fr/, 2008.

[3] A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of systems of equations
to sparse modeling of signals and images. SIAM Review, 51(1):34–81, 2009.

[4] P. Comon. Independent component analysis: A new concept? Signal Processing, 36:287–314,
1994.

[5] K. Engan, S. Aase, and J. Hakon-Husoy. Method of optimal directions for frame design. In
ICASSP, volume 5, pages 2443–2446, 1999.

[6] P. Erdös. On a lemma of Littlewood and Offord. Bulletin of the American Mathematical
Society, 51:898–902, 1945.

[7] Q. Geng and J. Wright. On the local correctness of `1 minimization for dictionary learning.
CoRR, 2011.

[8] P. Georgiev, F. Theis, and A. Cichocki. Sparse component analysis and blind source separation
of underdetermined mixtures. IEEE Transactions on Neural Networks, 16(4), 2005.

[9] L.-A. Gottlieb and T. Neylon. Matrix sparsication and the sparse null space problem. APPROX
and RANDOM, 6302:205–218, 2010.

[10] R. Gribonval and K. Schnass. Dictionary identification-sparse matrix-factorisation via l1-
minimisation. IEEE Transactions on Information Theory, 56(7):3523–3539, 2010.

[11] F. Jaillet, R. Gribonval, M. Plumbley, and H. Zayyani. An l1 criterion for dictionary learning
by subspace identification. In IEEE Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5482–5485, 2010.

[12] K. Kreutz-Delgado, J. Murray, B. Rao, K. Engan, T. Lee, and T. Sejnowski. Dictionary learn-
ing algorithms for sparse representation. Neural Computation, 15(20):349–396, 2003.

[13] M. E. M. Aharon and A. Bruckstein. On the uniqueness of overcomplete dictionaries, and a
practical way to retrieve them. Linear Algebra and its Applications, 416:48–67, 2006.

[14] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding.
Proceedings of the 26th Annual International Conference on Machine Learning, pages 689–
696, 2009.

[15] J. Matousek. On variants of the johnson-lindenstrauss lemma. Wiley InterScience
(www.interscience.wiley.com).

[16] B. Olshausen and D. Field. Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature, 381(6538):607–609, 1996.

[17] M. Plumbley. Dictionary learning for `1-exact sparse coding. In Independent Component
Analysis and Signal Separation, pages 406–413, 2007.

37.13

http://hal.archives-ouvertes.fr/hal-00354771/fr/
http://hal.archives-ouvertes.fr/hal-00354771/fr/

SPIELMAN WANG WRIGHT

[18] R. Rubinstein, A. Bruckstein, and M. Elad. Dictionaries for sparse representation modeling.
Proceedings of the IEEE, 98(6):1045–1057, 2010.

[19] D. Vainsencher, S. Mannor, and A. Bruckstein. The sample complexity of dictionary learning.
In Proc. Conference on Learning Theory, 2011.

[20] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution via sparse representation.
IEEE Transactions on Image Processing, 19(11):2861–2873, 2010.

[21] M. Zibulevsky. Blind source separation with relative newton method. Proceedings ICA, pages
897–902, 2003.

[22] M. Zibulevsky and B. Pearlmutter. Blind source separation by sparse decomposition. Neural
Computation, 13(4), 2001.

Appendix A. Proof of Uniqueness

In this section we prove our upper bound on the number of samples for which the decomposition
of Y into AX with sparse X is unique up to scaling and permutation. We will consider X gen-
erated by both Bernoulli-Gaussian and Bernoulli-Rademacher processes. We will view X as the
component-wise product of two matrices, Ω andR, and denote this product by Ω�R, where

(Ω�R) (i, j) = Ω(i, j)R(i, j).

We will let Ω be an Bernoulli random matrix whose entries are 1 with probability θ and zero other-
wise. We will letR be a matrix of i.i.d. Gaussian or Rademacher random variables, as appropriate.

A.1. Proof of Lemma 2

Proof Since rank(X) = n, we know

rank(A′) ≥ rank(Y) = rank(A) = n

Since bothA andA′ are nonsingular, the row spaces ofX ′ andX are the same as that of Y .

A.2. Proof of Lemma 3

Proof First consider sets S of two rows. The expected number of columns that have non-zero
entries in at least one of these two rows is

p(1− (1− θ)2) = p(2θ − θ2) ≥ (3/2)pθ,

for θ ≤ 1/2. Part a now follows from a Chernoff bound.

37.14

ER-SPUD

For sets S of size σ ≥ 3, we divide our analysis into two cases. If σθ < 1, we observe that for
every S

E |TS | = p− (1− θ)σp
≥ (σθ − (σ2)θ2)p

= (1− σ − 1

2
θ)σθp

≥ σ

2
θp,

where the inequalities follow from σθ < 1. Part b now follows from a Chernoff bound.
If σθ > 1, for every S of size σ we have

E |TS | ≥ (1− e−σθ)p ≥ (1− e−1)p.

As before, part c follows from a Chernoff bound.

A.3. Proof of Lemma 4

We will now show that for every vector α with support S, the number of non-zero entries in αTX
is unlikely to be too much lower than the size of TS .

The following definition and lemma are the key to our proof in the Bernoulli-Gaussian case.

Definition 12 (fully dense vector) We call a vector α ∈ Rn fully dense if for all i ∈ [n], αi 6= 0.

Lemma 13 Let Ω ∈ {0, 1}n×n be any binary matrix with at least one nonzero in each column. Let
V ∼iid N(0, 1), and set U = Ω� V . Then with probability one in the random matrix V , the left
nullspace of U does not contain any fully dense vector.

Proof LetU = [u1| . . . |un] denote the columns ofU . For each j ∈ [n], letNj be the left nullspace
of [u1| . . . |uj], and let N0

.
= IRn. Then

N0 ⊇ N1 ⊇ · · · ⊇ Nn.

We need to show that Nn does not contain a fully dense vector. If any Nj−1 does not contain a fully
dense vector, we are done. On the other hand, suppose that Nj−1 contains a fully dense vector α.
Fix any such fully dense α ∈ Nj−1. Since uj has some non-zero entry and it is independent of the
columns u1 . . .uj−1, with probability one over the choice of vj , αTuj 6= 0, and hence dim(Nj) ≤
dim(Nj−1) − 1. Since dim(Nj) ≥ dim(Nj−1) − 1, in this case dim(Nj) = dim(Nj−1) − 1. By
induction, we may conclude that with probability 1 over the choice of v1, . . . ,vj , either Nj does
not contain a dense vector, or dim(Nj) = n − j. We conclude that either the left null space of U
does not contain a dense vector, or its dimension is 0.

Proof of Lemma 4
Proof LetM be the submatrix of Ω containing the rows indexed by S and the columns indexed by
TS . Let αS be the restriction of α to the indices in S. As S is the support of α, αS is fully-dense.

37.15

SPIELMAN WANG WRIGHT

Moreover, every column ofM has at least one non-zero entry. IfαTSM had |TS |− |S| zero entries,
then M would have a square submatrix with αS in its nullspace. By Lemma 13, the probability
that this happens is zero.

A.4. Proof of Lemma 6

In the Bernoulli-Rademacher case, use the following theorem of Erdös.

Theorem 14 ([6]) For every k ≥ 2 and real numbers z1, . . . , zk,

P

[∑
i

ziri = 0

]
≤ 2−k

(
k

bk/2c

)
≤ 1/2,

where each ri is chosen independently from ±1,

Lemma 15 For b > s, let Ω ∈ {0, 1}s×b be any binary matrix with at least one nonzero in each
column. Let R be an s-by-b matrix with Rademacher random entries, and let U = Ω �R. Then,
the probability that the left nullspace of U contains a fully dense vector is at most

2−b+s log(e
2b/s)

Proof As in the preceding lemma, we let U = [u1| . . . |ub] denote the columns of U and for each
j ∈ [b], we let Nj be the left nullspace of [u1| . . . |uj]. We will show that it is very unlikely that Nb

contains a fully dense vector.
To this end, we show that if Nj−1 contains a fully dense vector, then with probability at least

1/2 the dimension of Nj is less than the dimension of Nj−1. To be concrete, assume that the first
j − 1 columns of R have been fixed and that Nj−1 contains a fully dense vector. Let α be any
such vector. If uj contains only one non-zero entry, then αTuj 6= 0 and so the dimension of Nj is
less than the dimension of Nj−1. If uj contains more than one non-zero entry, each of its non-zero
entries are random Rademacher random variables. So, Theorem 14 implies that the probability over
the choice of entries in the jth column ofR thatαTuj = 0 is at most one-half. So, with probability
at least 1/2 the dimension of Nj is less than the dimension of Nj−1.

To finish the proof, we observe that the dimension of the nullspaces cannot decrease more than
s times. In particular, for Nb to contain a fully dense vector, there must be at least b − s columns
for which the dimension of the nullspace does not decrease. Let F ⊂ [b] have size b − s. The
probability that for each j ∈ F that Nj−1 contains a fully dense vector and that the dimension of
Nj equals the dimension of Nj−1 is at most 2−b+s−1. Taking a union bound over the choices for F ,
we see that the probability that Nb contains a fully dense vector is at most(

b

b− s

)
2−b+s =

(
b

s

)
2−b+s ≤

(
eb

s

)s
2−b+s ≤ 2−b+s+s log(eb/s) = 2−b+s log(e

2b/s).

Proof [Proof of Lemma 5] If there is a fully-dense vector α for which
∥∥αTU∥∥

0
≤ t/5, then there

is a subset of at least b = 4t/5 columns of U for which α is in the nullspace of the restriction of

37.16

ER-SPUD

U to those columns. By Lemma 15, the probability that this happens for any particular subset of b
columns is at most

2−b+s log e
2b/s ≤ 2−4t/5+s log(e

2t/s).

Taking a union bound over the subsets of b columns, we see that the probability that this can happen
is at most(

t

4t/5

)
2−4t/5+s log e

2t/s ≤ 20.722t2−t(4/5−(s/t) log(e
2t/s)) ≤ 2t(0.722−0.8+0.0365) ≤ 2−t/25,

where in the first inequality we bound the binomial coefficient using the exponential of the corre-
sponding binary entropy function, and in the second inequality we exploit s/t < 1/200.

Lemma 16 If X is an n-by-p θ-Bernoulli-Rademacher matrix with 1/n < θ < 1/C and p >
Cn log n for a sufficiently large constantC, then the probability that there is a vectorαwith support
of size larger than 1 for which ∥∥αTX∥∥

0
≤ (11/9)θp

is at most
exp(−cθp),

for some constant c.

Proof Rather than considering vectors, we will consider the sets on which they are supported. So,
let S ⊆ [n] and let σ = |S|. We first consider the case when 17 ≤ σ ≤ 1/θ. Let T be the set of
columns ofX that have non-zero entries in the rows indexed by S. Let t = |T |. By Lemma 3,

P [t < (3/8)σθp] ≤ exp(−σθp/64).

Given that t ≥ (3/8)σθp, Lemma 5 tells us that the probability that there is a vector α with support
exactly S for which ∥∥αTX∥∥

0
< (11/9)θp ≤ (3/40)σθp

is at most
exp(−(3/200)σθp).

Taking a union bound over all sets S of size σ, we see that the probability that there vector α of
support size σ such that

∥∥αTX∥∥
0
< (11/9)θp is at most(

n

σ

)
(exp(−(3/200)σθp) + exp(−σθp/64)) ≤ exp(−cσθp),

for some constant c given that p > Cn log n for a sufficiently large C.
For σ ≥ 1/θ, we may follow a similar argument to show that the probability that there is a

vector α with support size σ for which
∥∥αTX∥∥

0
< (11/9)θp is at most

exp(−cp),

37.17

SPIELMAN WANG WRIGHT

for some other constant c. Summing these bounds over all σ between 17 and n, we see that
the probability that there exists a vector α with support of size at least 17 such that such that∥∥αTX∥∥

0
< (11/9)θp is at most

exp(−cθp),

for some constant c.
To finish, we sketch a proof of how we handle the sets of support between 2 and 17. For σ

this small and for θ sufficiently small relative to σ (that is smaller than some constant depending on
σ), each of the columns in T probably has exactly one non-zero entry. Again applying a Chernoff
bound and a union bound over the choices of S, we can show that with probability 1− exp(−cθp)
for every vector α with support of size between 2 and 17,

∥∥αTX∥∥
0
≥ (5/4)θp.

By a similar argument, we can prove the following Lemma for the Bernoulli-Gaussian case.
The main difference in the proof is that we can use Lemma 4, and that we only need to treat the case
of σ = 2 differently.

Lemma 17 IfX is an n-by-p θ-Bernoulli-Gaussian matrix with 1/n < θ < 1/4 and p > Cn log n
for a sufficiently large constant C, then the probability that there is a vector α with support of size
larger than 1 for which ∥∥αTX∥∥

0
≤ (11/9)θp

is at most
exp(−cθp),

for some constant c.

A.5. Proof of Theorem 1

We first observe that the rows ofX are probably sparse.

Lemma 18 ForX a θ-Bernoulli-Gaussian or θ-Bernoulli-Rademacher random matrix with n rows
and p columns, the probability that any row ofX has more than

(10/9)θp

non-zero entries is at most

n exp{− θp

243
}.

Proof The expected number of non-zero entries in a row ofX is θp. The lemma now follows from
a Chernoff bound and a union bound over the n rows.

Proof of Theorem 1
Proof From Lemmas 17 we know that the probability that X is singular is at most the above error
probability. Given that X is non-singular, we know from Lemma 2 that the row-space of Y is the
same as the row space of X . So, it suffices to prove that the row space of X does not contain any
vectors sparser than the rows ofX itself. This follows from Lemma 18 and 17.

37.18

	Introduction
	Notation
	The Probabilistic Models
	When is the Factorization Unique?
	Sketch of Proof

	Exact Recovery
	Intuition
	The Algorithms

	Main Theoretical Results
	Sketch of the Analysis
	Simulations
	Discussion
	Proof of Uniqueness
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 6
	Proof of Theorem 1

