
JMLR: Workshop and Conference Proceedings 20 (2011) 297–313 Asian Conference on Machine Learning

Estimating Diffusion Probability Changes for AsIC-SIS
Model from Information Diffusion Results

Akihiro Koide j11103@u-shizuoka-ken.ac.jp
Graduate School of Management and Information of Innovation
University of Shizuoka

Kazumi Saito k-saito@u-shizuoka-ken.ac.jp
School of Management and Information
University of Shizuoka

Kouzou Ohara ohara@it.aoyama.ac.jp
Department of Integrated Information Technology
Aoyama Gakuin University

Masahiro Kimura kimura@rins.ryukoku.ac.jp
Department of Electronics and Informatics
Ryukoku University

Hiroshi Motoda motoda@ar.sanken.osaka-u.ac.jp

Institute of Scientific and Industrial Research

Osaka University

Editor: Chun-Nan Hsu and Wee Sun Lee

Abstract

We address the problem of estimating changes in diffusion probability over a social network
from the observed information diffusion results, which is possibly caused by an unknown
external situation change. For this problem, we focused on the asynchronous independent
cascade (AsIC) model in the SIS (Susceptible/Infected/Susceptible) setting in order to
meet more realistic situations such as communication in a blogosphere. This model is
referred to as the AsIC-SIS model. We assume that the diffusion parameter changes are
approximated by a series of step functions, and their changes are reflected in the observed
diffusion results. Thus, the problem is reduced to detecting how many step functions are
needed, where in time each one starts and how long it lasts, and what the hight of each one
is. The method employs the derivative of the likelihood function of the observed data that
are assumed to be generated from the AsIC-SIS model, adopts a divide-and-conquer type
greedy recursive partitioning, and utilizes an MDL model selection measure to determine
the adequate number of step functions. The results obtained using real world network
structures confirmed that the method works well as intended. The MDL criterion is useful
to avoid overfitting, and the found pattern is not necessarily the same in terms of the
number of step functions as the one assumed to be true, but the error is always reduced to
a small value.

Keywords: pattern change detection, information diffusion, parameter learning, social
networks
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1. Introduction

Recent technological innovation in the web such as blogosphere and knowledge/media-
sharing sites is remarkable, which has made it possible to form various kinds of large social
networks, through which behaviors, ideas, rumors and opinions can spread, and our behav-
ioral patterns are to a considerable degree affected by the interaction with these networks
and substantial attention has been directed to investigating the spread of information in
these networks (Newman et al., 2002; Newman, 2003; Gruhl et al., 2004; Domingos, 2005;
Leskovec et al., 2006; Crandall et al., 2008; Wu and Huberman, 2008).

These studies have shown that it is important to consider the diffusion mechanism
explicitly and the measures based on network structure alone, i.e., various centrality mea-
sures such as degree, betweenness, closeness, etc., are not enough to identify the important
nodes (Kimura et al., 2009b, 2010a). Information diffusion is modeled typically by prob-
abilistic models. Most representative and fundamental ones are independent cascade (IC)
model (Goldenberg et al., 2001; Kempe et al., 2003), linear threshold (LT) model (Watts,
2002; Watts and Dodds, 2007) and their extensions that include incorporating asynchronous
time delay (Saito et al., 2009b, 2010b). In the IC model the information sender (a node) tries
to push the information to the neighboring receivers (child nodes) in a probabilistic way,
whereas in the LT model the information receiver (a node) tries to pull the information from
the neighboring senders (parents nodes) in a probabilistic way. These models place the con-
straint that a node is given a single chance to activate the other node, i.e., the same node is
not activated multiple times. This setting is called SIR (Susceptible/Infectious/Recovered)
in analogy with epidemic disease. Explicit use of these models to solve such problems as
the influence maximization problem (Kempe et al., 2003; Kimura et al., 2010a) and the con-
tamination minimization problem (Kimura et al., 2009b) clearly shows the advantage of the
model. They showed that the identified influential nodes and links are considerably different
from the ones identified by the standard centrality measures. The SIR setting is simple,
but does not model well such communication as in a blogosphere where the same person
can post on the same topic multiple times. The SIS (Susceptible/Infectious/Susceptible)
setting is better suited to this situation, where a node is allowed to activate the other nodes
multiple times, i.e., the same node is activated multiple times (Kimura et al., 2009a).

What is common to all the above models is that they are all probabilistic models and
have parameters to characterize the information diffusion, and these parameters are as-
sumed to be stationary, i.e., they do not change over time. Evidently, the parameters
must be known in advance for the model to be usable for analysis, but it is generally dif-
ficult to determine the values of these parameters theoretically. Therefore, attempts have
been made to learn these parameter values by the observed information diffusion sequence
data (Saito et al., 2009a,b, 2010b,a; Gomez-Rodriguez et al., 2010; Myers and Leskovec,
2010; Kimura et al., 2010b). In essence the likelihood of generating the observed data by
the model employed is first derived, and then the parameter values are determined such
that the likelihood is maximized. In particular, Myers and Leskovec (2010) showed that for
a certain class of diffusion models, the problem can effectively be transformed to a convex
programming for which a global solution is guaranteed.

This paper also deals with a parameter learning problem, but addresses a different aspect
of information diffusion. We do not assume that the parameter values are stationary, but
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allow that they change over time. They may change abruptly or gradually depending on
the cause of changes which we do not know. Ideally we intend to be able to deal with any
shape of changes over time. However, in this paper, we limit the change pattern to those
that can be approximated by a series of step functions, and further assume that the change
takes place uniformly in space, i.e., the parameters of all nodes change in the same way. We
use AsIC-SIS, Asynchronous Independent Cascade model in SIS setting. This is a model in
which the original discrete time step IC-SIR model is extended to continuous time model
allowing asynchronous time delay (Saito et al., 2009b, 2010b) as well as allowing multiple
activations of the same nodes. We learn the parameter values from an observed sequence of
information diffusion under AsIC-SIS model setting, i.e., the problem is reduced to detecting
how many step functions are needed, where in time each one starts and how long it lasts,
and what the hight of each one is. This is viewed as a generalization of our previous work
(Ohara et al., 2011) in which we used the AsIC-SIR model, limited the change pattern to
be a single rect-linear shape, and devised an efficient algorithm which searches the optimal
window. However, this algorithm works only to this restricted type of the problem.

We extended the parameter optimization algorithm that was developed in Saito et al.
(2009b); Kimura et al. (2010b), i.e., the EM-like algorithm for the AsIC-SIR model that
iteratively updates the values to maximize the model’s likelihood of generating the observed
data sequences, to AsIC-SIS. The core part of this paper is how to efficiently search the
change pattern. We employed the idea of using the first order derivative of the likelihood
with respect to the parameters (Ohara et al., 2011), and newly developed an efficient algo-
rithm that uses a divide-and-conquer type greedy recursive partitioning as a search strategy
and an MDL model selection measure as a stopping criterion to determine the most ade-
quate number of step functions. We tested our algorithm to artificially generated change
patterns using four real world network structures. The results obtained confirmed that the
method works well as intended. The algorithm is efficient because it needs to do expensive
parameter optimization only once for each partitioning (which is not that many in many
cases). The MDL criterion is useful to avoid overfitting. In many cases it identifies the
correct number of step functions, but in some cases the found pattern is not necessarily the
same in terms of the number of step functions, but the error is always reduced to a small
value.

The paper is organized as follows. After very briefly introducing the AsIC-SIS model in
Section 2, we define the problem in Section 3 and derive the likelihood function in Section
4, which is the objective function to be maximized. The parameter estimation algorithm is
summarized in Appendix. We then describe how we efficiently search for the change pattern
in Section 5 together with the restricted search method used for comparative study. The
experimental results are reported in Section 6. We end this paper by summarizing the main
result in Section 7.

2. Information Diffusion Model

An SIS model for the spread of a disease is based on the cycle of disease in a host. A person
is first susceptible to the disease, and becomes infected with some probability and time-delay
if he or she has contact with an infected person. The infected person becomes susceptible to
the disease again without moving to the immune state. We consider an asynchronous-time
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SIS model for information diffusion on a network. In this context, infected nodes mean
that the nodes have adopted the information, and we call these infected nodes active nodes.
This can be mapped to realistic situations such as communication in a blogsphere. A typical
example would be the following propagation phenomenon of a topic in the blogsphere: A
blogger who has not yet posted a message about a certain topic becomes interested in the
topic by reading the blog of his or her friend, and posts a message about it with some
time-delay from the friend’s posting time, i.e., becoming infected (activated) with some
time-delay. Right after posting the message, the same blogger can read any other blogs of
his or her friends, i.e., becoming susceptible again. The same blogger reads a new message
about the topic posted by some other friend, and may post another message, i.e., becoming
infected again. This process is repeated.

Let G = (V,E) be a directed network, where V and E stand for the sets of all the
nodes and (directed) links, respectively. Here, note that E is a subset of V × V . For
any v ∈ V , the set of all the nodes that have links from v (child nodes) is denoted by
F (v) = {u ∈ V ; (v, u) ∈ E}, and the set of all the nodes that have links to v (parent
nodes) is denoted by B(v) = {u ∈ V ; (u, v) ∈ E}. We define the AsIC-SIS model for
information diffusion on G. In the model, the diffusion process unfolds in continuous-time
t ≥ 0, and it is assumed that the state of a node is either active or inactive. For every link
(u, v) ∈ E, we specify a real value pu,v with 0 < pu,v < 1 in advance. Here, pu,v is referred
to as the diffusion probability through link (u, v). Given an initial active node v and a time
span T , the diffusion process proceeds in the following way. Suppose that node u becomes
active at time t (< T ). Then, node u attempts to activate every v ∈ F (u), and succeeds
with probability pu,v. If node u succeeds, then node v will become active at time t + δ.
We assume that a delay-time δ is chosen from some probability distribution, and we used
the exponential distribution with parameter ru,v for the sake of convenience, but of course
other distributions such as power-law and Weibull can be employed. Suppose that u, one
of the parent nodes of v, succeeds to activate v at some time after some delay. In our SIS
model, when some other parent node also succeeds to activate v before it gets activated by
u, we assume that v’s activation time is overridden by the one earliest possible. On the
other hand, node u gets back inactive right after time t (the time it gets activated) and it
can only be reactivated by those parent nodes that have become active after time t1. The
process terminates if the current time reaches the time limit T .

The AsIC-SIS model is the SIS version of the asynchronous independent cascade (AsIC)
model proposed by Saito et al. (2009b) that is an extension of the independent cascade
(IC) model studied by Kempe et al. (2003). As mentioned earlier, the AsIC-SIS model was
extended to meet more realistic situations.

3. Problem Definition

We address the problem of estimating diffusion probability changes. In this problem, we
assume that some changes have happened in the way the information diffuses, and we

1. In theory we can go back to all the past time points at which the parents of u got activated multiple
times in the past, but this is unrealistic and we thought it natural to limit the parents only to those that
got activated after time t.
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observe the diffusion results of a certain topic in which the changes are embedded, and
consider estimating the diffusion probability as a function with respect to time t.

An information diffusion result generated by the AsIC-SIS model is represented as a
set of pairs of active nodes and their activation times; i.e., {· · · , (v(η), tv(η)), · · · }, where
v(η) indicates v’s η-th activation. We consider a diffusion result D(0, T ), where the initial
activation time is set to 0 and the final observation time is denoted by T . Since we employ
only a single diffusion result D(0, T ), we place a constraint that pu,v and ru,v do not depend
on link (u, v), i.e., pu,v = p, ru,v = r (∀(u, v) ∈ E), which should be acceptable noting that
we can naturally assume that people behave quite similarly when talking about the same
topic. In fact, our previous experiments (Saito et al., 2009b, 2010b,a) give some evidences
which support the validity of this constraint.

Let p(t) be a function of diffusion probability with respect to time t. Here we assume
that p(t) is reasonably approximated by combining a number of step functions, i.e.,

p(t) = pi−1 if t ∈ [ti−1, ti), i ∈ {1, · · · ,K + 1}, (1)

where t0 = 0 < · · · < ti < · · · tK+1 = T and K stands for the number of change points.
Here we assume for simplicity that the time-delay parameter r does not change and takes
the same value for the entire period [0, T ). Then, the diffusion probability estimation
problem is reduced to detecting the change points {t1, · · · , tK} and estimating the associated
diffusion probabilities {p0, · · · , pK} from the observed diffusion result D(0, T ). For a given
integer K, we define the change point vector tK and the diffusion-probability vector pK by
tK = (t1, · · · , tK) and pK = (p0, · · · , pK), respectively.

4. Model parameter learning

We describe the framework of model parameter learning as a likelihood maximization prob-
lem for the AsIC-SIS model.

First, we consider estimating the values of diffusion probability p and time-delay pa-
rameter r from an observed diffusion result D(0, T ) = {· · · , (v(η), tv(η)), · · · } when there
is no change point. Recall that the initial activation time is set to 0 and the final obser-
vation time is denoted by T . Let D be the set of all the activated nodes in D(0, T ), i.e.,
D = {v(η) ∈ V ; (v(η), tv(η)) ∈ D(0, T )}. For each node v(η) ∈ D, let APv(η) be the set of
its parent nodes that had a chance to activate it, i.e.,

APv(η) = {u(ζ); u ∈ B(v), (u(ζ), tu(ζ)) ∈ D(0, T ), tv(η−1) < tu(ζ) < tv(η)},

and NCv(η) be the set of its child nodes that was not activated by a node v(η) within
(tv(η), T ), i.e.,

NCv(η) = {z ∈ F (v); ¬∃ z(ξ), s.t. (z(ξ), tz(ξ)) ∈ D(0, T ), tv(η) < tz(ξ) < T )}.

Note that from the observed diffusion result, we know that a node v at the η-th activation
did not succeed to activate any child node in NCv(η) within the time limit T , and we use
this fact for our parameter estimation in order to improve its performance.

Let Xu(ζ),v(η)(p, r) denote the probability density that a node u(ζ) ∈ APv(η) activates
the node v(η) at time tv(η), that is,

Xu(ζ),v(η)(p, r) = p r exp(−r(tv(η) − tu(ζ))). (2)
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Let Yu(ζ),v(η)(p, r) denote the probability that the node v(η) is not activated by a node u(ζ)
∈ APv(η) within the time-period (tu(ζ), tv(η)), that is,

Yu(ζ),v(η)(p, r) = 1− p
∫ tv(η)

tu(ζ)

r exp(−r(t− tu(ζ)))dt

= p exp(−r(tv(η) − tu(ζ))) + (1− p). (3)

By using Eqs. (2) and (3), we can obtain the probability density φv(η)(p, r) that some node
u(ζ) ∈ APv(η) succeeds to activate a node v(η) at a time tv(η),

φv(η)(p, r) =
∑

u(ζ)∈APv(η)

Xu(ζ),v(η)(p, r)

 ∏
z(ξ)∈APv(η)\{u(ζ)}

Yz(ξ),v(η)(p, r)

 . (4)

and the probability ψv(η)(p, r) that a node v(η) cannot activate any node z ∈ NCv(η) within
(tv(η), T ),

ψv(η)(p, r) =
(
p exp(−r(T − tv(η))) + (1− p)

)|NCv(η)| . (5)

Then, from Eqs. (4) and (5), the following log likelihood function L(p, r;D(0, T )) can be
obtained for observed data D(0, T )

L(p, r;D(0, T )) =
∑

v(η)∈D

(
log φv(η)(p, r) + logψv(η)(p, r)

)
. (6)

The values of parameters p and r can be stably obtained by maximizing Eq. (6) using an
EM-like algorithm. (see Appendix A for more details).

Now, we assume that there exist change points specified by the change point vec-
tor tK and the associated diffusion-probability vector pK . For any v(η) ∈ D(0, T ), let
φv(η)(pK , r; tK) be the probability density that some node u(ζ) ∈ APv(η) succeeds to acti-
vate a node v(η) at time tv(η), i.e.,

φv(η)(pK , r; tK) =
∑

u(ζ)∈APv(η)

Xu,v(p(tu(ζ)), r)
∏

z(ξ)∈APv(η)\{u(ζ)}

Yz,v(p(tz(ξ)), r) (7)

and ψv(η)(p(tv(η)), r; tK) be the probability that a node v(η) cannot activate any node
z ∈ NCv(η) within (tv(η), T ], i.e.,

ψv(η)(p(tv(η)), r; tK) =
(
p(tv(η)) exp(−r(T − tv(η))) + (1− p(tv(η)))

)|NCv(η)| . (8)

Using Eqs. (7) and (8), we can define the following objective function L(pK , r;D(0, T ), tK).

L(pK , r;D(0, T ), tK) =
∑

v(η)∈D

(
log φv(η)(pK , r; tK) + logψv(η)(p(tv(η)), r; tK)

)
. (9)

Clearly, L(pK , r;D(0, T ), tK) is expected to be maximized by setting tK to the true change
points vector t∗K = (t∗1, · · · , t∗K) if a substantial amount of data D(0, T ) is available. Thus,
our diffusion probability estimation problem is formalized as the following maximization
problem:

t̂K = arg max
tK
L(p̂K(tK), r̂(tK);D(0, T ), tK), (10)

where p̂K(tK) and r̂(tK) denote the maximum likelihood estimators for a given tK .

302



Estimating Diffusion Probability Changes for AsIC-SIS Model

5. Estimation Methods

For a given number of change points, K, in order to obtain the optimal change point vector
t̂K according to Eq. (10), we need to prepare a reasonable set of candidate change points,
denoted by T . One way of doing so is to construct T by considering all of the observed
activation time points.

T = {tv(η); (v(η), tv(η)) ∈ D(0, T )}∪{T} = {τ0, τ1, · · · , τN}, (0 = τ0 < τ1 < · · · < τN = T ).

Here N is equal to the number of activated nodes in a information diffusion result, i.e.,
N = |D(0, T )|. Hereafter, we denote the model parameter vector by θK ; i.e., θK = (pK , r)
for the AsIC-SIS model.

5.1. Proposed Method

Our proposed method employs a greedy strategy. Clearly, we can obtain the parameter
vector θ0 from the original objective function of Eq. (6). Now, under the condition that
we have obtained the K change point(s), we consider selecting the next (K + 1)-th change
point. Of course, we can obtain the maximum likelihood estimators, θ̂K , from the extended
objective function of Eq. (9). Then, we focus on the first-order partial derivative of the
objective function L(θ̂K ;D(0, T )) with respect to a new parameter pv(η) introduced by
considering as if each node v ∈ V has an individual diffusion probability pv(η) at each
activation time tv(η). Note that under this situation, by posing the restriction of parameter
sharing setting, defined by pv(η) = pi if tv(η) ∈ [ti, ti+1), we obtain each maximum likelihood
estimator by p̂v(η) = p̂i. Thus, from the optimal necessary condition of the maximum
likelihood estimation, we have

0 =
∂L(θ̂K ;D(0, T ))

∂pi
=

∑
tv(η)∈[ti,ti+1)

∂L̃(θ̂K ;D(0, T ))

∂pv(η)
. (11)

Now we assume that there exists an undetected change point tj ∈ [ti, ti+1). Then
the estimated parameter p̂i for the time span [ti, ti+1) is nothing but a compromised value
between diffusion probabilities of [ti, tj) and [tj , ti+1). Thus, we can expect that the following
relation holds for the product of the partial derivatives between many pairs of pu(ζ) and
pv(η) if both tu(ζ) and tv(η) are included in either before the change point [ti, tj) or after the
change point [tj , ti+1).

∂L̃(θ̂K ;D(0, T ))

∂pu(ζ)

∂L̃(θ̂K ;D(0, T ))

∂pv(η)
> 0 (12)

Here, we consider the following partial sum for the derivatives:

g(τn) =
∑

tv(η)<τn

∂L̃(θ̂K ;D(0, T ))

∂pv(η)
, n = 1, · · · , N, (13)

where g(τn) = 0 if τn = ti. By Eqs. (11) to (13), we can expect that |g(n)| is locally
maximized at each undetected change point τn = tj . This is because the sign of the product
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of the partial derivatives ∂L(θ̂K ;D(0, T ))/∂pu(ζ) and ∂L(θ̂K ;D(0, T ))/∂pv(η) changes at
the boundaries of the undetected change points {tj}. Therefore, we propose the method of
detecting the next change point by

τ̂n = arg max
τn∈T

|g(τn)|. (14)

Here note that we can incrementally calculate g(τn). More specifically, we can obtain the
following formula by tv(η) = τn+1:

g(τn+1) = g(τn) +
∂L(θ̂K ;D(0, T ))

∂pv(η)
(15)

for any τn, τn+1 ∈ T .
Thus far, we assumed that the number of change points, K, is known. However, since

this assumption does not hold in many applications, we need to obtain an adequate K
from a given diffusion result. For this purpose, we can utilize some statistical measure
such as MDL (Minimum Description Length). Note that due to a time-series nature of our
observation data, we cannot straightforwardly apply a resampling technique such as k-fold
cross-validation for this model selection. In our experiments, we employed the following
MDL value.

MDL(θK) = −L(θ̂K ;D(0, T )) + (K + 1) logM, M =
∑

v(η)∈D

|F (v(η))| , (16)

where K + 1 and M correspond to the number of parameters and the number of coin-flips
performed by the AsIC-SIS model, respectively. Note that we regard M as the number of
samples for our learning. Then we can summarize our proposed method below.

1. Set K = 0 and t0 to an empty list, and initialize θ0 adequately.
2. Maximize L(θK ;D(0, T )) by using the parameter estimation method, and calculate
MDL(θK).
3. If K > 0 and MDL(θK) > MDL(θK−1), output tK−1 and θK−1.
4. Detect the change point τ̂n by Eq. (14), construct tK+1 by adding τ̂n to tK , set K = K+1,

and return to step 2.

Here note that the proposed method requires likelihood maximization by using the param-
eter estimation method only (K + 1) times.

5.2. Comparison Method

As mentioned earlier, we have already proposed a hot span detection method for the AsIC
model in the SIR (Susceptible/Infected/Recover) setting, although this method is only
applicable to a restricted form of the change pattern expressed by a pair of t2 = (t1, t2) and
p2 = (p0, p1, p0) (Ohara et al., 2011). The results reported are good. Thus, we extend this
method to the SIS (Susceptible/Infected/ Susceptible) setting, and use the extended method
for performance comparison, knowing that the method is intended to a single rect-linear
pattern change. In what follows, we outline this method.
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The comparison method also utilizes a modified version of Eq. (13) as the measure of
interval selection, expressed by

[τ̂m, τ̂n) = arg max
τm,τn∈T

∣∣∣∣∣∣
∑

tv(η)∈[τm,τn)

∂L(θ̂K ;D(0, T ))

∂pv(η)

∣∣∣∣∣∣ . (17)

However, this method can be extremely inefficient when the number of candidate time
points N is large. Thus, in order to make it work with a reasonable computational cost,
we consider restricting the number of candidate time points to a smaller value, denoted by
J , i.e., we construct TJ (⊂ T ) by randomly selecting J points from T ; then we construct a
restricted set of candidate spans by

HJ = {S = [τi, τj); τi < τj , τi ∈ TJ , τj ∈ TJ}.

Note that |HJ | = J(J − 1)/2, which is large when J is large.

6. Experimental Evaluation

We experimentally evaluated, given an observed diffusion result, how accurately the pro-
posed method can estimate diffusion probability changes underlying it by investigating the
difference between the estimated change pattern and the one that is assumed true using
four real world networks.

6.1. Datasets

Here we adopted four large networks in the real world, all of which are bidirectional. The
first one is a trackback network of Japanese blogs used in Kimura et al. (2009b), where
there are 12, 047 nodes and 79, 920 directed links (the blog network). The second one
is a network representing the co-occurrence relation extracted from the “list of people”
within Japanese Wikipedia that is used in Kimura et al. (2008), which has 9, 481 nodes
and 245, 044 directed links (the Wikipedia network). The third one is a network derived
from the Enron Email Dataset (Klimt and Yang, 2004) where the sender and the recipient
extracted from the dataset were linked if they had bidirectional communications. It contains
4, 254 nodes and 44, 314 directed links (the Enron network). The last one is a coauthorship
network employed in Palla et al. (2005). It has 12, 357 nodes and 38, 896 directed links (the
coauthorship network).

6.2. Experimental Setting

We generated diffusion results using the AsIC-SIS model for each of the above networks
under the following setting. We considered p = 1/d̄ as the base value of the diffusion
probability of each link in a network, where d̄ is the mean out-degree of the network. For
an arbitrary node in the network, the expected number of its children that it succeeds to
activate is approximately one at least at an early phase of the information diffusion for this
base value. If the diffusion probability is much smaller than the base value, the diffusion
process could terminate soon resulting in only few active nodes on the average. If it is
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Table 1: The diffusion probability p∗2 that is assumed true for each of the networks .

diffusion probability (p∗2) Blog Wikipedia Enron Coauthorship

p0 0.10 0.02 0.05 0.20
p1 0.30 0.06 0.15 0.60
p2 0.10 0.02 0.05 0.20

Table 2: The diffusion probability p∗3 that is assumed true for each of the networks .

diffusion probability (p∗3) Blog Wikipedia Enron Coauthorship

p0 0.10 0.02 0.05 0.20
p1 0.20 0.04 0.10 0.40
p2 0.30 0.06 0.15 0.60
p3 0.10 0.02 0.05 0.20

much larger, the information rapidly spreads out the entire network and the majority of
nodes could be active at any time point in the process, which would also be unrealistic.
As a result, too little or too much amount of information diffusion is inappropriate to our
aim of investigating the diffusion probability change estimation. Thus, we set the initial
diffusion probability, p0, to be a value slightly smaller than the base value, which is 0.10
for the blog network, 0.02 for the Wikipedia network, 0.05 for the Enron network, and 0.20
for the Coauthorship network, respectively. We considered two kinds of change pattern:
one is a rect-linear pattern that has two change points, which is the same as the one used
in Ohara et al. (2011) and can be regarded as the most fundamental; and the other is a
two-step pattern having three change points, which represents a situation where an event
that caused an increase in the diffusion probability of a certain topic occurred, followed
by an even bigger event that further increased the probability, and then the probability
returned back to the normal value due to the cease of the event. As for the former pattern,
we set the diffusion probability during the second period, p1, to be three times as large
as p0, and the probability during the third period, p2, to be the same as p0. Table 1
summarizes the diffusion probability p∗2 that is assumed true. For all the networks we used
the same t∗2 = (10, 15) as the change point vector that is assumed true and T = 20 as the
final observation time. As for the latter pattern, we set the second and the third diffusion
probability, p1 and p2, to be twice and three times as large as p0, respectively, and the
last one, p3 to be the same as p0. Table 2 summarizes the diffusion probability p∗3 that is
assumed true. We used t∗3 = (10, 15, 20) and T = 25 for all the networks. As we mentioned
in Section 3, we assumed that the time delay parameter does not change, and fixed its value
to be 1 (r = 1) for every network as changing r works only for scaling the time axis of
the diffusion results. In all we generated 100 information diffusion results for each pattern,
using the above parameter values, each starting from a randomly selected initial active node
for each network.

The initial values for p0 and r were set to a reasonably small random value and a random
value around 1, respectively. The termination condition of our parameter learning was as
follows:

max
θi∈θK

|∂L(θK ;D(0, T ))/∂θi| < 10−4.
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Table 3: Integral error E of the proposed method averaged over 100 trials to estimate a
rect-linear change pattern (the value in parentheses is the number of trials where
the obtained pattern took the minimal MDL value at K).

]change points (K) Blog Wikipedia Enron Coauthorship

0 1.296 (0) 0.273 (5) 0.692 (0) 3.494 (0)
1 1.610 (0) 0.348 (0) 0.575 (0) 3.575 (0)
2 (= K∗) 0.126 (64) 0.150 (25) 0.025 (74) 0.614 (7)
3 0.130 (12) 0.108 (41) 0.029 (12) 0.176 (31)
4 0.134 (16) 0.099 (10) 0.032 (6) 0.162 (29)
5 0.136 (4) 0.084 (7) 0.036 (4) 0.156 (12)
6 0.139 (1) 0.081 (4) 0.037 (4) 0.153 (6)
7 0.139 (2) 0.075 (3) 0.039 (0) 0.155 (9)
8 0.139 (0) 0.070 (4) 0.041 (0) 0.155 (1)
9 0.140 (1) 0.070 (1) 0.044 (0) 0.157 (5)

MDL estimation 0.122 0.060 0.022 0.117

Comparison method 0.120 0.047 0.028 0.117

We then estimated both the change point vector t̂K and the model parameter vector θ̂K ,
and evaluated their accuracy by integrating the absolute error of the estimated diffusion
probability with respect to time t, i.e.,

E =

∫ T

0
|p∗(t)− p̂(t; t̂K , θ̂K)|dt,

where p∗(t) is the diffusion probability that is assumed true at time t and p̂(t; t̂K , θ̂K) is its
estimation. The estimation with a smaller E is a better approximation of the true change
pattern. In this regards it is not essential that the estimated number of change points, K̂,
is identical to K∗, the number of change points used to generate the diffusion result. What
matters is how close is the estimated pattern as a whole to the true pattern. In fact, K∗ is
unknown in reality.

6.3. Experimental Results

Table 3 summarizes the results for the first (rect-linear) change pattern, where the integrated
estimation errors are the average over independent 100 trials for distinct 100 diffusion
results. Here we executed our method until K = 10 ignoring the stopping condition at Step
3 of the algorithm shown in Section 5.1, and investigated how the estimation error E changes
over K. The value in the parentheses is the number of trials where the MDL value defined
by Eq. (16) took the minimal at that K, which is what the proposed method outputs
as the optimal pattern. The row indicated by “MDL estimation” contains the averaged
integral error of such optimal patterns. In addition, we showed the estimation error for the
comparison method described in Section 5.2 in the row indicated by ”Comparison method”
as a reference value for evaluation, where J was set to 1, 000.
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Table 4: Integral error E of the proposed method averaged over 100 trials to estimate a
two-step change pattern (the value in parentheses is the number of trials where
the obtained pattern took the minimal MDL value at K).

]change points (K) Blog Wikipedia Enron Coauthorship

0 1.500 (0) 0.358 (1) 0.750 (0) 3.837 (0)
1 1.725 (0) 0.379 (0) 0.420 (0) 3.721 (0)
2 0.871 (0) 0.213 (18) 0.324 (0) 1.889 (0)
3 (= K∗) 0.133 (95) 0.138 (37) 0.128 (12) 0.279 (32)
4 0.135 (3) 0.116 (18) 0.057 (18) 0.157 (37)
5 0.135 (2) 0.113 (10) 0.052 (20) 0.149 (15)
6 0.135 (0) 0.107 (8) 0.046 (29) 0.154 (9)
7 0.135 (0) 0.107 (4) 0.047 (11) 0.155 (4)
8 0.135 (0) 0.107 (2) 0.046 (12) 0.162 (0)
9 0.135 (0) 0.107 (2) 0.047 (8) 0.169 (3)

MDL estimation 0.133 0.103 0.038 0.123

Comparison method 0.845 0.180 0.321 2.043

From these results, we see that the estimation error drastically drops down at K = 2
(= K∗) for every network, which means that the proposed method succeeded in detecting
the correct change points and estimating the diffusion probabilities in good accuracy. In
fact, the errors of the optimal patterns obtained by the proposed method (shown in the
row indicated by “MDL estimation”) are very favorably comparable to those obtained by
the comparison method that is optimized solely to a single rect-linear pattern used here.
Further, the comparison method explicitly uses the constraint p0 = p2, but the proposed
method does not use this constraint and estimates p2 independently of p0. This implies that
the pattern obtained by the proposed method can be a good approximation of the changes
of the diffusion probability underlying the observed diffusion result. The number of trials
where the MDL reaches the minimum is largest either at K = 2 or 3, which means that
the MDL criterion works well to avoid an over-fitting that could be attained by introducing
many change points. There are some differences in the performance over the networks. We
observe that there are more trials that the MDL criterion gives a larger K than the correct
K∗ for Wikipedia and Coauthorship networks. This is mainly attributed to the diffusion
data we used. However, more deeper analysis is needed to understand what causes this
difference, but it is true to say that the error is always small enough for the MDL results
on the average.

Table 4 show the results for the second (two-step) pattern. The results are qualitatively
the same as in the first pattern. The estimation error drops down drastically at K = 3(=
K∗) and the MDL value takes the minimum at around K = 3 in most of the cases. For every
network, the estimation errors of the optimal patterns obtained by the proposed method
are about the same to those for the first pattern, and are much better than those obtained
by the corresponding comparison method. In fact, it is unfair to compare the results with
the comparison method because the latter is not designed to detect patterns other than
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the rect-linear shape, It simply shows that the comparison method cannot approximate the
correct pattern by any means. The proposed method can estimate the underlying diffusion
probability change in good accuracy, and the MDL based criterion to select an optimal K
works well as intended also for the case of two-step pattern.

In order to analyze our experimental results more closely, we examined the diffusion
probability patterns obtained by our proposed method. Figure 1 shows typical examples of
desirable and undesirable cases for Wikipedia network by which a relatively large number of
undesirable ones were observed. Here we simply denoted our obtained result p̂(t; t̂k, θ̂k) as
p(t;K = k) for a notational convenience. From this figure, we observe that for both cases,
similar change points were detected until K ≤ 2, but their results are drastically different in
the optimal number of change points, K = K∗ = 3. In the desirable case, an almost accurate
change point around t = 10 was detected at K = 3, and after that, several change points
that bring about over-fitting results were detected. Actually, in terms of the MDL criterion,
we could obtain the optimal number of change points and a reasonably accurate diffusion
probability pattern in this case. On the other hand, in the undesirable case, a change point
that brings about over-fitting results was detected at K = 3. At K = 5, a change point
between t = 10 and 15 was detected, but this point is not so accurate compared to the
point detected in the desirable case. The main reason why such undesirable cases happen
for Wikipedia network is that for a relatively large number of diffusion results generated by
using this network, the numbers of active nodes at an early period before t = 10 was quite
small due to our setting of the diffusion probability p0 = 0.02, which is small. As for the
comparison method shown in case of the rect-linear shape in Table 3, we consider that this
problem caused by small numbers of active nodes at an early period was alleviated by the
imposed constraint p0 = p2.

In summary, we can say that the proposed method can approximate the changes of
diffusion probability underlying the observed diffusion result in good accuracy, and the
MDL criterion helps avoid the over-fitting.

7. Conclusion

We addressed the problem of estimating diffusion probability changes, which are caused
by changes in unknown external factors, for the AsIC-SIS (Asynchronous Independent
Cascade - Susceptible/Infectious/Susceptible) model over a social network from an ob-
served information diffusion sequence. Here, the AsIC-SIS model is an information dif-
fusion model in which the well-known discrete time IC-SIR (Independent Cascade - Sus-
ceptible/Infectious/Recovered) model is extended to continuous time model allowing asyn-
chronous time-delay as well as allowing multiple activations of the same nodes. We assumed
that the change pattern of diffusion parameter for the AsIC-SIS model is approximated by
a series of step functions, and proposed a method for detecting how many step functions
are needed, where in time each one starts and how long it lasts, and what the height of
each one is, from an observed sequence of information diffusion under the AsIC-SIS model.
The proposed method employs “model parameter learning” by maximizing the likelihood
function of the observed data (which is embedded inside the pattern search loop) and “ef-
ficient search” that uses the first order derivative of the likelihood function with respect to
the parameters as a primary guide to search. The search algorithm adopts a divide-and-
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(a) Desirable Case for Wikipedia Network

(b) Undesirable Case for Wikipedia Network

Figure 1: Examples of Diffusion Probability Functions Obtained by Varying K.

conquer type greedy recursive partitioning that requires the expensive parameter learning
only once for each partitioning, and utilizes an MDL selection measure to determine the
adequate number of step functions, i.e., when to stop the search. Using four real world
network structures, we confirmed the effectiveness of the proposed method. We evaluated
the performance of the proposed method in terms of the L1 norm of the difference between
the true and the estimated diffusion probability patterns. We tested two kinds of artificially
generated change pattern: One is a rect-linear pattern having two change points, and the
other is a two-step pattern having three change points. For the rect-linear pattern, the
performance of the proposed method was very close to that of the existing method which
was devised solely for this restricted change pattern and known to work well. The perfor-
mance of the proposed method for the two-step pattern did not degrade and the errors were
comparable to those for the rect-linear pattern. The MDL criterion was useful to decide
when to stop the search in order to avoid overfitting, and it identified the correct number
of step functions in many cases. It returned a slightly large number in some cases, but the
the L1 norm of the difference between the two patterns which we use as a measure for the
goodness of the found pattern was always small. Since the diffusion probability may change
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abruptly or gradually over time, our immediate future work is to evaluate the proposed
method for a wide range of change patterns over time and reinforce the results obtained in
this paper. Another immediate future work is to do a deeper analysis about why different
networks give different results and understand the key factors to explain this.

Appendix A. Estimation Algorithm for AsIC-SIS Model

We briefly describe the estimation algorithm of parameters p and r for the AsIC-SIS model
from an observed data D(0, T ) (see Saito et al. (2009b, 2010b) for more details about the
parameter learning algorithm of the AsIC model).

We employ an EM-like algorithm. Let p̄ and r̄ be the current estimates of p and r.
Using Eqs. (2) and (3), we define ᾱu(ζ),v(η) and β̄u(ζ),v(η) as follows:

αu(ζ),v(η) =
Xu(ζ),v(η)(p̄, r̄)/Yu(ζ),v(η)(p̄, r̄)∑

z(ξ)∈APv(η) Xz(ξ),v(η)(p̄, r̄)/Yz(ξ),v(η)(p̄, r̄)

βu(ζ),v(η) =
p̄ exp(−r̄(tv(η) − tu(ζ)))
Yu(ζ),v(η)(p̄, r̄)

The update formulas of p and r are as follows:

p =

∑
v(η)∈D

∑
u(ζ)∈APv(η)

(
ᾱu(ζ),v(η) + (1− ᾱu(ζ),v(η))β̄u(ζ),v(η)

)∑
u(ζ)∈D |F (u(ζ))|

r =

∑
v(η)∈D

∑
u(ζ)∈APv(η) ᾱu(ζ),v(η)∑

v(η)∈D
∑

u(ζ)∈APv(η)

(
ᾱu(ζ),v(η) + (1− ᾱu(ζ),v(η))β̄u(ζ),v(η)

)
(tv(η) − tu(ζ))

.
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