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Abstract

This paper proposes a novel on-line portfolio
selection strategy named “Confidence Weighted
Mean Reversion” (CWMR). Inspired by the
mean reversion principle and the confidence
weighted on-line learning technique, CWMR
models a portfolio vector as Gaussian distribu-
tion, and sequentially updates the distribution by
following the mean reversion trading principle.
The CWMR strategy is able to effectively exploit
the power of mean reversion for on-line portfo-
lio selection. Extensive experiments on various
real markets demonstrate the effectiveness of our
strategy in comparison with the state of the art.

1 Introduction

On-line Portfolio Selection (PS), also termed “sequential
portfolio selection”, aims to determine a practical strategy
for investing wealth among a set of assets to achieve some
financial objectives in the long run. The finance community
has studied the problem by mainly concerning the objective
of maximizing risk-adjusted returns [12, 26, 28, 29]. On the
other hand, thelearning to tradetechniques, often aiming
to maximize the logarithmic compound return or growth
rate, have also been actively explored in the information
theory [6, 7, 21, 22, 27, 31] and the machine learning com-
munity [1, 3, 4, 15–19, 23, 24, 30, 33].

Some state-of-the-art PS strategies [15, 16] assume that the
current best performing stocks would also perform well
the next trading day, but empirical evidence [20] indicates
that such trends may be often violated, especially in the
short term. This observation leads to the strategy of buying
poor performing stocks and selling those with good perfor-
mance. This trading principle, known as “mean reversion”,
is followed by some methods, including Constant Rebal-
anced Portfolios (CRP) [7] and Anticor [4], among others.

Appearing in Proceedings of the14th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2011, Fort Laud-
erdale, FL, USA. Volume 15 of JMLR: W&CP 15. Copyright
2011 by the authors.

However, best CRP [7], which is theoretically grounded
and passively reverses to the mean, performs significantly
poorly in comparison with Anticor, which is heuristic and
actively reverses to the mean via statistical correlation.
This calls for the need of integrating a powerful learning
method to actively exploit the mean reversion property. Be-
sides, all existing learning to trade algorithms (c.f., Sec-
tion 3 for a review) only exploit the first order information
of the portfolio, while the change in the distribution of the
portfolio is better reflected in its first order and second or-
der information (mean and volatility).

To address these two drawbacks, we present a new on-line
portfolio selection strategy named “Confidence Weighted
Mean Reversion” (CWMR). In short, CWMR models the
portfolio vector as a Gaussian distribution and sequentially
updates the distribution according to the mean reversion
trading idea. Thus, CWMR exploits the mean reversion
property in the financial markets and both first and second
order information of the portfolio vector by the powerful
Confidence Weighted (CW) on-line learning [10, 11].

The salient features of the proposed CWMR strategy are:

1. It is the first learning to trade study that exploits the
second order information of theportfolio (not the sec-
ond order information ofprice);

2. Our novel algorithms effectively exploit the mean re-
version property of the financial market by applying
the powerful confidence weighted learning technique.

Through extensive numerical experiments on a variety of
up-to-date real testbeds, we show that the proposed CWMR
algorithms significantly surpass a number of state-of-the-
art strategies in terms of long-term compound return. The
experiments also show that CWMR is robust with respect
to different settings of the parameters and it can withstand
small transaction costs.

The rest of the paper is organized as follows. Section 2
formally defines the problem of on-line portfolio selection.
Section 3 reviews related work and highlights their lim-
itations. Section 4 presents our proposed CWMR algo-
rithms, and Section 5 compares these approaches on his-
torical stock markets. Finally, we conclude in Section 6
with directions for future work.
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2 Problem Setting
Consider a financial market withm assets to be invested.
The changes of asset prices forn trading periods are rep-
resented by a sequence of positiveprice relative vectors
x1, . . . ,xn ∈ R

m
+ . We usexn to denote such a sequence of

vectors. Thejth component of theith vectorxij denotes
the ratio of the closing price to the last closing price of the
jth asset on theith trading period, thus an investment in
assetj on theith period increases by a factor ofxij .

An investment on the market is specified by aportfolio
vector, denoted asb=(b1, . . . , bm), wherebi represents
the proportion of wealth invested on theith asset. Typ-
ically, we assume the portfolio is self-financed and no
margin/shorting is allowed, which meansb∈△m, where
△m = {b : b ∈ R

m
+ ,

∑m
i=1 bi = 1}. The invest-

ment procedure is represented by theportfolio strategy,
i.e., a sequence of mappingsbi:R

m(i−1)
+ →△m, i=1, 2, . . .,

where bi=bi(x1, . . . ,xi−1) is the portfolio used on
the ith trading period given past market price relatives
x
i−1= {x1, . . . ,xi−1}. Let us denote bybn the portfolio

strategy for then consecutive trading periods.

For theith trading period, an investment defined by portfo-
lio bi produces aportfolio period returnsi, i.e., the wealth
increases by a factor ofsi=b

⊤
i xi=

∑m
j=1 bijxij . Since we

re-invest all the wealth, the investment results in multiplica-
tive cumulative return. Thus, aftern trading periods, the
investment of a portfolio strategybn produces aportfolio
cumulative wealthSn, which is increased by a factor of
∏n

i=1 b
⊤
i xi, i.e., Sn (b

n,xn)=S0

∏n
i=1 b

⊤
i xi, whereS0

denotes the initial wealth, which is set to$1 in this paper.

Finally, we formulate the on-line PS problem as a sequen-
tial decision task. The portfolio manager aims to design
a strategy to maximize the portfolio cumulative wealth.
The portfolios are selected in a sequential fashion. On
each trading periodi, given the historical information, in-
cluding all the previous sequences of price relative vectors
x
i−1={x1, . . . ,xi−1}, and the previous sequences of port-

folio vectorsbi−1={b1, . . . ,bi−1}, the manager learns to
decide a new portfolio vectorbi for the coming price rel-
ative vectorxi. The resulting portfolio is scored based on
the portfolio period return. This procedure repeats until the
end of the trading period. The portfolio strategy is scored
according to the cumulative wealth achieved finally.

In the above model, we make several general assumptions:

1. Transaction cost: we assume no transaction costs
(commissions, taxes, and slippage, etc.) in the model;

2. Market liquidity: we assume each asset is arbitrarily
divisible, and one can buy and sell required quantities
at the last closing price of any given trading period;

3. Impact cost: we assume the market behavior is not
affected by the trading strategy in our evaluation.

The implications and effects of these assumptions are dis-
cussed in Section 5.3 and Section 5.5.

3 Related Work
Some common and well-known benchmarks for PS include
theBuy-And-Hold(BAH) strategy and theConstant Rebal-
anced Portfolios(CRP) [7, 8]. In our study, we refer to the
equal-weighted BAH strategy as themarketstrategy. Con-
trary to the static BAH strategy, CRP actively adjusts the
portfolio by keeping a fixed fraction of the investor’s to-
tal wealth on each asset. The best possible CRP strategy,
known asBest CRP(BCRP), is a hindsight strategy.

One group of learning to trade research aims to approach
the same daily wealth growth rate as the BCRP strat-
egy. Cover [7] proposedUniversal Portfolio(UP) strategy,
which is based on the weighted average of the historical
performance of all CRP experts. Helmbold et al. [19] pro-
posed theExponential Gradient(EG) strategy to maximize
the expected logarithmic daily return. Agarwal et al. [1]
proposed theOnline Newton Step(ONS) strategy to max-
imize the expected logarithmic cumulative wealth. Hazan
and Seshadhri [18] proposed an adaptive ONS approach.

Another promising research direction for new on-line PS
strategies tries to approach the Oracle strategy. Such idea
was adopted in Borodin et al. [4] where they proposed a
non-universal portfolio strategy namedAnticor to exploit
statistical information from historical markets and to rebal-
ance the portfolio according to the mean reversion trading
idea. Györfi et al. [15] recently introduced a framework of
Nonparametric Kernel-based Moving Window(BK) strat-
egy attempting to construct portfolios based on similar
historical price relatives measured via Euclidean distance.
Following the same framework,Nonparametric Nearest
Neighbor(BNN) [16] strategy locates the similar price rel-
atives via nearest neighbor. Li et al. [24] further proposed
Correlation-driven Nonparametric learning(CORN) strat-
egy by locating the similar price relatives via correlation.

Aggregating algorithms [32] have also been used for On-
line PS. Singer [30] proposedSwitching Portfolio(SP),
which switches among the underlying strategies according
to a prior distribution. Levina and Shafer [23] introduced
Gaussian Random Walk(GRW), which applies the aggre-
gating strategy and switches according to Gaussian distri-
bution. Sequential prediction techniques can also be ap-
plied for tackle this task, for example,Add-beta[3] predic-
tion strategy (T0& M0 algorithm).

3.1 Limitation of existing work

Most existing learning to trade strategies (UP, EG, ONS,
BK , and BNN) often adopt the trend following trading idea
by assuming that the price relative for the next trading day
follows the same trend as today’s price relative, i.e., the
winning stocks over others tend to win the following trad-
ing day. However, in the short-term, the stock price rel-
atives may not follow the previous trends as empirically
evidenced by Jegadeesh [20].
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Besides the trend following idea, another trading princi-
ple, i.e., “mean reversion”, assumes that if a stock performs
worse than others, it tends to perform better in the next trad-
ing day. Thus, a mean reversion strategy tends to purchase
the securities of poor performance and to sell the securi-
ties of good performance in the past. Some strategies that
adopt this idea include CRP [7] and Anticor [4]. Empiri-
cally, the CRP strategy that passively reverses to the mean
often performs worse than Anticor, which actively reverses
to the mean and thus can better exploit the fluctuation of
assets [4]. On the other hand, because Anticor heuristically
transfers the proportion within the portfolio based on sta-
tistical correlations, it often produces sub-optimal results.
A new strategy to exploit the mean reversion property with
a powerful learning method is necessary.

Finally, all existing algorithms only consider the first or-
der information of the portfolio vectors, while the second
order information (volatility of the portfolio vector) could
provide useful volatility information for the PS task.

4 Confidence Weighted Mean Reversion for
On-Line Portfolio Selection

4.1 Motivation and Overview

Our proposed method is motivated by the best CRP strat-
egy, which theoretically has a nice performance guaran-
tee [7], and the Anticor strategy, which has a good em-
pirical performance [4], with their underlying mean rever-
sion trading idea. In the context of portfolio, or multiple
stocks, it implies that better performing stocks tend to per-
form worse than others in the subsequent trading days, and
the worse performing stocks are inclined to perform better.
Thus if we want to maximize the portfolio return for the
next trading day, we could minimize the expected portfo-
lio return with respect to today’s price relative since the
next price relative tends to revert. This is a bit contra-
intuitive, but according to Lo and MacKinlay [25], the ef-
fectiveness of mean reversion is due to the positive cross-
autocovariances across securities.

The proposed method is also inspired by Confidence
Weighted (CW) learning [10, 11], which was originally
proposed for classification. The basic idea of CW is to
maintain a Gaussian distribution for the classifier, and se-
quentially update the classifier distribution according tothe
Passive Aggressive (PA) learning [9]. CW takes advantage
of both first and second order information of the solution.

To address the limitations described in Section 3.1, in this
paper, we present a novel on-line PS method named “Con-
fidence Weighted Mean Reversion”, or CWMR for short.
We model the portfolio vector as a Gaussian distribution
and sequentially update the distribution according to the
mean reversion trading idea. Different from CRP and Anti-
cor, CWMR actively exploits the mean reversion property
of the financial market with a powerful learning method.

Traditional learning to trade algorithms, to the best of our
knowledge, all focus on the first order information of port-
folio vector, while the proposed CWMR algorithm consid-
ers both first and second order information where the addi-
tional second order information could benefit the PS task.

4.2 Formulation
Let us model the portfolio vector for theith trading day as
a Gaussian distribution with meanµ∈Rm and the diagonal
covariance matrixΣ∈Rm×m with nonzero diagonal ele-
mentsσ2 and zero for off-diagonal elements. The valueµj

represents the knowledge of assetj in the portfolio. The
diagonal covariance matrix termΣjj or σ2

j stands for the
confidence we have in the portfolio mean valueµj .

At the beginning ofith trading day, we construct a port-
folio bi based on the distributionN (µ,Σ), bi∼N (µ,Σ).
Then after the price relativexi is revealed, the portfolio
increases its wealth by a factor ofbi·xi. It is straight-
forward that the portfolio daily return can be viewed as
a random variable of a univariate Gaussian distribution,
D∼N

(

µ · xi,x
⊤
i Σxi

)

. The mean of portfolio daily return
is the return of the mean portfolio vector and the variance
is proportional to the length of the projection ofxi onΣ.

Now let us update the distribution. According to the mean
reversion trading idea, the probability of a profitable port-
folio for the next trading dayb with respect to a mean re-
version thresholdǫ is defined as,

Prb∼N (µ,Σ) [D ≤ ǫ] = Prb∼N (µ,Σ) [b · xi ≤ ǫ] .

For simplicity, we write Pr[b·xi≤ǫ] instead. The manager
adjusts the distribution to ensure the probability of a prof-
itable portfolio is higher than a confidence levelθ∈ [0, 1],

Pr[b · xi ≤ ǫ] ≥ θ.

If the expected return using theith price relative is less than
a threshold with high probability, the actual return for the
i+1th trading day tends to be high with correspondingly
high probability, since the price relative tends to reverse.
Then, following the intuition underlying PA algorithms [9],
our algorithm chooses the distribution closest (in the KL di-
vergence sense) to the current distributionN (µi,Σi). As
a result, on thei+1th trading day, the algorithm sets the
parameters of the distribution by solving the following op-
timization problem:

Original Optimization Problem of CWMR:

(µi+1,Σi+1) = argmin
µ,Σ

DKL (N (µ,Σ) ‖N (µi,Σi))

s.t. Pr[µ · xi ≤ ǫ] ≥ θ

µ ∈ △m.

(1)

Under the distribution ofN (µ,Σ), the return for the
ith trading day has a Gaussian distribution with mean
µD=µ·xi and covarianceΣD=x

⊤
i Σxi of diagonal ele-

mentsσ2
D

. Thus, the probability of a profitable portfolio,
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Pr[D≤ǫ] = Pr
[

D−µD

σD

≤ ǫ−µD

σD

]

. In this formula, D−µD

σD

is a normally distributed random variable, the above prob-

ability equalsΦ
(

ǫ−µD

σD

)

, whereΦ is the cumulative dis-

tribution function of the Gaussian distribution. As a re-
sult, we can rewrite the constraint as,ǫ−µD

σD
≥Φ−1 (θ).

SubstitutingµD andσD by their definitions and rearrang-
ing terms, we obtain the constraint,ǫ−µ·xi≥φ

√

x⊤
i Σxi,

whereφ=Φ−1 (θ).

To make our research more realistic and consistent with
previous studies, we replace the portfolio return termµ·xi

by its logarithmiclog (µ·xi) in order to reflect the risk aver-
sion preference of the investors. Moreover, using logarith-
mic utility function and holding other variables constant,
imply loosening the constraint. However, since bothǫ and
φ are adjustable, by choosing appropriate values, we can
weaken the loose effect. Thus, in our formulation we mod-
ify the constraint using the logarithmic return function as,
ǫ− log (µ·xi)≥φ

√

x⊤
i Σxi.

To this end, we rewrite the above optimization problem as:

Revised Optimization Problem of CWMR:

(µi+1,Σi+1) = argmin
µ,Σ

1

2

(

log

(

detΣi

detΣ

)

+ Tr
(

Σ
−1

i Σ
)

)

+
1

2

(

(µi − µ)⊤ Σ
−1

i (µi − µ)
)

s.t. ǫ− log (µ · xi) ≥ φ

√

x⊤
i Σxi

µ · 1 = 1, µ � 0.

For the above revised optimization problem, the constraint
is not convex inΣ. We suggest two ways to handle it. The
first way is to linearize it by omitting the square root [11],
i.e.,ǫ− log (µ·xi)≥φx⊤

i Σxi. As a result, we have the first
final optimization problem namedCWMR-Var , whose so-
lution is an approximate solution to the original optimiza-
tion problem (1).

Final Optimization Problem 1 (CWMR-Var):

(µi+1,Σi+1) = argmin
µ,Σ

1

2

(

log

(

detΣi

detΣ

)

+ Tr
(

Σ
−1

i Σ
)

)

+
1

2

(

(µi − µ)⊤ Σ
−1

i (µi − µ)
)

s.t. ǫ− log (µ · xi) ≥ φx
⊤
i Σxi

µ · 1 = 1, µ � 0.
(2)

Following Crammer et al. [10], the second reformulation is
to decomposeΣ since it is positive semidefinite (PSD), i.e.,

Σ=Υ
2 with Υ=Qdiag

(

λ
1/2
1 , . . . , λ

1/2
m

)

Q⊤, where Q is

orthonormal andλ1, . . . , λm are the eigenvalues ofΣ and
thusΥ is also PSD. This reformulation yields the second
final optimization problem namedCWMR-Stdev, whose
solution is the exact solution of the original problem (1).

Final Optimization Problem 2 (CWMR-Stdev):

(µi+1,Υi+1)=argmin
µ,Υ

1

2

(

log

(

detΥ2
i

detΥ2

)

+ Tr
(

Υ
−2

i Υ
2
)

)

+
1

2

(

(µi − µ)⊤ Υ
−2

i (µi − µ)
)

s.t. ǫ− log (µ·xi)≥φ ‖Υxi‖ ,Υ is PSD

µ · 1 = 1, µ � 0.
(3)

4.3 Algorithms
Now let us develop the proposed algorithms based on their
solutions using the typical techniques from convex opti-
mization [5]. The solutions to the optimizations are shown
in Proposition 1 & Proposition 2, with their corresponding
proofs in Appendix A & B, respectively.

Proposition 1. The solution to the final optimization prob-
lem(2) (CWMR-Var) is expressed as:

µi+1=µi−λi+1Σi

(

xi−x̄i1

µi · xi

)

, Σ
−1

i+1=Σ
−1

i +2λi+1φxix
⊤
i ,

whereλi+1 corresponds to the Lagrangian multiplier cal-

culated by Eq.(5) andx̄i =
1
⊤
Σixi

1⊤Σi1
denotes the confidence

weighted price relative average.

Proposition 2. The solution to the final optimization prob-
lem(3) (CWMR-Stdev) is expressed as:

µi+1=µi−λi+1Σi
xi−x̄i1

µi·xi

, Σ
−1

i+1=Σ
−1

i +λi+1φ
xix

⊤
i√

Ui

,

whereVi=x
⊤
i Σixi and

√
Ui=

−λi+1Viφ+
√

λ2
i+1

V 2
i
φ2+4Vi

2
denote the variance of the portfolio return for theith and
i+1th trading day, andλi+1 denotes the Lagrangian mul-

tiplier calculated by Eq.(7), andx̄i =
1
⊤
Σixi

1⊤Σi1
represents

the confidence weighted average of theith price relative.

Initially, with no information available for the on-line PS
task, we simply initialize the portfolio meanµ1 to uniform
portfolio and the portfolio covariance matrixΣ1 to equally
standard deviation1m , or equivalent variance1m2 . One re-
maining issue is that the resultingµ can be negative since
we do not consider the non-negativity constraint in the so-
lution. To solve this issue we simply project the resulting
µ to the simplex domain to ensure the simplex constraint.
Another remaining issue is that although the covariance
matrix is non-singular in theory, in real computation, the
covariance matrixΣ sometimes may be singular due to the
computer precision. To avoid this problem and be consis-
tent with the projection of theµ, we try to rescaleΣ by
normalizing its maximum value to1m2 . The final CWMR
algorithm is presented in Figure 1.

4.4 Discussion

The CWMR algorithm is motivated by the Confidence
Weight learning (CW) [10, 11], thus its formulation and
subsequent derivations are similar. However, they address
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Algorithm 1 The CWMR Algorithms for On-Line PS

INPUT: φ=Φ−1 (θ): Confidence parameter;ǫ<0: Mean
reversion parameter
INITIALIZE: µ1 = 1

m1, Σ1 = 1
m2 I, S0 = 1

For t = 1, 2, . . .

1: Draw a portfoliobt fromN (µt,Σt)
2: Receive stock price relatives:xt = (xt1, . . . , xtm)
3: Calculate the daily return and cumulative return:St =

St−1 × (bt · xt)
4: Calculate the following variables:

Mt = µt · xt, Vt = x
⊤
t Σtxt, x̄t =

1
⊤
Σtxt

1⊤Σt1

5: Update the portfolio distribution:

CWMR-Var











λt+1 as in Eq. (5)
µt+1 = µt − λt+1Σt

xt−x̄t1

Mt

Σt+1 =
(

Σ
−1

t + 2λt+1φdiag2 (xt)
)−1

CWMR-Stdev



























λt+1 as in Eq. (7)
√
U t =

−λt+1φVt+

√

λ2
t+1

φ2V 2
t
+4Vt

2

µt+1 = µt − λt+1Σt
xt−x̄t1

Mt

Σt+1 =
(

Σ
−1
t + φ

λt+1√
Ut

diag2 (xt)
)−1

6: Normalizeµt+1 andΣt+1:

µt+1 = arg min
µ∈△m

‖µ− µt+1‖2 , Σt+1 =
Σt+1

m2Tr (Σt+1)

Figure 1: The proposed Confidence Weighted Mean Rever-
sion (CWMR) algorithms.

different problems since CWMR aims to handle on-line
portfolio selection while CW focuses on classification. Al-
though both objectives adopt KL divergence to measure the
closeness between two distributions, their constraints re-
flect that they are different problems oriented. To be spe-
cific, CW’s constraint is the probability of a correct predic-
tion, while CWMR’s constraint is the probability of a mean
reversion profitable portfolio plus a simplex constraint. The
formulations’ differences result in different derivations.

Since portfolio mean is our main concern for the on-line PS
problem, in this section, we mainly provide a preliminary
analysis of update schemes of portfolio meanµ to reflect its
underlying mean reversion trading idea. Both CWMR-Var
and CWMR-Stdev have the same update equation for the
portfolio mean, i.e.,µt+1=µt−λt+1Σt

xt−x̄t1

µt·xt

. It is obvi-
ous thatλt+1 is non-negative andΣt is PSD. The denom-
inator termxt−x̄t1 can be viewed as excess return vector
of asset pool for previous trading day, wherex̄t represents
the confidence weighted mean return. Holding other terms
constant, the portfolio mean tends to move towards previ-
ous one while the magnitude is negatively related to the
previous excess return, which is in effect the mean rever-
sion trading idea. At the same time, the negative move-
ments are dynamically adjusted by optimalλt+1, previ-

ous portfolio confidenceΣt and mean returnµt·xt, which
catch both first and second order information. To the best
of our knowledge, none of previous learning to trade algo-
rithms has explicitly exploit the second order information
of portfolio vector, however, the second order information
may contribute to the success of the proposed algorithms.

5 Numerical Experiments

We now examine the efficacy of our proposed approach
by performing extensive experiments on publicly available,
real and diverse data from stock markets.

Details of the experimental datasets1 are summarized in Ta-
ble 1. Two of these datasets have been used by in previous
work (NYSE (O) [1, 4, 7, 15, 16, 19] and TSE [4]), while
the rest datasets are collected by us.

Dataset Region Time frame # days # Assets
NYSE (O) US July3rd 1962 - Dec31st 1984 5651 36

NYSE (N) US Jan1st 1985 - Jun30th 2010 6431 23

TSE CA Jan4th 1994 - Dec31st 1998 1259 88

STI SG Jan1th 2005 - Jun30th 2010 1404 22

MSCI Global Oct17th 2005 - Oct15th 2010 1304 4

Table 1: Summary of 5 real datasets from various markets.

In this paper, we measure investment performance using
the most common metric,cumulative wealth. Other de-
tailed experiments, including those on risk adjusted return,
are presented in the long version.

For our approach, we provide deterministic and stochastic
versions. For the former (CWMR-Var and CWMR-Stdev),
we eliminate the randomness of the portfolio (in reality, no
investors like random portfolio) and stabilize experiment
performance, by deterministically drawing a portfolio from
portfolio Gaussian distribution, i.e., directly set the portfo-
lio b=µ. For the latter (CWMR-Var-s and CWMR-Stdev-
s), we repeat it for50 times and provide their average value.
Since the stochastic portfolio may be negative, the projec-
tion to the simplex domain becomes necessary. We set the
parameters empirically without tuning, i.e., confidence pa-
rameterφ=2 or equivalently confidence levelθ=95%, and
mean reversion parameterǫ=−0.5. Section 5.2 will exam-
ine the parameter sensitivity.

We compare the proposed strategy with several existing
strategies (c.f., Section 3), whose parameters were set ac-
cording to the suggestions from their respective studies.

5.1 Cumulative Wealth

The first experiment evaluates the cumulative wealth at the
end of the trading period. From the results illustrated in Ta-
ble 2(a), we find that CWMR (both deterministic CWMR-
Var/CWMR-Stdev and stochastic CWMR-Var-s/CWMR-
Stdev-s) significantly outperform all competitors, including
Anticor andBNN, which are the state-of-the-art techniques.
As widely done in the fund management industry [14], we

1All datasets and their compositions can be downloaded from
http://www.cais.ntu.edu.sg/ ˜ libin/portfolios .

http://www.cais.ntu.edu.sg/~libin/portfolios
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also performed statistical tests to examine if the claimed ex-
cess return can be generated by simple luck. As the results
(Table 2(b)) show, the possibility for achieving the excess
return due to simple luck is only0.01% on the TSE dataset
and almost0% on other datasets. Finally, we also plot the
wealth curve of the cumulative wealth in Figure 3. The
figures show that the proposed CWMR algorithm performs
consistently over the entire trading period. These results
show that the CWMR approach is a promising and reliable
PS technique to achieve high return with high confidence.

5.2 Parameter Sensitivity

We now evaluate how different choices of the parameters
affect the performance of CWMR. Since confidence pa-
rameterφ generally does not have a decisive influence on
the final performance, we evaluate the scalability of the
proposed approach with respect to the negative mean re-
version sensitivity−ǫ. Figure 4 depicts the results, plus
the final cumulative wealth achieved by Market and BCRP
strategy for comparison. The figures show clearly that fi-
nal cumulative wealth increases as the negative sensitivity
grows, and becomes stable as the negative sensitivity ex-
ceeds certain critical values, indicating that the power of
mean reversion has been thoroughly exploited by our strat-
egy. Needless to say, even though our parameter setting,
i.e.,−ǫ=0.5, is not thebestsetting, the proposed CWMR
still significantly surpasses existing approaches.

5.3 Practical Issues: Transaction Cost

To evaluate the performance when the market model is
not friction-less, we conduct empirical experiments on the
proposed CWMR strategy with proportional transaction
costs [2, 4]. Figure 5 shows the results on the five datasets
with varying transaction costs from0% to 1% (we extend
x-axis on the STI dataset since the break-even level ex-
ceeds1%), plus the cumulative wealth achieved by Market,
BCRP and the state of the arts (Anticor andBNN). As we
can observe, the performance with transaction costs is mar-
ket dependent, in most cases, especially with small rates,
CWMR outperforms the state of the arts. In other cases,
though both powered by mean reversion, CWMR underper-
forms Anticor, showing that aggressiveness results in more
transaction costs. Nevertheless, the results compared with
the benchmarks clearly demonstrate that on most datasets
(except NYSE (N)), the performance is considerably robust
with respect to the transaction costs, where the break-even
rates are always above0.6% (around0.2% on NYSE (N)).
Thus, CWMR can withstand small transaction costs even
though we do not explicitly tackle it in our study.

5.4 Computational Time

Other than the promising cumulative wealth performance,
CWMR also runs quite efficiently. Table 2(c) shows
the computational time of the CWMR-Stdev and three
performance-competing strategies (Anticor,BK andBNN)
on all datasets with the same platform. From the table,

we can observe that CWMR costs much less computa-
tional time than the three performance-competing strate-
gies, which validates its computational efficiency.

5.5 Discussion and Thread of Validity
Any PS strategy claiming excess returns should be care-
fully scrutinized, including CWMR. To recall, we had
made several assumptions in Section 2 regarding transac-
tion costs, market liquidity, and impact cost, which would
affect the practical deployment of the proposed strategy. Ig-
noring transaction costs can reduce the problem complex-
ity, which is common in existing studies. In Section 5.3, we
had examined the effect of varying transaction costs with
results showing that CWMR can withstand moderate trans-
action costs. The second assumption is that the market is
liquid and one can trade any quantity at quoted price. In
the experiments, we have tried to minimize the effect of
the market liquidity by arbitrary choosing stocks from the
market index, which usually have large capitalization and
thus have a high market liquidity. The last assumption is
that portfolio has no impact to the market. However, as we
observed, the portfolio increases astronomically and would
inevitably impact the market. In reality, we can reduce the
market impact by controlling the size of the portfolio, as
typically done by some quantitative funds. Finally, we note
again, even in such theoretically “perfect market” typically
adopted in previous studies, none has ever claimed such
eye-catching performance on the benchmark testbeds.

Back tests in the historical market may suffer from “data-
snooping bias” issue. In particular, following previous
works, in our datasets the composition stocks never delisted
from the markets, i.e., survived over the entire trading pe-
riod. Another possible “data-snooping bias” is the dataset
selection. In fact, we developed CWMR approaches based
solely on the widely adopted NYSE (O) dataset, and col-
lected other three datasets (NYSE (N), STI, and MSCI) af-
ter the algorithm was fully developed.

6 Conclusions
This paper proposed a novel on-line portfolio selection
strategy named “Confidence Weighted Mean Reversion”
(CWMR), which successfully applied machine learning
techniques for on-line portfolio selection by exploiting the
mean reversion property of the financial markets. Unlike
the existing techniques using only the first order informa-
tion, CWMR exploits both the first and second order infor-
mation of the portfolio vectors. Empirically CWMR sur-
passed all the competing existing techniques on various up-
to-date testbeds from real markets. Future work will study
theoretical bounds of the logarithmic wealth achieved by
CWMR and its performance with high transaction costs.
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Methods NYSE(O) NYSE(N) TSE STI MSCI

Market 14.50 18.06 1.61 1.84 1.03
Best-stock 54.14 83.51 6.28 3.67 1.05
BCRP 250.60 120.32 6.78 9.01 1.11
UP 26.68 31.49 1.60 2.85 1.09
EG 27.09 31.00 1.59 2.80 1.09
ONS 109.19 21.59 1.62 7.95 1.26
SP 27.08 31.55 1.60 2.83 1.09
GRW 27.73 30.45 1.61 2.84 1.10
M0 113.50 40.94 1.26 2.96 1.08
Anticor 1.71E+07 2.10E+05 28.77 628.89 3.10
BK 1.08E+09 4.64E+03 1.62 22.59 2.84
BNN 3.35E+11 6.80E+04 2.27 431.09 95.29

CWMR-Var 6.40E+15 1.42E+06 324.65 6.79E+07 155.76
CWMR-Stdev 6.20E+15 1.28E+06 322.52 6.57E+07 155.82
CWMR-Var-s 4.31E+15 1.23E+06 318.58 4.54E+07 90.23
CWMR-Stdev-s 4.32E+15 1.11E+06 318.70 4.52E+07 90.04

(a) Cumulative Wealth

Stat. Attr. NYSE (O) NYSE (N) TSE STI MSCI

Size 5651 6431 1259 1404 1304
MER (CWMR) 0.0070 0.0027 0.0057 0.0137 0.0040
MER (Market) 0.0005 0.0005 0.0004 0.0005 0.0001
Winning Ratio 0.5636 0.5197 0.5616 0.6731 0.6511
α 0.0064 0.0021 0.0051 0.0129 0.0039
β 1.2132 1.1377 1.5182 1.5640 1.0358

t-statistics 15.9256 5.9278 3.8944 14.1282 13.8449
p-value 0.0000 0.0000 0.0001 0.0000 0.0000

(b) Statistical Test of CWMR-Stdev

Methods NYSE (O) NYSE (N) TSE STI MSCI

Anticor 1645 751 2118 284 8
BK 7.89E+04 5.78E+04 6.35E+03 4.38E+03 1.36E+03
BNN 4.93E+04 3.39E+04 1.32E+04 5.50E+03 1.46E+03

CWMR 123 68 162 14 2

(c) Computational Time (seconds)

Figure 2: Performance evaluation: (a). Cumulative wealth achieved by various trading strategies on the five datasets. The
top two best results in each dataset are highlighted in bold font. (b). Statisticalt-test of the performance of the CWMR-Stdev
on the stock datasets. MER denotes the Mean Excess Return. (c). Computational time costs (seconds) on the five datasets
achieved by performance comparable state-of-the-art trading strategies.
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Figure 3: Trend of cumulative wealth achieved by proposed CWMR-Stdev and various strategies during the entire trading
period on the stock datasets.
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Figure 4: Parameter Sensitivity of the total wealth achieved by CWMR-Stdev with respect to sensitivity parameter−ǫ.
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Figure 5: Scalability of the total wealth achieved by CWMR-Stdev with respect to transaction cost rateγ%.
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Appendix A: Proof of Proposition 1

Proof. First let us replace the log return function
using its first order Taylor expansion atµi, i.e.,
log (µ·xi)≈ log (µi·xi)+

xi·(µ−µi)
µi·xi

. Moreover, since con-
sidering the non-negativity constraint introduces too much
complexity, at this stage we solve the problem without con-
sidering it, and instead later we will project the solution to
simplex domain to obtain the required portfolio.
The Lagrangian for optimization problem (2) is,

L=1

2

(

log

(

detΣi

detΣ

)

+Tr
(

Σ
−1

i Σ
)

+(µi−µ)⊤ Σ
−1

i (µi−µ)

)

+λ

(

φx
⊤
i Σxi+ log (µi·xi)+

xi· (µ−µi)

µi·xi

−ǫ

)

+η (µ·1−1) .

Taking the gradient of the Lagrangian with respect toµ and
setting it to zero, we can get the update ofµi+1 : µi+1 =

µi − Σi

(

λ xi

µi·xi

+ η1
)

, whereΣi is assumed to be non-

singular. Multiplying both sides of the update with1⊤,

we can getη, i.e., 1 = 1 − 1
⊤
Σi

(

λ xi

µi·xi

+ η1
)

⇒
η = −λ x̄i

µi·xi
, wherex̄i=

1
⊤
Σixi

1⊤Σi1
denotes the confidence

weighted average of theith price relative. Pluggingη to

the update ofµt+1, we can get,µt+1=µi−λΣi

(

xi−x̄i1

µi·xi

)

.

Moreover, calculating the derivative with respect toΣ and
setting it to zero, we can also have the update ofΣi+1, i.e.,
Σ

−1
i+1=Σ

−1
i +2φλxix

⊤
i . Thus, the updates forµi+1 and

Σi+1 are represented as:

µi+1=µi−λΣi

(

xi−x̄i1

µi · xi

)

, Σ
−1

i+1=Σ
−1

i +2λφxix
⊤
i . (4)

Now let us solve the Lagrange multiplierλi+1 using the
KKT conditions. The inverse of theΣi+1 can also be
calculated using Woodbury equation [13], i.e.,Σi+1 =
Σi−Σixi

2λφ
1+2λφx⊤

i
Σixi

x
⊤
i Σi. The KKT conditions imply

that eitherλ=0, and no update is needed, or the constraint
in optimization (2) is an equality after the update. Taking
Eq. (4) and Woodbury equation to the equality version of
the constraint and rearranging the terms, we have:

aλ
2 + bλ+ c = 0, (5)

with a =
2φV 2

i
−2φVix̄ix

⊤

i
Σi1

M2
i

, b =
Vi−x̄ix

⊤

i
Σi1

M2
i

+

2φVi (ǫ− logMi), c = ǫ− logMi−φVi, andMi = µi ·xi

is the return mean andVi=x
⊤
i Σixi denotes the return vari-

ance of theith trading day. Above Eq. (5) is clearly a
quadratic equation inλ. We can calculate its rootsγi1
andγi2 as follows,γi1=−b+

√
b2−4ac
2a , γi2=

−b−
√
b2−4ac
2a .

To ensure the non-negativity of the Lagrangian multi-
plier, we can project the value to[0,+∞), λi+1 =
max {γi1, γi2, 0}.
In practice, since we only adopt the diagonal elements of
the covariance matrix, it is equivalent to computingλi+1 as
Eq. (5) but updating the covariance matrix with the follow-
ing rule instead,Σ−1

i+1 = Σ
−1
i + 2λi+1φdiag2 (xi), where

diag(xi) denotes the diagonal matrix with the elements of
xi on its main diagonal.

Appendix B: Proof of Proposition 2

Proof. Following the same procedure as the proof of
Proposition 1, we adopt the Taylor expansion of the log
function and ignore the non-negativity of the portfolio vec-
tor first.
The Lagrangian for the optimization (3) is,

L=1

2

(

log

(

detΥ2
i

detΥ2

)

+Tr
(

Υ
−2

i Υ
2
)

+(µi−µ)⊤ Υ
−2

i (µi−µ)

)

+λ

(

φ ‖Υxi‖+ log (µi·xi)+
xi· (µ−µi)

µi·xi

−ǫ

)

+η (µ·1−1) .

Taking the gradient of the Lagrangian with respect to
µ and setting it to zero, we get the update ofµi+1,

µi+1=µi−Υ
2
i

(

λ xi

µi·xi

+η1
)

, whereΥi is non-singular.

Multiplying both sides by1⊤, we get, 1 = 1 −
1
⊤
Υ

2
i

(

λ xi

µi·xi

+ η1
)

⇒ η = − λx̄i

µi·xi

, where x̄i =

1
⊤
Υ

2
i
xi

1⊤Υ2
i
1

is the confidence weighted average ofith price
relative. Plugging it to the update ofµi+1, we get,
µi+1=µi−λΥ2

i
xi−x̄i1

µi·xi

. Moreover, calculating the deriva-
tive of Υ and set it to zero, we also have the update of

Υ
2
i+1, Υ−2

i+1=Υ
−2
i +λφ

xix
⊤

i√
x⊤

i
Υ2

i+1
xi

. The two updates can

be expressed in terms of the covariance matrix as follows,

µi+1=µi−λΣi
xi−x̄i1

µi · xi

, Σ
−1

i+1=Σ
−1

i +λφ
xix

⊤
i

√

x⊤
i Σi+1xi

. (6)

Here,Σi+1 is PSD and non-singular.

Now let us solve the Lagrangian multiplier us-
ing its KKT condition. We compute the in-
verse using Woodbury equation [13],Σi+1 =

Σi − Σixi

(

λφ√
x⊤

i
Σi+1xi+λφx⊤

i
Σixi

)

x
⊤
i Σi. Then,

let Mi = µi · xi, Vi = x
⊤
i Σixi, andUi = x

⊤
i Σi+1xi, and

multiplying the update ofµi+1 by x
⊤
i (left) andxi (right),

we getUi=Vi−Vi

(

λφ√
Ui+Viλφ

)

Vi which can be solved

for Ui to obtain
√
Ui=

−λViφ+
√

λ2V 2
i
φ2+4Vi

2 . The KKT
condition implies that eitherλ=0, and no update is needed,
or the constraint in the optimization problem Eq. (3) is an
equality after the update. Substitute Eq. (6) and Woodbury
equation to the equality version of the constraint, after
rearranging in terms ofλ, we obtain:

aλ
2 + bλ+ c = 0, (7)

with a =
(

Vi−x̄ix
⊤

i
Σi1

M2
i

+ Viφ
2

2

)2

− V 2
i
φ4

4 ,

b = 2 (ǫ− logMi)
(

Vi−x̄ix
⊤

i
Σi1

M2
i

+ Viφ
2

2

)

, and

c = (ǫ− logMi)
2 − Viφ

2. Let γi1 and γi2 be its

roots, thus γi1=−b+
√
b2−4ac
2a , γi2=

−b−
√
b2−4ac
2a . To

ensure the non-negativity of the Lagrangian multiplier, we
project the value to[0,+∞), λi+1 = max{γi1, γi2, 0}.

Similar to Proposition 1, we can update the diagonal co-
variance matrix as,Σ−1

i+1 = Σ
−1
i + φ

λi+1√
Ui

diag2 (xi).
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