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Abstract
In many applications, we encounter data on Rie-
mannian manifolds such as torus and rotation
groups. Standard statistical procedures for mul-
tivariate data are not applicable to such data. In
this study, we develop goodness-of-fit testing and
interpretable model criticism methods for general
distributions on Riemannian manifolds, including
those with an intractable normalization constant.
The proposed methods are based on extensions
of kernel Stein discrepancy, which are derived
from Stein operators on Riemannian manifolds.
We discuss the connections between the proposed
tests with existing ones and provide a theoretical
analysis of their asymptotic Bahadur efficiency.
Simulation results and real data applications show
validity and usefulness of the proposed methods.

1. Introduction
In many scientific and machine learning applications, data
appear in the domains described by Riemannian manifolds.
For example, structures of proteins and molecules are de-
scribed by a pair of angular variables, which is identified
with a point on the torus (Singh et al., 2002). In computer
vision and related studies, the orientation of a camera is
represented by a 3 × 3 rotation matrix, which gives rise
to data on the rotation group (Song et al., 2009). Other
examples include the orbit of a comet (Jupp et al., 1979)
and the vectorcardiogram data (Downs, 1972). In addition,
shape analysis (Dryden & Mardia, 2016) and compositional
data analysis (Pawlowsky-Glahn & Buccianti, 2011) also
deal with complex data defined on Riemannian manifolds.
Recently, Klein et al. (2020) developed a graphical model
on torus to analyze phase coupling between neuronal activ-
ities. Since the usual statistical procedures for Euclidean
data are not applicable in such scenarios, many studies have
developed statistical models and methods tailored for data
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on Riemannian manifolds (Chikuse, 2012; Mardia & Jupp,
1999; Ley & Verdebout, 2017).

Statistical models on Riemannian manifolds are often given
in the form of unnormalized densities with a computation-
ally intractable normalization constant. For example, the
Fisher distribution on the rotation group (Chikuse, 2012;
Sei et al., 2013) is defined by

p(X | Θ) ∝ exp(tr(Θ>X)), (1)

and its normalization constant is not given in closed form.
Statistical inference with such models can become com-
putationally intensive due to the intractable normalization
constant. Thus, statistical methods on Riemannian mani-
folds that do not require computation of the normalization
constant have been developed for several tasks such as pa-
rameter estimation (Mardia et al., 2016) and sampling (Giro-
lami et al., 2009; Ma et al., 2015). However, goodness-of-fit
testing or model criticism procedures for general distribu-
tions on Riemannian manifolds is not established, to the
best of our knowledge.

Kernel Stein discrepancy (KSD) (Gorham & Mackey, 2015;
Ley et al., 2017) is a discrepancy measure between distribu-
tions based on Stein’s method (Barbour & Chen, 2005; Chen
et al., 2010) and reproducing kernel Hilbert space (RKHS)
theory (Berlinet & Thomas, 2004). KSD provides a general
procedure for goodness-of-fit testing that does not require
computation of the normalization constant, and it has shown
state-of-the-art performance in various scenarios including
Euclidean data (Chwialkowski et al., 2016; Liu et al., 2016),
discrete data (Yang et al., 2018), point processes (Yang et al.,
2019), directional data (Xu & Matsuda, 2020), censored data
(Fernandez et al., 2020) and random graphs (Xu & Reinert,
2021). In addition, by using the technique of optimizing
test power (Gretton et al., 2012; Sutherland et al., 2016),
KSD-based testing procedures also enable extraction of dis-
tributional features to perform model criticism (Jitkrittum
et al., 2017; 2018; Kanagawa et al., 2019; Jitkrittum et al.,
2020). We note that Stein’s method has recently been ex-
tended to Riemannian manifolds and studied for numerical
integration (Barp et al., 2018) and Bayesian inference (Liu
& Zhu, 2018).

In this paper, we develop goodness-of-fit testing and in-
terpretable model criticism methods for general distribu-
tions on Riemannian manifolds. After briefly reviewing
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background topics, we first introduce several types of Stein
operators on Riemannian manifolds by using Stokes’ the-
orem. Then, we define manifold kernel Stein discrepan-
cies (mKSD) based on them and propose goodness-of-fit
testing procedures, which do not require computation of
the normalization constant. We also develop mKSD-based
interpretable model criticism procedures. Theoretical com-
parisons of test performance in terms of Bahadur efficiency
are provided, and simulation results validate the claims. Fi-
nally, we provide real data applications to demonstrate the
usefulness of the proposed methods.

2. Background
2.1. Distributions on Riemannian Manifolds

In this paper, we focus on distributions on a smooth Rie-
mannian manifold (M, g), where g is a Riemannian metric
on M1. See Kobayashi & Nomizu (1963) for details on
Riemannian geometry. Here, we give several examples that
will be used in experiments. Note that we define the prob-
ability density of each distribution by its Radon–Nikodym
derivative with respect to the volume element of (M, g).

Torus Bivariate circular data (x1, x2) ∈ [0, 2π)2 can be
viewed as data on the torus S1 × S1, where we identify
(cosx, sinx) ∈ S1 with x ∈ [0, 2π). To describe depen-
dence between circular variables, Singh et al. (2002) pro-
posed the bivariate von-Mises distribution:

p(x1, x2 | η) ∝ exp(κ1 cos(x1 − µ1) + κ2 cos(x2 − µ2)

+ λ12 sin(x1 − µ1) sin(x2 − µ2)), (2)

where η = (κ1, κ2, µ1, µ2, λ12), κ1 ≥ 0, κ2 ≥ 0, 0 ≤
µ1 < 2π and 0 ≤ µ2 < 2π. Its normalization constant is
not represented in closed form. We will apply this model to
wind direction data in Section 8.

Rotation group The rotation group SO(m) is defined as

SO(m) = {X ∈ Rm×m | X>X = Im,detX = 1},

where Im is the m-dimensional identity matrix. The Fisher
distribution (Chikuse, 2012; Sei et al., 2013) on SO(m) is
defined as

p(X | Θ) ∝ exp(tr(Θ>X)),

for which the normalization constant is not given in closed
form. We will apply this model to vectorcardiogram data in
Section 8.

The goodness-of-fit testing for general distributions on Rie-
mannian manifolds is not established, to the best of our

1In this paper,M may have non-empty boundary ∂M .

knowledge. For tests of uniformity, several methods have
been proposed such as the Sobolev test (Chikuse & Jupp,
2004; Giné, 1975; Jupp et al., 2008). However, they are not
readily applicable to general disributions. Although there
are a few methods applicable to general distributions (Jupp
et al., 2005; Jupp & Kume, 2018), they require computa-
tion of the normalization constant, which is often computa-
tionally intensive. In addition, existing testing procedures
cannot be applied to perform interpretable model criticism
(Jitkrittum et al., 2016; Kim et al., 2016; Lloyd & Ghahra-
mani, 2015), which would provide an intuitive clarification
of the discrepancy between the model and data.

2.2. Kernel Stein Discrepancy on Rd

Here, we briefly review the goodness-of-fit testing with
kernel Stein discrepancy on Rd. See Chwialkowski et al.
(2016); Liu et al. (2016) for more detail.

Let q be a smooth probability density on Rd. For a smooth
function f = (f1, . . . , fd) : Rd → Rd, the Stein operator Tq
is defined by

Tqf(x) =

d∑
i=1

(
fi(x)

∂

∂xi
log q(x) +

∂

∂xi
fi(x)

)
. (3)

From integration by parts on Rd, we obtain the equality,
i.e. the Stein’s identity Eq[Tqf ] = 0, under mild regularity
conditions. Since Stein operator Tq depends on the density
q only through the derivatives of log q, it does not involve
the normalization constant of q, which is a useful property
for dealing with unnormalized models (Hyvärinen, 2005).

Let H be a reproducing kernel Hilbert space (RKHS) on
Rd and Hd be its product. By using Stein operator, kernel
Stein discrepancy (KSD) (Gorham & Mackey, 2015; Ley
et al., 2017) between two densities p and q is defined as
KSD(p‖q) = sup‖f‖Hd≤1 Ep[Tqf ].

It is shown that KSD(p‖q) ≥ 0 and KSD(p‖q) = 0
if and only if p = q under mild regularity conditions
(Chwialkowski et al., 2016). Thus, KSD is a proper discrep-
ancy measure between densities. After some calculation,
KSD(p‖q) is rewritten as

KSD2(p‖q) = Ex,x̃∼p[hq(x, x̃)], (4)

where hq(x, x̃) = 〈Tqk(x, ·), Tqk(x̃, ·)〉H, which does not
involve the density p.

Given samples x1, . . . , xn from unknown density p on Rd,
an empirical estimate of KSD2(p‖q) can be obtained by
using Eq.(4) in the form of U-statistics, and this estimate is
used to test the hypothesis H0 : p = q, where the critical
value is determined by bootstrap. In this way, a general
method of non-parametric goodness-of-fit test on Rd is ob-
tained, which does not require computation of the normal-
ization constant.
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3. Stein Operators onM
In this section, we introduce several types of Stein operators
for distributions on Riemannian manifolds by using Stokes’
theorem. The operators are categorized via the order of
differentials of the input functions2.

3.1. Differential Forms and Stokes’ Theorem

To derive Stein operators on Riemannian manifolds, we
need to use differential forms and Stokes’ theorem. Here,
we briefly introduce these concepts. For more detailed and
rigorous treatments, see Flanders (1963); Spivak (2018).

LetM be a smooth d-dimensional Riemannian manifold
and take its local coordinate system x1, . . . , xd. We in-
troduce symbols dx1, . . . ,dxd and an associative and anti-
symmetric operation ∧ between them called the wedge prod-
uct: dxi ∧ dxj = −dxj ∧ dxi. Note that dxi ∧ dxi = 0.
Then, a p-form ω on M (0 ≤ p ≤ d) is defined as

ω =
∑
i1···ip

fi1···ipdxi1 ∧ · · · ∧ dxip ,

where the sum is taken over all p-tuples {i1, · · · , ip} ⊂
{1, . . . , d} and each fi1···ip is a smooth function onM. The
exterior derivative dω of ω is defined as the (p + 1)-form
given by

dω =
∑
i1···ip

d∑
i=1

∂fi1···ip
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxip .

For another coordinate system y1, . . . , yd onM, the differ-
ential form is transformed by dyj =

∑d
i=1

∂yj

∂xi dxi.

The volume element is defined as the d-form given by

(det g)1/2dx1 ∧ · · · ∧ dxd,

where g = g(x1, . . . , xd) is the d× d matrix of the Rieman-
nian metric with respect to x1, . . . , xd.

The integration of a d-form on a d-dimensional manifold
is naturally defined like the usual integration on Rd and in-
variant with respect to the coordinate selection. Correspond-
ingly, the integration by parts formula on Rd is generalized
in the form of Stokes’ theorem.

Proposition 1 (Stokes’ theorem). Let ∂M be the boundary
ofM and ω be a (d− 1)-form onM. Then,∫

M
dω =

∫
∂M

ω.

Corollary 1. If ∂M is empty, then
∫
M dω = 0 for any

(d− 1)-form ω onM.
2Note that this should be distinguished from the differentials

of the (unnormalized) density functions.

Coordinate choice In the following, to facilitate the
derivation as well as computation of Stein operators, we
assume that there exists a coordinate system θ1, . . . , θd on
M that coversM almost everywhere. For example, spheri-
cal coordinates for the hyperspheres and torus, generalized
Euler angles (Chikuse, 2012, Section 2.5.1) for the rotation
groups, and Givens rotations (Pourzanjani et al., 2017) for
the Stiefel manifolds satisfy this assumption.

3.2. First Order Stein Operator

For a smooth probability density q on M and a smooth
function f = (f1, . . . , fd) : M → Rd, define a function
A(1)
q f :M→ R by

A(1)
q f =

d∑
i=1

(
∂f i

∂θi
+ f i

∂

∂θi
log(qJ)

)
, (5)

where J = (det g)1/2 is the volume element. We refer
to A(1)

q as the first order Stein operator. Note that Xu &
Matsuda (2020) utilized this operator for goodness-of-fit
testing on hyperspheres.

Theorem 1. If ∂M is empty or f1, . . . , fd vanish on ∂M ,
then

Eq[A(1)
q f ] = 0.

IfM is a closed manifold such as torus and rotation group,
it does not have boundary by definition and thus the as-
sumption of Theorem 1 holds. If the boundary of M is
non-empty, a discussion relevant to the assumption of The-
orem 1 can be found in Liu & Kanamori (2019), which
studies density estimation on truncated domains. Note that
the assumption of Theorem 1 is similar to Assumption 4 in
Barp et al. (2018).

3.3. Second Order Stein Operator

In the context of numerical integration on Riemannian man-
ifolds, Barp et al. (2018) introduced a different type of Stein
operatorA(2)

q , which we call the second order Stein operator.
Specifically, for a smooth probability density q onM and a
smooth function f̃ :M→ R, define A(2)

q f̃ :M→ R by

A(2)
q f̃ =

∑
ij

(
gij

∂2f̃

∂θi∂θj
+ gij

∂f̃

∂θj
∂ log qJ

∂θi

)
(6)

where we denote the inverse matrix of (gij) by (gij) follow-
ing the convention of Riemmanian geometry.

Proposition 2 (Proposition 1 of Barp et al. (2018)). If ∂M
is empty or f̃ vanishes on ∂M , then

Eq[A(2)
q f̃ ] = 0.
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Theorem 2 follows from Theorem 1, because the second
order Stein operator in Eq.(6) can be viewed as a special
case of the first order Stein operator in Eq.(5) with

f i =
∑
j

gij
∂f̃

∂θj
. (7)

Similar form of the second order Stein operator in Eq.(6) has
been studied in Liu & Zhu (2018) for Bayesian inference.
On the other hand, Le et al. (2020) arrives at a similar second
order Stein operator on Riemannian manifolds via Feller
diffusion process in the context of density approximation.

3.4. Zeroth Order Stein Operator

For a smooth probability density q on M and a function
h :M→ R, define a function A(0)

q h :M→ R by

A(0)
q h = h− Eq[h], (8)

which clearly satisfies Eq[A(0)
q h] = 0. Since A(0)

q does
not involve any differentials, we call it the zeroth order
Stein operator. Compared to the first and second order
Stein operators, this operator requires the normalization
constant of q, which is often computationally intractable for
Riemannian manifolds. We will show later that this operator
corresponds to the maximum mean discrepancy (MMD)
(Gretton et al., 2007).

4. Goodness-of-fit Tests onM
In this section, we propose goodness-of-fit testing proce-
dures for distributions on Riemannian manifolds based on
kernelized discrepancies using the Stein operators in the
previous section.

4.1. Manifold Kernel Stein Discrepancies

By using Stein operators introduced in the previous sec-
tion, we extend kernel Stein discrepancy to distributions on
Riemannian manifolds.

Let H be a RKHS on M with reproducing kernel k and
Hd be its product. We define the manifold kernel Stein
discrepancies (mKSD) of the first, second and zeroth order
by

mKSD(1)(p‖q) = sup
‖f‖Hd≤1

Ep[A(1)
q f ],

mKSD(2)(p‖q) = sup
‖f̃‖H≤1

Ep[A(2)
q f̃ ],

mKSD(0)(p‖q) = sup
‖h‖H≤1

Ep[A(0)
q h],

respectively. We also define the Stein kernels of first, second

and zeroth order by

h(1)q (x, x̃) =
〈
A(1)
q k(x, ·),A(1)

q k(x̃, ·)
〉
Hd

,

h(2)q (x, x̃) =
〈
A(2)
q k(x, ·),A(2)

q k(x̃, ·)
〉
H
,

h(0)q (x, x̃) =
〈
A(0)
q k(x, ·),A(0)

q k(x̃, ·)
〉
H
,

respectively. Then, by algebraic manipulation, we obtain
the following.

Theorem 2. If p and q are smooth densities onM and the
reproducing kernel k ofH is smooth, then

mKSD(c)(p‖q)2 = Ex,x̃[h(c)q (x, x̃)] (9)

for c = 0, 1, 2, where x, x̃ ∼ p are independent.

From Theorem 2, we can estimate mKSD by using samples
from p. This is an important property in goodness-of-fit
testing.

The following theorem shows that mKSD is a proper dis-
crepancy measure between distributions on Riemannian
manifolds. The proof is given in supplementary material.
Let L(x) = (L1(x), . . . , Ld)

> ∈ Rd with

Li(x) =
∂

∂θi
log

q(x)

p(x)
.

Theorem 3. Let p and q be smooth densities onM. Assume:
1) The kernel k vanishes at ∂M and is compact universal
in the sense of Carmeli et al. (2010, Definition 2 (ii)); 2)
Ex,x̃∼p[h

(c)
q (x, x̃)2] <∞, for c = 0, 1, 2; 3) Ep‖L(x)‖2 <

∞. Then, mKSD(c)(p‖q) ≥ 0 and mKSD(c)(p‖q) = 0 if
and only if p = q.

Note that different mKSD uses different RKHS as the space
of test functions. With the d-dimensional vector valued
RKHS Hd, mKSD(1) takes the supremum over a larger
class of functions than mKSD(2), capturing richer distribu-
tion features. Theoretical analysis in testing context will be
presented in Section 6.

Equivalence of mKSD(0) and MMD For a RKHS H,
the maximum mean discrepancy (MMD) (Gretton et al.,
2007) between p and q is defined by

MMD(p‖q)2 = ‖µp − µq‖2H,

where µp, µq are the kernel mean embeddings (Muandet
et al., 2017) of p and q, respectively. The following theorem
shows that mKSD(0) is equivalent to MMD.

Theorem 4.

mKSD(0)(p‖q) = MMD(p‖q).
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Proof. By definition, we have

mKSD(0)(p‖q) = sup
‖h‖H≤1

Ep[A(0)
q h]

= sup
‖h‖H≤1

(Ep[h]− Eq[h]).

Hence, taking the supreme in closed form via reproducing
property, we obtain

mKSD(0)(p‖q)2 = ‖µp − µq‖2H = MMD(p‖q)2.

An illustrative example To see the differences between
the Stein operators, we consider a uniform distribution q
on 2-dimensional torus, using spherical coordinate (θ1, θ2)3.
Thus, the first and second order Stein operators can be ex-
plicitly written as

A(1)
q f =

∂f1

∂θ1
+
∂f2

∂θ2
, A(2)

q f̃ =
∂2f̃

∂θ1∂θ1
+

∂2f̃

∂θ2∂θ2
,

respectively. This derivation echoes the interpretation of the
difference between first order and second order via Eq.(7).
To better understand the difference in terms of mKSD,
we choose f1, f2, f̃ ∈ H1 where H1 denotes the RKHS
equipped with product von-Mises kernel of unit bandwidth,

k(u, v) = exp{u>v} = exp{cos(θ1u−θ1v)+cos(θ2u−θ2v)}

where θu, θv are θ-parametrisation of u, v respectively.
Then, for θu, θv ∼ p, mKSD2 has explicit form,

mKSD(1)(p‖q)2 = Eθu,θv
[
∂2k(u,v)
∂θ1u∂θ

1
v

+ ∂2k(u,v)
∂θ2u∂θ

2
v

]
= Eθu,θv [(ξ1 + ξ2)k(u, v)]

where ξ1 = cos (θ1u − θ1v) − sin (θ1u − θ1v)
2
, and ξ2 =

cos (θ2u − θ2v) − sin (θ2u − θ2v)
2 can be seen as the statis-

tics tracking differences of p, q in each S1. On the other
hand,

mKSD(2)(p‖q)2 =

Eθu,θv

[
∂4k(u, v)

∂θ1u
2∂θ1v

2 +
∂4k(u, v)

∂θ2u
2∂θ2v

2 +
∂4k(u, v)

∂θ1u
2∂θ2v

2 +
∂4k(u, v)

∂θ2u
2∂θ1v

2

]
= Eθu,θv

[
(ξ11 + ξ22 + ξ12 + ξ21)k(u, v)

]
,

where

ξii = sin (θiu − θiv)
(

sin (θiu − θiv)
2 − 3 cos (θiu − θiv)− 1

)
,

and ξij = ξiiξjj for (i 6= j).

3In this case, the Jacobian J is a constant as the torus S1 × S1

is a direct product of two circles. Then, derivative of log qJ = 0

By setting f1, f2 and f̃ all belonging to the same RKHS,
H1, we are able to explicitly see an effect of having a larger
space of test functions f = (f1, f2) ∈ H1 ×H1, compared
to f̃ ∈ H1, through ξ-terms.

The zeroth order operator A(0)
q does not involve any differ-

ential operator while density q is represented via expecta-
tion over the test function in Eq.(8). For mean embedding
µq(·) = Eq[k(x, ·)], where µq(x) = 〈k(x, ·), µq(·)〉H and
the constant cq = ‖µq‖2H,

mKSD(0)(p‖q)2 = Eθu,θv [k(u, v)]− 2Eθu [µq(u)] + cq.

From the derivation4 for mKSD(0), we see that k(u, v) does
not interact with any of the ξ-terms as opposed to differential
based Stein discrepancies. Instead, the characterisation is
via balancing constant cq that is representative for density q.

Connections to Euclidean Stein operator One interest-
ing interpretation on the differences between proposed Stein
operators A(1)

q ,A(2)
q and the Euclidean Stein operator in

Eq.(3) is that the proposed operators diffuse along the
shape/surface of the manifold, while the Stein operator in
Rd diffuse to all directions w.r.t. the Cartesian coordinate5.
For instance, in a 2-dimensional torus that is embedded in
R3, the proposed Stein operator only diffuse on the surface
of the torus, not going into or out from the torus; however,
an Euclidean Stein operator does so due to diffusion over R3.
This is also crucial for the unnormalised models. The same
unnormalised density corresponds to different models when
domains are not the same, e.g. unit sphere and sphere with
radius 2. Essentially, the diffusion along manifold notion
makes the Stein’s identity holds and gives controlled type-I
error for our tests.

AlthoughA(0)
q was not discussed explicitly in the Euclidean

setting, it remains the same for both Euclidean and Rie-
mannian cases. The manifold shapes and structures are
well-taken care of by taking the expectation over relevant
distributions in Eq.(8), e.g. in the above example, the expec-
tation is taken over the 2-dimensional torus instead of R3.
As such, the relevant kernel Stein test gives controlled type-I
error. However, it is worth to note that the advantage on
dealing with unnormalized densities can be violated when
computing expectations in closed forms. When samples are
available from unnormalized densities, e.g. via MCMC, an
estimation for the expectation function can be obtained. By
Theorem 4, Stein test for goodness-of-fit degenerates into
MMD test for two-sample problems. We further discuss
such connections and empirical results in Section 6 and 7.

4In this case, the derivation holds for both scalar valued test
function h ∈ H or (h1, h2) ∈ H×H.

5The Cartesian coordinate forms the basis directions to guide
the diffusion in Rd. Hence, we can see Eq.(3) as a special case of
A(1)
q on Euclidean manifold.
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4.2. Goodness-of-fit Testing with mKSDs

Here, we present procedures for testing H0 : p = q with
significance level α based on samples x1, . . . , xn ∼ p.

From Theorem 2, an unbiased estimate of mKSD can be
obtained in the form of U-statistics (Lee, 1990):

mKSD(c)
u (p‖q)2 =

1

n(n− 1)

∑
i 6=j

h(c)q (xi, xj). (10)

Its asymptotic distribution is obtained via U-statistics theory
(Lee, 1990; Van der Vaart, 2000) as follows. We denote the
convergence in distribution by d→.

Theorem 5. For c = 0, 1, 2, the following statements hold.

1. Under H0 : p = q,

n ·mKSD(c)
u (p‖q)2 d→

∞∑
j=1

w
(c)
j (Z2

j − 1), (11)

where Zj are i.i.d. standard Gaussian random variables
and w(c)

j are the eigenvalues of the Stein kernel h(c)q (x, x̃)
under p(x̃):∫

h(c)q (x, x̃)φj(x̃)p(x̃)dx̃ = w
(c)
j φj(x), (12)

where φj(x) 6= 0 is the non-trivial eigen-function.

2. Under H1 : p 6= q,

√
n·
(

mKSD(c)
u (p‖q)2 −mKSD(c)(p‖q)2

)
d→ N (0, σc

2),

where σc2 = Varx∼p[Ex̃∼p[h
(c)
q (x, x̃)]] > 0.

Based on Theorem 5, we propose two procedures for
goodness-of-fit testing.

Wild-bootstrap Test We employ the wild-bootstrap test
with the V-statistics (Chwialkowski et al., 2014). The test
statisic is given by

mKSD(c)
v (p‖q)2 =

1

n2

∑
i,j

h(c)q (xi, xj). (13)

To approximate its null distribution, we define the wild-
bootstrap samples by

St =
1

n2

∑
i,j

Wi,tWj,th
(c)
q (xi, xj), (14)

where each Wi,t ∈ {−1, 1} is the Rademacher variable of
zero mean and unit variance.

The testing procedure is outlined in Algorithm 1. We adopt
this algorithm in the following experiments due to its com-
putational efficiency.

Algorithm 1 mKSD test via wild-bootstrap
Input:

samples x1, . . . , xn ∼ p, null density q
kernel function k, test size α
bootstrap sample size B

Objective:
Test H0 : p = q versus H1 : p 6= q.

Test procedure:
1: Compute the statistic mKSDv(c)(p‖q)2, Eq.(10).
2: for t = 1 : B do
3: Sample Rademacher variables W1,t, . . . ,Wn,t.
4: Compute St by Eq.(14).
5: end for
6: Determine the (1− α)-quantile γ1−α of S1, . . . , SB .

Output:
Reject H0 if mKSDv(c)(p‖q)2 > γ1−α; otherwise do
not reject H0.

Spectrum Test We can also directly approximate the null
distribution in Eq.(11) by using the eigenvalues of the Stein
kernel matrix (Gretton et al., 2009, Theorem 1). Specif-
ically, let M (c) be the n × n Stein kernel matrix defined
by (M (c))ij = h

(c)
q (xi, xj) and w̃(c)

1 , . . . , w̃
(c)
n be its eigen-

values. Then, we generate the simulated null samples by

St =
1

n

n∑
j=1

w̃
(c)
j (Z2

j,t − 1), (15)

where each Zj,t is the standard Gaussian variable. In prac-
tice, the spectrum test is more useful when sample size is
small where the wild-bootstrap procedure can be less accu-
rate. However, when sample size n is large, computing w̃(c)

via eigenvalue decomposition requires O(n3) complexity,
which makes the test computationally less efficient.

Kernel choice The performance of kernel-based testing is
sensitive to the choice of kernel parameters. We choose the
kernel parameters by maximizing an approximation of the
test power following Gretton et al. (2012); Jitkrittum et al.
(2016); Sutherland et al. (2016). From Theorem 5,

D :=
√
n·mKSD(c)

u (p‖q)
2
−mKSD(c)(p‖q)2

σc

d→ N (0, 1)

under the alternative hypothesis, H1 : p 6= q. Thus, for
sufficiently large n, the test power is approximated as

PH1
(n·mKSD(c)

u (p‖q)
2
> r) ≈ Φ

(√
n·mKSD(c)(p‖q)2

σc

)
.

where Φ denotes the c.d.f. for the standard Gaussian distri-
bution (Sutherland et al., 2016). Thus, we choose the kernel
parameters by maximizing an estimate of mKSD2(p‖q)/σc
(Jitkrittum et al., 2017).
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5. Model Criticism onM
Now, we propose mKSD-based model criticism procedures
for distributions on Riemannian manifolds.

When the proposed model does not fit the observed data
well, understanding which part of the model misfit the data
is of practical interest. The model criticism study can be
helpful to better understand the representative prototype
(Kim et al., 2016), to criticize prior assumptions in Bayesian
settings (Lloyd & Ghahramani, 2015) or to help better train-
ing of generative models (Sutherland et al., 2016). With
kernel-based non-parametric testing, distributional features
can be extracted in the form of test locations to represent
areas that “best distinguish" distributions. The locations
where two sample distributions differ the most via MMD
are studied in Jitkrittum et al. (2016) and the most “mis-
specified" locations between samples and models via KSD
are studied in Jitkrittum et al. (2017). Recently, Seth et al.
(2019) studied the model criticism via latent space, which
may intrinsically correspond to Riemannian manifold struc-
tures. Such setting can be an interesting application of our
development.

Let sp(·) = Ex̃∼p[A(1)
q k(x̃, ·)] ∈ Hd. Adapted from Jitkrit-

tum et al. (2017), we define the manifold Finite Set Stein
Discrepancy (mFSSD) as follows. For a small set of J test
locations {v1, . . . , vj} ∈ M,

mFSSD(p‖q)2 =
1

dJ

d∑
i=1

J∑
j=1

(sp(vj))2i , (16)

which can be computed in linear time of sample size n.

Proposition 3 (Theorem 1 Jitkrittum et al. (2017)). Let
V = v1, . . . , vJ ∈M be random vectors drawn i.i.d. from
a distribution ν which has a density. Let X be a connected
open set in Rd. Assume conditions in Theorem 3 hold. Then,
for any J ≥ 1 ,ν-almost surely mFSSD(p‖q)2 = 0 if and
only if p = q.

Stein identity of sp(·) ensures mFSSD2 = 0 under H0

almost surely. To perform model criticism, we extract test
locations that give a higher detection rate (i.e., test power)
than others. We choose the test locations V = {vj}Jj=1 by
maximizing the approximate test power:

V = arg max
v

mFSSD2

σ̃H1

, (17)

where σ̃H1
is the variance of mFSSD2 under H1. More de-

tails are shown in Proposition 4 and 5 in the supplementary.

6. Comparison between mKSD Tests
Bahadur efficiency From Theorem 5, mKSD tests are
consistent against all alternatives. Thus, to understand

which mKSD test is more powerful than others, we investi-
gated their Bahadur efficiency (Bahadur et al., 1960), which
quantify how fast the p-value goes to zero under alternatives.
Here, to focus on the effect of the choice of Stein operator
on test performance, we briefly present results for testing of
uniformity on the circle S1 under the von-Mises distribution.
See supplementary material for more details. The technique
of the proof is adapted from Jitkrittum et al. (2017).

Theorem 6. (Scaling shift in von-Mises distribution) Let
x ∈ S1, q(x) ∝ 1 and p(x) ∝ exp (κu>x). Choose
the von-Mises kernel of the form k(x, x′) = exp (x>x′).
Denote the approximate Bahadur efficiency between mKSD
with first and second order Stein operators as

E1,2(κ) :=
c(mKSD(1))(κ)

c(mKSD(2))(κ)
,

where κ > 0. Then E1,2(κ) > 1.

Adapting from Theorem 5 of Jitkrittum et al. (2017), it
suffices to show mKSD(1)(p‖q) ≥mKSD(2)(p‖q) and

Ex,x̃∼q[h
(2)
q (x, x̃)2] > Ex,x̃∼q[h

(1)
q (x, x̃)2] > 0.

See supplementary material for details.

We provide additional discussion on test efficiencies with
mKSD(0) in the supplementary material. In general, since
we cannot compute Ep in closed form, especially with un-
normlized density, we need to perform the test with samples,
where sampling error makes the mKSD(0) test less asymp-
totically efficient (Jitkrittum et al., 2017; Yang et al., 2019;
Xu & Matsuda, 2020).

Computational efficiency Since the Stein kernels h(1)q and
h
(2)
q depend on q only through the derivative of log q, mKSD

tests with the first and second order Stein operators do not re-
quire computation of the normalization constant of q. This is
a major computational advantage over existing goodness-of-
fit tests on Riemannian manifolds. While the computational
cost of mKSD(1)

u is O(n2d), that of mKSD(2) is O(n2d3)
due to the computation of the metric tensor.

On the other hand, mKSD test of zeroth order is equivalent
to testing whether two sets of samples are from the same dis-
tribution by using MMD (Gretton et al., 2007). Namely, to
test whether x1, . . . , xn is from density q, we draw samples
y1, . . . , ym from q and determine whether x1, . . . , xn and
y1, . . . , ym are from the same distribution. This procudre re-
quires to sample from the null distribution q on Riemannian
manifolds, which is computationally intensive in general.
Note that the results in Theorem 5 with c = 0 replicate the
asymptotic results for MMD (Gretton et al., 2007).

Choosing mKSD tests In overall, testing with mKSD(1)

has its advantage in terms of having a larger space of test
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Figure 1. Rejection rates at α = 0.01: a)-b) for uniform density; c)-d) for Fisher distribution on SO(3)

functions with both asymptotic test efficiency and compu-
tational efficiency so that it is recommended to use when
available. mKSD(2) can be slightly easier to compute and
parameterize in certain scenarios, although it may sacri-
fice test power and computational efficiency. mKSD(0), or
namely MMD test from simulated samples, is also applica-
ble when it is possible to sample from the given unnormal-
ized density model on the Riemannian manifolds.

7. Simulation Results
In this section, we show the validity of the proposed mKSD
tests by simulation on the rotation group SO(3). We use the
Euler angle (Chikuse, 2012) as the coordinate system. The
bootstrap sample size is set to B = 1000. The significance
level is set to α = 0.01. For the mKSD(0) test (MMD
two-sample test), the number of samples from the null is
set to be equal to the sample size n. We used the kernel
k(X,Y ) = exp(γ · tr(X>Y )), where the parameter γ was
chosen by optimizing the approximate test power. The
exponential-trace kernel k(X,Y ) = exp(γ · tr(X>Y )) for
the rotation group is compact universal. To see this, we
rewrite the kernel in the form analogous to the Gaussian
kernel: k(X,Y ) = exp(γ · tr(X>Y )) = C · exp(− 1

2γ ·
‖X − Y ‖2F ), where C is a constant that only depends on
d, the dimension of the matrices X,Y ∈ SO(d) due to
tr(X>X) = tr(Id) = d for all X ∈ SO(d). Since the
Gaussian kernel is universal (Sriperumbudur et al., 2011)
and the rotation group SO(d) is a compact subset of the
space of d× d matrices, the exponential-trace kernel is then
also compact-universal from Corollary 3 of Carmeli et al.
(2010).

7.1. Uniform distribution

First, we consider testing of uniformity on SO(3) and com-
pare the performance of the mKSD tests with the Sobolev
test (Jupp et al., 2005). We generated samples from the expo-
nential trace distribution p(X | κ) ∝ exp(κ · tr(X)) by the
rejection sampling (Hoff, 2009). The uniform distribution
corresponds to κ = 0.

Figure 1 (a) plots the rejection rates with respect to κ for
n = 100. When κ = 0, the type-I errors of all tests are well

controlled to the significance level α = 0.01. The power
of all tests increases with increasing κ and converges to
one. Figure 1 (b) plots the rejection rates with respect to n
for κ = 0.35. The power of all tests increases with n and
converges to one. When the model becomes increasingly
different from the null, the mKSD1 is more sensitive to
distinguish the difference, with higher power than others.

7.2. Fisher distribution

Next, we consider the Fisher distribution (or matrix-
Langevin distribution) p(X | F ) ∝ exp(tr(F>X))
(Chikuse, 2003; Sei et al., 2013). We generated data from
p(X | F0) and applied mKSD tests on the null p(X | Fb),

where Fb =

1 b 0
b 1 0
0 0 1

 . We compare the mKSD tests

with the extended Sobolev test (Jupp et al., 2005), in which
we compute the normalization constant by Monte Carlo.

Figure 1 (c) plots the rejection rates with respect to b for
n = 100. Figure 1 (d) plots the rejection rates with respect
to n for b = 0.2. From the plot, we see that all tests achieves
the correct test level under the null. When the model be-
comes increasingly different from the null, the mKSD1 is
more sensitive to distinguish the difference, with higher
power than others. MMD test has lower power than mKSD1
and mKSD2 due to inefficiency from sampling. While the
Sobolev test is useful when the null and the alternative are
very different, it is not powerful for harder problems where
the alternative perturbed very little from the null.

8. Real Data Applications
Finally, we apply the mKSD tests to two real data.

8.1. Vectorcardiogram data

As a real dataset on the rotation group SO(3), we use the
vectorcardiogram data studied by Jupp et al. (2008). The
data summarizes vectorcardiogram from normal children
where each data point records 3 perpendicular vectors of
directions QRS, PRS and T from Frank system for electrical
lead placement. Details of this dataset can be found in
Downs (1972).
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Figure 2. Wind direction data. Left: 2D histogram for wind directions; colorbar shows the counts of data points in each square. Mid: the
10 optimized locations (in red star), without repetition. Right: the objective value in Eq.(17), mFSSD2

σ̃H1
, on the specified data location of

test (i.e. setting J=1); the higher the darker.

We fitted a Fisher distribution p(X | F ) ∝ exp(tr(F>X))
to 28 data points of children aged between 2 to 10 (Jupp
et al., 2005) and obtained the estimate

F̂ = 5.63×

0.583 0.629 0.514
0.660 −0.736 0.151
0.473 0.252 −0.844

 .

We use this value as the null model to be tested. Table 1
presents the p-values of each test. We apply kernel of the
form k(X,Y ) = exp(γ · tr(X>Y )) as used in Section 7.
All mKSD tests show strong evidence to reject the fitted
model at α = 0.05. However, the Sobolev test, with p-value
being 0.126, is not powerful enough to reject the null at the
same test level.

Table 1. p-values for vectorcardiogram data.
mKSD1 mKSD2 mKSD0/MMD Sobolev

0.004 0.000 0.010 0.126

8.2. Wind direction data

As a real data on torus, we consider wind direction in Tokyo
on 00:00 (x1) and 12:00 (x2) for each day in 20186. Thus,
the sample size is n = 365. The data were discretized into
16 directions, such as north-northeast. Figure 2 presents a
16× 16 histogram of raw data.

We consider the goodness-of-fit testing procedures for the
bivariate von-Mises distribution in Eq.(2) using mKSD.
We apply the product von-Mises kernel as described in
the illustrative example for torus in Section 4, k(u, v) =
exp{γ1 cos(θ1u − θ1v) + γ2 cos(θ2u − θ2v)}, where the band-
width parameters γ1 and γ2 were chosen by optimizing
the approximate test power7. In addition, we pay par-
ticular attention on positive definiteness when choosing
our kernel. As Feragen et al. (2015) pointed out, not all

6Data available on Japan Meteorological Agency website
https://www.data.jma.go.jp/obd/stats/etrn/.

7The optimization objective is, mKSD2

Var(mKSD2)
, which is similar

to Eq.(17) where the test statistics is mKSD2 instead of mFSSD2.

geodesic distance, d(u, v), induces a positive-definite ker-
nel k(u, v) = exp(−γ · d(u, v)) on manifold. Adapting
results on strictly positive functions in hyperspheres (Gneit-
ing et al., 2013), the above chosen kernel is positive definite
for torus as the product spherical coordinate on S1. By using
noise contrastive estimation (Gutmann & Hyvärinen, 2012),
Uehara et al. (2020) fitted the bivariate von-Mises distribu-
tion to the wind direction data and obtained the estimate for
parameter set η = (κ1, κ2, µ1, µ2, λ12),

η̂ = (0.7170, 0.3954, 1.1499, 1.1499,−1.1274).

By setting this fitted model to the null model, the p-value
obtained using mKSD1 is 0.434, which indicates that the
model is a good fit for the data.

In addition, we fitted a simpler model with no interactions
between x1 and x2, i.e. λ12 is set to zero in Eq.(2) so that the
model reduces to the product of two von-Mises distribution
on each direction. The p-value by mKSD1 is 0.002, which
is a strong evidence to reject the null model. In other words,
there is a significant interaction between wind direction on
00:00 and 12:00. We then carried out model criticism by
mFFSD statistic in Eq.(16) with optimized test location via
maximizing approximate test power. Choosing the number
of test locations J = 10, we plot the optimized locations in
Figure 2. It provides information about dependence between
wind direction at midnight and noon.

Concluding Remark In this study, we develop goodness-
of-fit procedures and model criticism methods for general
distributions on Riemannian manifolds. As mKSDs are
proper discrepancy measures under mild assumptions, the
connections and comparisons of topologies induced from
different mKSDs are interesting future direction.
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