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Abstract 
Policies for partially observed Markov decision 
processes can be efficiently learned by imitating 
expert policies learned using asymmetric infor-
mation. Unfortunately, existing approaches for 
this kind of imitation learning have a serious flaw: 
the expert does not know what the trainee can-
not see, and may therefore encourage actions that 
are sub-optimal or unsafe under partial informa-
tion. To address this flaw, we derive an update 
that, when applied iteratively to an expert, max-
imizes the expected reward of the trainee’s pol-
icy. Using this update, we construct a computa-
tionally efficient algorithm, adaptive asymmetric 
DAgger (A2D), that jointly trains the expert and 
trainee policies. We then show that A2D allows 
the trainee to safely imitate the modified expert, 
and outperforms policies learned either by imitat-
ing a fixed expert or direct reinforcement learning. 

1. Introduction 
Consider the stochastic shortest path problem (Bertsekas 
& Tsitsiklis, 1991) where an agent learns to cross a frozen 
lake while avoiding patches of weak ice. The agent can 
either cross the ice directly, or take the longer, safer route 
circumnavigating the lake. The agent is provided with aerial 
images of the lake, which include color variations at patches 
of weak ice. To cross the lake, the agent must learn to 
identify its own position, goal position, and the location of 
weak ice from the images. Even for this simple environ-
ment, high-dimensional inputs and sparse rewards can make 
learning a suitable policy computationally expensive and 
sample inefficient. Therefore one might instead efficiently 
learn, in simulation, an omniscient expert, conditioned on 
a low-dimensional vector which fully describes the state of 
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the world, to complete the task. A trainee, observing only 
images, can then learn to mimic the actions of the expert 
using sample-efficient online imitation learning (Ross et al., 
2011). This yields a high-performing trainee, conditioned 
on images, learned with fewer environment interactions 
overall compared to direct reinforcement learning (RL). 

While appealing, this approach can fail in environments 
where the expert has access to information unavailable to 
the agent, referred to as asymmetric information. Consider 
instead that the image of the lake does not indicate the lo-
cation of the weak ice. The trainee now operates under 
increased uncertainty. This results in a different optimal 
partially observing policy, as the agent should now circum-
navigate the lake. However, imitating the expert forces the 
trainee to always cross the lake, despite being unable to 
locate and avoid the weak ice. Even though the expert is 
optimal under full information, the supervision provided to 
the trainee through imitation learning is poor and yields a 
policy that is not optimal under partial information. The 
key insight is that the expert has no knowledge of what the 
trainee does not know. Therefore, the expert cannot provide 
suitable supervision, and proposes actions that are not robust 
to the increased uncertainty under partial information. The 
main algorithmic contribution we present follows from this 
insight: the expert must be refined based on the behavior of 
the trainee imitating it. 

Building on this insight, we present a new algorithm: adap-
tive asymmetric DAgger (A2D), illustrated in Figure 1. A2D 
extends imitation learning by refining the expert policy, such 
that the resulting supervision moves the trainee policy closer 
to the optimal partially observed policy. This allows us to 
safely take advantage of asymmetric information in imita-
tion learning. Crucially, A2D can be easily integrated with 
a variety of different RL algorithms, does not require any 
pretrained artifacts, policies or example trajectories, and 
does not take computationally expensive and high-variance 
RL steps in the trainee policy network. 

We first introduce asymmetric imitation learning (AIL). AIL 
uses an expert, conditioned on full state information, to 
supervise learning a trainee, conditioned on partial informa-
tion. We show that the solution to the AIL objective is a 
posterior inference over the true state; and provide sufficient 
conditions for when the expert is guaranteed to provide cor-
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Figure 1: Flow chart describing adaptive asymmetric DAgger (A2D), introduced in this work, which builds on DAgger (Ross
et al., 2011) by further refining the expert conditioned on the trainee’s policy.

rect supervision. Using these insights, we then derive the
theoretical A2D update to the expert policy parameters in
terms of Q functions. This update maximizes the reward of
the trainee implicitly defined through AIL. We then modify
this update to use Monte Carlo rollouts and GAE (Schulman
et al., 2015b) in place of Q functions, thereby reducing the
dependence on function approximators.

We apply A2D to two pedagogical gridworld environments,
and an autonomous vehicle scenario, where AIL fails. We
show A2D recovers the optimal partially observed policy
with fewer samples, lower computational cost, and less
variance compared to similar methods. These experiments
demonstrate the efficacy of A2D, which makes learning via
imitation and reinforcement safer and more efficient, even
in difficult high dimensional control problems such as au-
tonomous driving. Code and additional materials are avail-
able at https://github.com/plai-group/a2d.

2. Background
2.1. Optimality & MDPs

An MDP,MΘ(S,A,R, T0, T ,ΠΘ), is defined as a random
process which produces a sequence τt := {at, st, st+1, rt},
for a set of states st ∈ S, actions at ∈ A, initial state
p(s0) ∈ T0, transition dynamics p(st+1|st, at) ∈ T , reward
function rt : S×A×S → R, and policy πθ ∈ ΠΘ : S → A
parameterized by θ ∈ Θ. The generative model, shown in
Figure 2, for a finite horizon process is defined as:

qπθ (τ) = p(s0)
∏T

t=0
p(st+1|st, at)πθ(at|st). (1)

We denote the marginal distribution over state st ∈ S at time
t as qπθ (st). The objective of RL is to recover the policy
which maximizes the expected cumulative reward over a
trajectory, θ∗ = arg maxθ∈Θ Eqπθ [

∑T
t=0 rt(st, at, st+1)].

We consider an extension of this, instead maximizing the
non-stationary, infinite horizon discounted return:

θ∗ = arg maxθ∈Θ Edπθ (s)πθ(a|s)[Q
πθ (a, s)], (2)

where dπθ (s) = (1− γ)
∑∞

t=0
γtqπθ (st = s), (3)

Qπθ (a, s) = E
p(s′|s,a)

[
r(s, a, s′) + γ E

πθ(a′|s′)
[Qπθ (a′, s′)]

]
, (4)

where dπθ (s) is referred to as the state occupancy (Agarwal
et al., 2020), and the Q function, Qπ, defines the expected
discounted sum of rewards ahead given a state-action pair.

2.2. State Estimation and POMDPs

A POMDP extends an MDP by observing a random variable
ot ∈ O, dependent on the state, ot ∼ p(·|st), instead of the
state itself. The policy then samples actions conditioned on
all previous observations and actions: πφ(at|a0:t−1, o0:t).
In practice, a belief state, bt ∈ B, is constructed from
(a0:t−1, o0:t), as an estimate of the underlying state. The
policy, πφ ∈ ΠΦ : B → A, is then conditioned on this
belief state (Doshi-Velez et al., 2013; Igl et al., 2018; Kael-
bling et al., 1998). The resulting stochastic process, denoted
MΦ(S,O,B,A,R, T0, T ,ΠΦ), generates a sequence of
tuples τt = {at, bt, ot, st, st+1, rt}. As before, we wish to
find a policy, πφ∗ ∈ ΠΦ, which maximizes the expected
cumulative reward under the generative model:

qπφ(τ) = p(s0)
∏T

t=0
p(st+1|st, at)×

p(bt|bt−1, ot, at−1)p(ot|st)πφ(at|bt).
(5)

It is common to instead condition the policy on the lastw ob-
servations and w − 1 actions (Laskin et al., 2020a; Murphy,
2000), i.e. bt := (at−w:t−1, ot−w:t), rather than using the
potentially infinite dimensional random variable (Murphy,
2000), defined recursively in Figure 2. This “windowed”
belief state representation is used throughout this paper.

We also note that qπ is used to denote the distribution over
trajectories under the subscripted policy ((1) and (5) for
πθ(·|st) and πφ(·|bt) respectively). The occupancies dπφ(s)
and dπφ(b) define marginals of dπφ(s, b) in a partially ob-
served processes (as in (3)). Later we discuss MDP-POMDP
pairs, defined as an MDP and a POMDP with identical state
transition dynamics, reward generating functions and initial
state distributions. However, these process pairs can, and
often do, have different optimal policies. This discrepancy
is the central issue addressed in this work.

2.3. Imitation Learning

Imitation learning (IL) assumes access to either an expert
policy capable of solving a task, or example trajectories gen-
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Figure 2: Graphical models of an MDP (top) and a POMDP 
(bottom) with identical initial and state transition dynamics, 
p(st|st−1, at), p(s0), and reward function R(st, at, st+1). 

erated by such an expert. Given example trajectories, the 
trainee is learned by regressing onto the actions of the ex-
pert. However, this approach can perform arbitrarily poorly 
for states not in the training set (Laskey et al., 2017). Alter-
natively, online IL (OIL) algorithms, such as DAgger (Ross 
et al., 2011), assume access to an expert that can be queried 
at any state. DAgger rolls out under a mixture of the expert 
πθ and trainee πφ policies, denoted πβ . The trainee is then 
updated to replicate the experts’ actions at the visited states: 

φ ∗ = arg minφ∈Φ Edπβ (s) [KL [πθ(a|s)||πφ(a|s)]] , (6) 

where πβ (a|s) = βπθ(a|s) + (1 − β)πφ(a|s). (7) 

The coefficient β is annealed to zero during training. This 
provides supervision in states visited by the trainee, thereby 
avoiding compounding out of distribution error which grows 
with time horizon (Ross et al., 2011; Sun et al., 2017). While 
IL provides higher sample efficiency than RL, it requires an 
expert or expert trajectories, and is thus not always applica-
ble. A trainee learned using IL from an imperfect expert can 
perform arbitrarily poorly (Sun et al., 2017), even in OIL. 
Addition of asymmetry in OIL can cause similar failures. 

2.4. Asymmetric Information 

In many simulated environments, additional information is 
available during training that is not available at test time. 
This additional asymmetric information can often be ex-
ploited to accelerate learning (Choudhury et al., 2018; Pinto 
et al., 2017; Vapnik & Vashist, 2009). For example, Pinto 
et al. (2017) exploit asymmetry to learn a policy conditioned 
on noisy image-based observations which are available at 
test time, but where the value function (or critic), is condi-
tioned on a compact and noiseless state representation, only 
available during training. The objective function for this 

asymmetric actor critic (Pinto et al., 2017) algorithm is: � � 
J(φ) = Ed Eπφ(a|b) [A

πφ (s, a)] , (8)πφ (s,b) 

Qπφ (a, s) = Ep(s0|s,a) [r(s, a, s 0) + γV πφ (s 0)] , (9) 
V πφ (s) = Eπφ(a|b) [Q

πφ (a, s)] , (10) 

where the asymmetric advantage is defined as Aπφ (s, a) = 
Qπφ (a, s) − V πφ (s), and V πφ (s) is the asymmetric value 
function. Asymmetric methods often outperform “symmet-
ric” RL as Qπφ (a, s) and V πφ (s) are simpler to tune, train, 
and provide lower-variance gradient estimates. 

Asymmetric information has also been used in a variety 
of other scenarios, including policy ensembles (Sasaki 
& Yamashina, 2021; Song et al., 2019), imitating 
attention-based representations (Salter et al., 2019), multi-
objective RL (Schwab et al., 2019), direct state recon-
struction (Nguyen et al., 2020), or privileged information 
dropout (Kamienny et al., 2020; Lambert et al., 2018). Fail-
ures induced by asymmetric information have also been 
discussed. Arora et al. (2018) identify an environment 
where a particular method fails. Choudhury et al. (2018) 
use asymmetric information to improve policy optimiza-
tion in model predictive control, but do not solve scenar-
ios such as “the trapped robot problem,” referred to later 
as Tiger Door (Littman et al., 1995), and solved below. 
Notably, asymmetric environments are naturally suited to 
OIL (AIL) (Pinto et al., 2017): 

φ ∗ = arg minφ Edπβ (s,b) [KL [πθ(a|s)||πφ(a|b)]] , (11) 

where πβ (a|s, b) = βπθ(a|s) + (1 − β)πφ(a|b). (12) 

As the expert is not used at test time, AIL can take advantage 
of asymmetry to simplify learning (Pinto et al., 2017) or en-
able data augmentation (Chen et al., 2020). However, naive 
application of AIL can yield trainees that perform arbitrarily 
poorly. Further work has addressed learning from imperfect 
experts (Ross & Bagnell, 2014; Sun et al., 2017; Meng et al., 
2019), but does not consider issues arising from the use of 
asymmetric information. We demonstrate, analyze, and then 
address both of these issues in the following sections. 

3. AIL as Posterior Inference 
We begin by analyzing the AIL objective in (12). We first 
show that the optimal trainee defined by this objective can 
be expressed as posterior inference over state conditioned 
on the expert policy. This posterior inference is defined as: 
Definition 1 (Implicit policy). For any state-conditional 
policy πθ ∈ ΠΘ and any belief-conditional policy πη ∈ ΠΦ 

η we define π̂ ∈ Π̂ 
Θ as the implicit policy of πθ under πη as:θ 

ηπ̂ (a|b) := Edπη (s|b) [πθ(a|s)] , (13)θ 
ηWhen πη = π̂θ , we refer to this policy as the implicit policy 

of πθ, denoted as just π̂θ. 
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Note that a policy, or policy set, with a hat (e.g. π̂θ), in-
dicates that the policy or set is implicitly defined through 
composition of the original policy (e.g. πθ) and the expecta-
tion defined in (13). The implicit policy defines a posterior 
predictive density, marginalizing over the uncertainty over 
state. We can then show that the solution to the AIL objec-
tive in (12) (for β = 0) is equivalent to the implicit policy: 

Theorem 1 (Asymmetric IL target). For any fully observing 
policy πθ and fixed policy πη , and assuming Π̂ 

Θ ⊆ ΠΦ, then 
ηthe implicit policy π̂ , defined in Definition 1, minimizes the θ 

AIL objective: 

ηπ̂ = arg min Edπη (s,b) [KL [πθ(a|s)||π(a|b)]] . (14)θ 
π∈ΠΦ 

Proof. An extended proof is included in Appendix C. 

Edπη (s,b) [KL [πθ(a|s)||π(a|b)]]� � �� 
= −Edπη (b) Edπη (s) Eπθ (a|s) [log π(a|b)] + K h i 

η= −Edπη (b) Eˆ (a|b) [log π(a|b)] + Kπθ 

η = Edπη (b) [KL [π̂ (a|b)||π(a|b)]] + K 0 θ 

ηSince π̂ ∈ ΠΦ, it follows that θ 

π̂η = arg min E [KL [π̂η(a|b)||π(a|b)]] (15)θ
π∈ΠΦ dπη (b) 

θ 

= arg min E [KL [πθ(a|s)||π(a|b)]] . � (16) 
π∈ΠΦ dπη (s,b) 

Theorem 1 shows that the implicit policy compactly defines 
the solution to the AIL objective. This allows us to specify 
the dependence of the learned trainee through AIL on the 
expert policy. We will in turn leverage this solution to derive 
the update applied to the expert parameters. We note that 
this definition and theorem are closely related to a result 
also derived by Weihs et al. (2020). 

However, drawing multiple state samples from a single con-
ditional occupancy, dπη (s | b), is not generally tractable 
without access to a model of T and T0. This is because sam-
pling from dπη (s | b) requires resampling multiple trajecto-
ries that include the specified belief state b, which cannot 
be done through direct environment interaction. Therefore, 
generating the samples required to integrate (13) is not gen-
erally tractable. We are, however, able to draw samples from 
the joint occupancy, dπη (s, b), simply by rolling out under 
πη. Therefore, in practice, AIL instead learns a variational 
approximation to the implicit policy, πψ ∈ ΠΨ : B → A, 
by minimizing the following objective: 

F (ψ) = E [KL [πθ(a|s)||πψ (a|b)]] , (17) 
dπη (s,b)� � 

rψF (ψ) = −E E [rψ log πψ(a|b)] . (18) 
dπη (s,b) πθ (a|s) 

(a) Frozen Lake. (b) Tiger Door. 

Figure 3: The two gridworlds we study. An agent (red) 
must navigate to the goal (green) while avoiding the hazard 
(blue). Shown are the raw, noisy 42 × 42 pixel observations 
available to the agent. The expert is conditioned on an om-
niscient compact state vector indicating the position of the 
goal and hazard. In Frozen Lake, the trainee is conditioned 
on the left image and cannot see the hazard. In Tiger Door, 
pushing the button (pink) illuminates the hazard. 

Crucially, this approach only requires samples from the joint 
occupancy. This avoids sampling from the conditional oc-
cupancy, as required to directly solve (13). If the variational 
family is sufficiently expressive, there exists a πψ ∈ ΠΨ 

for which the divergence between the implicit policy and 
variational approximation is zero. In OIL, it is common to 
sample under the trainee policy by setting πη = πψ , thereby 
defining a fixed point equation. Under sufficient expressiv-
ity and exact updates, an iteration solving this fixed point 
equation converges to the implicit policy (see Appendix 
C). In practice, this iterative scheme converges even in the 
presence of inexact updates and restricted policy classes. 

4. Failure of Asymmetric Imitation Learning 
We now reason about the failure of AIL in terms of reward. 
The crucial insight is that to guarantee that the reward earned 
by the trainee policy is optimal, the divergence between ex-
pert and trainee must go to exactly zero. The reward earned 
by policies with even a small (but finite) divergence may be 
arbitrarily low. This condition, referred to as identifiability, 
is formalized below. We leverage this condition in Section 5 
to derive the update applied to the expert which guarantees 
the optimal partially observed policy is recovered under the 
assumptions specified by each theorem, and discussed in 
further detail in Appendix C. 

However, to first motivate and explore this behavior, we 
introduce two pedagogical environments, referred to as 
“Frozen Lake” and “Tiger Door” (Littman et al., 1995; Spaan, 
2012), illustrated in Figure 3. Both require an agent to nav-
igate to a goal while avoiding hazards. The trainee is con-
ditioned on an image of the environment where the hazard 
is not initially visible. The expert is conditioned on an om-
niscient compact state vector. Taking actions, reaching the 
goal, and hitting the hazard incurs rewards of −2, 20, and 
−100 respectively. In Frozen Lake, the hazard (weak ice) is 
in a random location in the interior nine squares. In Tiger 
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Figure 4: Results for the gridworld environments. Median and quartiles across 20 random seeds are shown. TRPO (Schulman 
et al., 2015a) is used for RL methods. Broken lines indicate the optimal reward, normalized so the optimal MDP reward is 
−1 (MDP). All agents and trainees are conditioned on a image-based input, except A2D (Compact) which is conditioned on 
a partial compact state representation. All experts, and RL (MDP), are conditioned on an omniscient compact state. Pre-Enc 
uses a fixed pretrained image encoder, trained on examples from the MDP. AIL and Pre-Enc begin when the MDP has 
converged, as this is the required expenditure for training. A2D is the only method that reliably and efficiently finds the 
optimal POMDP policy, and, in a sample budget commensurate with RL (MDP). The convergence of A2D is also similar 
for both image-based (A2D (Image)) and compact (A2D (Compact)) representations, highlighting that we have effectively 
subsumed the image perception task. Configurations, additional results and discussions are included in the appendix. 

Door, the agent can detour via a button, incurring additional 
negative reward, to reveal the goal location. 

We show results for application of AIL, and comparable 
RL approaches, to these environments in Figure 4. These 
confirm our intuitions: RL in the MDP (RL (MDP)) is stable 
and efficient, and proceeds directly to the goal, earning max-
imum rewards of 10.66 and 6. Direct RL in the POMDP (RL 
and RL (Asym)) does not converge to a performant policy in 
the allocated computational budget. AIL (AIL) converges al-
most immediately, but, to a trainee that averages over expert 
actions. In Frozen Lake, this trainee averages the expert over 
the location of the weak patch, never circumnavigates the 
lake, and instead crosses directly, incurring an average re-
ward of −26.6. In Tiger Door, the trainee proceeds directly 
to a possible goal location without pressing the button, in-
curring an average reward of −54. Both solutions represent 
catastrophic failures. Instead, the trainee should circumnav-
igate the lake, or, push the button and then proceed to the 
goal, earning rewards of 4 and 2 respectively. 

These results, and insight from Theorem 1, lead us to define 
two important properties which provide guarantees on the 
performance of AIL: 

Definition 2 (Identifiable Policies). Given an MDP-
POMDP pair {MΘ, MΦ}, an MDP policy πθ ∈ 
ΠΘ, and POMDP policy πφ ∈ ΠΦ, we describe 
{πθ, πφ} as an identifiable policy pair if and only if 
Edπφ (s,b) [KL [πθ(a|s)||πφ(a|b)]] = 0. 

Definition 3 (Identifiable Processes). If each optimal MDP 
policy, πθ∗ ∈ ΠΘ∗ , and the corresponding implicit policy, 
π̂θ∗ ∈ Π̂ 

Θ∗ , form an identifiable policy pair, then we define 
{MΘ, MΦ} as an identifiable process pair. 

Identifiable policy pairs enforce that the partially observing 
implicit policy, recovered through application of AIL, can 
exactly reproduce the actions of the fully observing policy. 
These policies are therefore guaranteed to incur the same 
reward. Identifiable processes then extends this definition, 
requiring that such an identifiable policy pair exists for 
all optimal fully observing policies. Using this definition, 
we can then show that performing AIL using any optimal 
fully observing policy on an identifiable process pair is 
guaranteed to recover an optimal partially observing policy: 

Theorem 2 (Convergence of AIL). For any identifiable pro-
cess pair defined over sufficiently expressive policy classes, 
under exact intermediate updates, the iteration defined by: 

ψk+1 =arg min E [KL [πθ∗ (a|s)||πψ(a|b)]] , (19) 
ψ∈Ψ d 

πψk (s,b) 

where πθ∗ is an optimal fully observed policy, converges to 
an optimal partially observed policy, πψ∗ (a|b), as k →∞. 

Proof. See Appendix C. 

Therefore, identifiability of processes defines a sufficient 
condition to guarantee that any optimal expert policy pro-
vides asymptotically unbiased supervision to the trainee. If 
a process pair is identifiable, then AIL recovers the optimal 
partially observing policy, and garners a reward equal to 
the fully observing expert. When processes are not identifi-
able, the divergence between expert and trainee is non-zero, 
and the reward garnered by the trainee can be arbitrarily 
sub-optimal (as in the gridworlds above). Unfortunately, 
identifiability of two processes represents a strong assump-
tion, unlikely to hold in practice. Therefore, we propose 
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an extension that modifies the expert on-line, such that the 
modified expert policy and corresponding implicit policy 
pair form an identifiable and optimal policy pair under par-
tial information. This modification, in turn, guarantees that 
the expert provides asymptotically correct AIL supervision. 

5. Correcting AIL with Expert Refinement 
We now use the insight from Sections 3 and 4 to construct 
an update, applied to the expert policy, which improves the 
expected reward ahead under the implicit policy. Crucially, 
this update is designed such that, when interleaved with 
AIL, the optimal partially observed policy is recovered. We 
refer to this iterative algorithm as adaptive asymmetric DAg-
ger (A2D). To derive the update to the expert, πθ, we first 
consider the RL objective under the implicit policy, π̂θ: � � 
J(θ) = E Qπ̂θ (a, b) , where (20) 

dπ̂θ (b)π̂θ (a|b) � �� � 
Qπ̂θ (a, b) = E r(s, a, s 0) + γE Qπ̂θ (a 0, b0) . 

p(b0,s0 ,s|a,b) π̂θ (a0|b0) 

This objective defines the cumulative reward of the trainee 
in terms of the parameters of the expert policy. This means 
that maximizing J(θ) maximizes the reward obtained by 
the implicit policy, and ensures proper expert supervision: 

Theorem 3 (Convergence of Exact A2D). Under exact in-
termediate updates, the following iteration converges to an 
optimal partially observed policy πψ∗ (a|b) ∈ ΠΨ, provided 
both ΠΦ∗ ⊆ Π̂ 

Θ∗ ⊆ ΠΨ: � � �� 
ψk+1 =arg min E KL πθ̂∗ (a|s)||πψ(a|b) , (21) 

ψ∈Ψ d 
πψk (s,b) � � 

where θ̂∗ = arg max E Qπ̂θ (a, b) . (22) 
θ∈Θ π̂θ (a|b)d 

πψk (b) 

Proof. See Appendix C. 

First, an inner optimization, defined by (22), maximizes 
the expected reward of the implicit policy by updating the 
parameters of the expert policy, under the current trainee 
policy. The outer optimization, defined by (21), then updates 
the trainee policy by projecting onto the updated implicit 
policy defined by the updated expert. This projection is 
performed by minimizing the divergence to the updated 
expert, as per Theorem 1. 

πθUnfortunately, directly differentiating through Qˆ , or even 
sampling from π̂θ, is intractable. We therefore optimize 
a surrogate reward instead, denoted Jψ(θ), that defines a 
lower bound on the objective function in (22). This sur-
rogate is defined as the expected reward ahead under the 
variational trainee policy Qπψ . By maximizing this surro-
gate objective, we maximize a lower bound on the possible 

improvement to the implicit policy with respect to the pa-
rameters of the expert: 

max Jψ(θ) = max E [Qπψ (a, b)] (23)
θ∈Θ θ∈Θ π̂θ (a|b)dπψ (b) � � 
≤ max J(θ) = max E Qπ̂θ (a, b) . (24)

θ∈Θ θ∈Θ π̂θ (a|b)dπψ (b) 

To verify this inequality, first note that we assume that the 
implicit policy is capable of maximizing the expected re-
ward ahead at every belief state (c.f. Theorem 3). Therefore, 
by definition, replacing the implicit policy, π̂θ, with any be-
havioral policy, here πψ , cannot yield larger returns when 
maximized over θ (see Appendix C). Replacement with a be-
havioral policy is a common analysis technique, especially 
in policy gradient (Schulman et al., 2015a; 2017; Sutton, 
1992) and policy search methods (see §4,5 of Bertsekas 
(2019) and §2 of Deisenroth et al. (2013)). This surrogate 
objective permits the following REINFORCE gradient esti-
mator, where we define fθ = log πθ(a | s): 

rθJψ (θ) = rθ Eπ̂θ (a|b)dπψ (b) [Q
πψ (a, b)] (25)� � �� 

= Edπψ (b) rθ Edπψ (s|b) Eπθ (a|s) [Q
πψ (a, b)]� � 

= Ed Eπθ (a|s) [Q
πψ (a, b)rθfθ]πψ (s,b) � � 

πθ(a|s) 
= Edπψ (s,b)πψ (a|b) Qπψ (a, b)rθfθ . (26)

πψ(a|b) 

Equation (26) defines an importance weighted policy gra-
dient, evaluated using states sampled under the variational 
agent, which is equal to the gradient of the implicit policy 
reward with respect to the expert parameters. For (26) to 
provide an unbiased gradient estimate we (unsurprisingly) 
require an unbiased estimate of Qπψ (a, b). While, this es-
timate can theoretically be generated by directly learning 
the Q function using a universal function approximator, in 
practice, learning the Q function is often challenging. Fur-
thermore, the estimator in (26) is strongly dependent on 
the quality of the approximation. As a result, imperfect Q 
function approximations yield biased gradient estimates. 

This strong dependency has led to the development of RL 
algorithms that use Monte Carlo estimates of the Q function 
instead. This circumvents the cost, complexity and bias 
induced by approximating Q, by leveraging these rollouts 
to provide unbiased, although higher variance, estimates of 
the Q function. Techniques such as generalized advantage 
estimation (GAE) (Schulman et al., 2015b) allow bias and 
variance to be traded off. However, as a direct result of 
asymmetry, using Monte Carlo rollouts in A2D can bias the 
gradient estimator. Full explanation of this is somewhat in-
volved, and so we defer discussion to Appendix B. However, 
we note that for most environments this bias is small and 
can be minimized through tuning the parameters of GAE. 
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The final gradient estimate used in A2D is therefore: � � 
πθ(at|st) 

ÂπβrθJψ (θ) = E rθfθ , (27) 
dπβ (st,bt) πβ (at|st, bt) 
πβ (at |st,bt) X∞ 

where Âπβ (at, st, bt) = (γλ)tδt, (28) 
t=0 

and δt = rt + γV πβ (st+1, bt+1) − V πβ (st, bt), (29) 

where (28) and (29) describe GAE (Schulman et al., 2015b). 
Similar to DAgger, we also allow A2D to interact under a 
mixture policy, πβ (a|s, b) = βπθ(a|s) + (1 − β)πψ(a|b), 
with Q and value functions defined as Qπβ (a, s, b) and 
V πβ (a, s, b) similarly. However, as was also suggested by 
(Ross et al., 2011), we found that aggressively annealing β, 
or even setting β = 0 immediately, often provided the best 
results. The full A2D algorithm, also shown in Algorithm 1, 
is implemented by repeating three individual steps: 

1. Gather data (Alg. 1, Ln 8): Collect samples from 
qπβ (τ) by rolling out under the mixture policy, as de-
fined in (5). 

2. Refine Expert (Alg. 1, Ln 11): Update expert policy 
parameters, θ, with importance weighted policy gradient 
as estimated in (27). This step also updates the trainee 
and expert value function parameters, νp and νm. 

3. Update Trainee (Alg. 1, Ln 12): Perform an AIL step 
to fit the (variational) trainee policy parameters, ψ, to 
the expert policy using (18). 

As the gradient used in A2D, defined in (27), is a 
REINFORCE-based gradient estimate, it is compatible with 
any REINFORCE-based policy gradient method, such as 
TRPO or PPO (Schulman et al., 2015a; 2017). Furthermore, 
A2D does not require pretrained experts or example trajec-
tories. In the experiments we present, all expert and trainee 
policies are learned from scratch. Although using A2D 
with pretrained expert policies is possible, such pipelined 
approaches are susceptible to suboptimal local minima. 

6. Experiments 
6.1. Revisiting Frozen Lake & Tiger Door 

We evaluate A2D on the gridworlds introduced in Section 3. 
The results are shown in Figures 4 and 5. Figure 4 shows 
that A2D converges to the optimal POMDP reward in a sim-
ilar number of environment interactions as the best-possible 
convergence (RL (MDP)), whereas the other methods fail 
for one, or both, gridworlds. Similar convergence rates 
are observed for both high-dimensional images (A2D (Im-
age)) and low-dimensional compact representations (A2D 
(Compact)). We note that many of the hyperparameters are 
largely consistent between A2D and RL in the MDP, which 
is easy to tune. However, A2D did often benefit from in-
creased entropy regularization and reduced λ (see Appendix 

Algorithm 1 Adaptive Asymmetric DAgger (A2D) 
1: Input: MDP MΘ, POMDP MΦ, Annealing schedule 

AnnealBeta(n, β). 
2: Return: Variational trainee parameters ψ. 
3: θ, ψ, νm, νp, ← InitNets (MΘ, MΦ) 
4: β ← 1, D ← ∅ 
5: for n = 0, . . . , N do 
6: β ← AnnealBeta (n, β) 
7: πβ ← βπθ + (1 − β)πψ 

8: T = {τi}I (τ)i=1 ∼ qπβ 

9: D ← UpdateBuffer (D, T ) 
πθ πψ10: V πβ ← βVνm + (1 − β)Vνp 

11: θ, νm, νp ← RLStep (T , V πβ , πβ ) 
12: ψ ← AILStep (D, πθ, πψ ) 
13: end for 

Algorithm 1: Adaptive asymmetric DAgger (A2D) algo-
rithm. Additional steps we introduce beyond DAgger (Ross 
et al., 2011) are highlighted in blue, and implement the feed-
back loop in Figure 1. RLStep is a policy gradient step, 
updating the expert, using the gradient estimator in (27). 
AILStep is an AIL variational policy update, as in (18). 

B). The IL hyperparameters are largely independent of the 
RL hyperparameters, further simplifying tuning overall. 

Figure 5 shows the divergence between the expert and 
trainee policies during learning. AIL saturates to a high 
divergence, indicating that the trainee is unable to replicate 
the expert. The divergence in A2D increases initially, as 
the expert learns using the full-state information. This rise 
is due to the non-zero value of β, imperfect function ap-
proximation, slight bias in the gradient estimator, and the 
tendency of the expert to initially move towards a higher 
reward policy not representable under the agent. As the 
learning develops, and β → 0, the expert is forced to op-
timize the reward of the trainee. This, in turn, drives the 
divergence towards zero, producing a policy that can be 
represented by the agent. A2D has therefore created an iden-
tifiable expert and implicit policy pair (Definition 2), where 
the implicit policy is also optimal under partial information. 

6.2. Safe Autonomous Vehicle Learning 

Autonomous vehicle (AV) simulators (Dosovitskiy et al., 
2017; Wymann et al., 2014; Kato et al., 2015) allow safe 
virtual exploration of driving scenarios that would be unsafe 
to explore in real life. The inherent complexity of training 
AV controllers makes exploiting efficient AIL an attractive 
opportunity (Chen et al., 2020). The expert can be provided 
with the exact state of other actors, such as other vehicles, 
occluded hazards and traffic lights. The trainee is then pro-
vided with sensor measurements available in the real world, 
such as camera feeds, lidar and the egovehicle telemetry. 
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Figure 5: The evolution of the policy divergence, F (ψ). Shown are median and quartiles across 20 random seeds. AIL 
converges to a high divergence, whereas A2D achieves a low divergence for both representations, indicating that the trainee 
recovered by A2D is faithfully imitating the expert (see Figure 4 for more information). 

Figure 6: Visualizations of the AV scenario. Left: third-person view showing the egovehicle and child running out. Center: 
top-down schematic of the environment and asymmetric information. Right: front-view camera input provided to the agent. 

The safety-critical aspects of asymmetry are highlighted in 
context of AVs. Consider a scenario where a child may dart 
into the road from behind a parked truck, illustrated in Fig-
ure 6. The expert, aware of the position and velocity of the 
child from asymmetric information, will only brake if there 
is a child, and will otherwise proceed at high speed. How-
ever, the trainee is unable to distinguish between these sce-
narios, before the child emerges from, just the front-facing 
camera. As the expected expert behavior is to accelerate, 
the implicit policy also accelerates. The trainee only starts 
to brake once the child is visible, by which time it is too 
late to guarantee the child is not struck. The expert should 
therefore proceed at a lower speed so it can slow down or 
evade the child once visible. This cannot be achieved by 
naive application of AIL. 

We implement this scenario in the CARLA simulator (Doso-
vitskiy et al., 2017), which is visualized in Figure 6. A child 
is present in 50% of trials, and, if present, emerges with 
variable velocity. The action space consists of the steering 
angle and amount of throttle/brake. As an approximation 
to the optimal policy under privileged information, we used 
a hand-coded expert that completes the scenario driving at 
the speed limit if the child is absent, and slows down when 
approaching the truck if the child is present. The differ-
entiable expert is a small neural network, operating on a 
six-dimensional state vector that fully describes the simula-

tor state. The agent is a convolutional neural network that 
operates on grayscale images from the front-view camera. 

Results comparing A2D to four baselines are shown in Fig-
ure 7. RL (MDP) uses RL to learn a policy conditioned on 
the omniscient compact state, only available in simulation, 
and hence does not yield a usable agent policy. This repre-
sents the absolute best-case convergence for an RL method, 
achieving good, although not optimal, performance quickly 
and reliably. RL learns an agent conditioned on the camera 
image, yielding poor, high-variance results within the ex-
perimental budget. AIL uses asymmetric DAgger to imitate 
the hand-coded expert using the camera image, learning 
quickly, but converging to a sub-optimal solution. We also 
include OIL (MDP), which learns a policy conditioned on 
the omniscient state by imitating a hand-coded expert, and 
converges quickly to the near-optimal solution (MDP). As 
expected, A2D learns more slowly than AIL, since RL is 
used to update to the expert, but achieves higher reward than 
AIL and avoids collisions. This scenario, as well as any fu-
ture asymmetric baselines, are distributed in the repository. 

7. Discussion 
In this work we have discussed learning policies in 
POMDPs. Partial information and high-dimensional ob-
servations can make direct application of RL expensive and 
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Figure 7: Performance metrics for the AV scenario, introduced in Section 6. We show median and quartiles across ten 
random seeds. Left: average cumulative reward. Center: average percentage of waypoints collected, measuring progress 
along route. Right: percentage of trajectories ending in a child collision. Optimal MDP and POMDP solutions are shown by 
dashed and dotted lines respectively. In methods marked as MDP the agent uses an omniscient compact state, including the 
child’s state. AIL (AIL (MDP)) and RL (RL (MDP)) learn a performant (high reward and waypoint percentage, low collision 
percentage) policy quickly and reliably. In methods marked as POMDP the agent uses the high-dimensional monocular 
camera view. Therefore, AIL leads to a high collision, and the perception task makes RL in the POMDP (RL (POMDP)) 
slow and variable (low reward and waypoint percentage, high collision percentage). A2D solves the scenario (high reward 
and waypoint percentage, low collision percentage) in a budget commensurate with the best-case convergence of RL (MDP). 

unreliable. Asymmetric learning uses additional informa-
tion to improve performance beyond comparable symmetric 
methods. Asymmetric IL can efficiently learn a partially ob-
serving policy by imitating an omniscient expert. However, 
this approach requires a pre-existing expert, and, critically, 
assumes that the expert can provide suitable supervision 
– a condition we formalize as identifiability. The learned
trainee can perform arbitrarily poorly when this is not sat-
isfied. We therefore develop adaptive asymmetric DAgger
(A2D), which adapts the expert policy such that AIL can ef-
ficiently recover the optimal partially observed policy. A2D
also allows the expert to be learned online with the agent,
and hence does not require any pretrained artifacts.

There are three notable extensions of A2D. The first ex-
tension is investigating more conservative updates for the 
expert and trainee which take into consideration the limi-
tations or approximate nature of each intermediate update. 
The second extension is studying the behavior of A2D in 
environments where the expert is not omniscient, but ob-
serves a superset of the environment relative to the agent. 
The final extension is integrating A2D into differentiable 
planning methods, exploiting the low dimensional state vec-
tor to learn a latent dynamics model, or, improve sample 
efficiency in sparse reward environments. 

We conclude by outlining under what conditions the meth-
ods discussed in this paper may be most applicable. If 
a pretrained expert or example trajectories are available, 
AIL provides an efficient methodology that should be in-
vestigated first, but, that may fail catastrophically. If the 
observed dimension is small, and no reliable expert is avail-
able, direct application of RL is likely to perform well. If 

the observed dimension is large, and trajectories which ade-
quately cover the state-space are available, then pretraining 
an image encoder can provide a competitive and flexible 
approach. Finally, if a compact state representation is avail-
able alongside a high dimensional observation space, A2D 
offers an alternative that is robust and expedites training in 
high-dimensional and asymmetric environments. 
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