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A. Table of Notation 

Symbol Name Alternative Name(s) Type Description 

t Time Discrete time step Z Discrete time step used in integration. Indexes other values. 

st State Full state, compact S = RD State space of the MDP. Sufficient to fully define state of the environment. 
state, omniscient state 

ot Observation Partial observation RA×B×...O = Observed value in POMDP, emitted conditional on state. State is generally 
not identifiable from observation. Conditionally dependent only on state. 

at Action A = RK Interaction made with the environment at time t. 

rt Reward R Value received at time t indicating performance. Maximising sum of rewards 
is the objective. 

bt Belief state B 

qπ Trajectory distribution Q : Π → (A×B ×O ×S2 × 
R)t+1 

Process of sampling trajectories using the policy π. If the process is fully 
observed O = ∅. 

τ0:t Trajectory Rollouts × R)t+1(A × B × O × S2 Sequence of tuples containing state, next state, observation, action and re-
ward. 

γ Discount factor Γ = [0, 1] Factor attenuating future reward in favor of near reward. 

p(st+1 |st, at) Transition distribution Plant 
ment 

model, environ- T : S × A → S Defines how state evolves, conditional on the previous state and the action 
taken. 

p(ot|st) Emission distribution Observation function Y : S → O Distribution over observed values conditioned on state. 

p(s0 ) Initial state distribution State prior T0 :→ S Distribution over state at t = 0. 

πθ (at|st) MDP policy Expert, omniscient pol-
icy, asymmetric expert, 

ΠΘ : S → A Distribution over actions conditioned on state. Only used in MDP. 

asymmetric policy 

θ MDP policy parameters Θ Parameters of MDP policy. Cumulative reward is maximized over these pa-
rameters. 

πφ(at|bt) POMDP policy Agent, partially observ-
ing policy 

ΠΦ : B → A Distribution over actions conditioned on belief state. Only used in POMDP. 

φ POMDP policy parame- Φ Parameters of MDP policy. Cumulative reward is maximized over these pa-
ters rameters. 

πψ (at|bt) Variational trainee pol-
icy 

Variational approxima-
tion 

ΠΨ : B → A Variational approximation of the implicit policy. 

ψ Variational trainee pol- Ψ Parameters of the variational approximation of the implicit policy. 
icy parameters 

πβ Mixture policy Πβ : S × B → A Mixture of MDP policy (πθ ) and POMDP policy (πφ). 

β Mixing coefficient [0, 1] � 
Fraction of MDP policy used in mixture policy. 

D Replay buffer Data buffer D = τ0:Tn n∈1:N 
Store to access previous trajectories. Facilitates data re-use. 

KL [p||q] 

Qπ (st, at) 

Kullback–Leibler diver-
gence 

Q-function 

KL divergence, forward 
KL, mass-covering KL 

State Q-function Qs : S × A → R 

Particular divergence between two distributions. Forward KL is mass cover-
ing. Reverse KL (KL [q||p]) is mode seeking. 

Expected sum of rewards ahead, garnered by taking action at in state st 
induced by policy π. 

Qπ (bt, at) Belief state Q-function Qb : B × A → R Expected sum of rewards ahead, garnered by taking action at in belief state 
bt induced by policy π. 

π̂θ (at|bt) Implicit policy ΠΦ : B → A Agent policy obtained by marginalizing over state given belief state. Closest 
approximation of πθ under partial observability. Approximated by πφ . 

dπ (st, bt) Occupancy Discounted state visita- M : S × B → R Joint density of st = s and bt = b given policy π. Marginal of qπ 
tion distribution (Agar- over previous and future states, belief states, and all actions, observations and 
wal et al., 2020) rewards. 

πη Fixed reference distri- Π Fixed distribution that is rolled out under to generate samples that are used in 
bution gradient calculation. 

Table A.1: Notation and definitions used throughout the main paper. 
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B. Additional Experimental Results 
B.1. Estimating the Q Function 

In Section 5 we briefly discussed the possibility of avoiding explicitly estimating the Q function. All the terms in (26) 
can be computed directly, with the exception of the Q function. One approach therefore is to train an additional function 
approximator targeting the Q function directly. This can then be used to estimate the discounted sum of rewards ahead given 
a particular action and belief state (when β = 0) without directly using the Monte Carlo rollouts. However, estimating 
the Q function increases the computational cost, increases the number of hyperparameters that need tuning, and can lead 
to instabilities and biased training by over reliance on imperfect function approximators, especially in high-dimensional 
environments. Therefore, as in many on-policy RL algorithms, an alternative is to use Monte Carlo estimates of the Q 
function, computed directly from a sampled trajectory (c.f. (27)-(29)). 

However, somewhat unexpectedly, this second approach can lead to the systemic failure of A2D in particular environments. 
This can be shown by expanding the definition of Qπψ (a, b): " #h i 

Qπψ (a, b) = E E r(s, a, s 0) + γE [Qπψ (a 0, b0)] , (B.1) 
p(s,s0|a,b) dπψ (b0|s0) 0|b0)πψ (a 

where s0 and b0 are the state and belief state after taking action a in state s and belief state b. Since sampling from p(s, s0|a, b) 
and dπψ (b0|s0) is intractable, directly using the trajectories is equivalent to using a singled sample value throughout this 
expression and the gradient estimator in (27). Re-using just a single value of s inside and outside of this expectation biases 
the gradient estimator, as the estimate of Q is not conditionally independent of the current (unobserved) state given the 
belief state. Intuitively, using Monte Carlo rollouts essentially allows the expert to “cheat” by learning using exclusively the 
true state and reward signal over a single time step of a trajectory. 

When the Q function is estimated directly, the expectation in (B.1) is estimated directly by the learned Q function, thereby 
amortizing this inference by learning across many different sampled trajectories. Therefore, from a theoretical perspective, 
estimating the Q function is important for A2D to be guaranteed to function. However, we find that this bias is only 
significant in specific environments, and hence, in many environments, explicitly estimating the Q function can be avoided. 
This reduces the computational cost of the algorithm, and reduces the number of hyperparameters and network architectures 
that need tuning. Furthermore, and most importantly, this eliminates the direct dependence on faithfully approximating the 
Q function, which, in environments with high-dimensional observations and actions, can be prohibitively difficult. 

To explore this behavior, and verify this theoretical insight, we introduce three variants of the Tiger Door problem, shown in 
Figure B.1. The first variant, “Tiger Door 1,” shown in Figure B.1a, actually corresponds to a gridworld embedding of the 
original Tiger Door problem (Littman et al., 1995). “Tiger Door 2” & “Tiger Door 3,” shown in Figures B.1b and B.1c, then 
separate the goal by one and two squares respectively. 

The analysis above predicts that A2D should not be able to solve Tiger Door 1 without direct estimation of the Q function. 
This is because the expert can reach the goal with certainty in a single action, which ends the episode. This means the expert 
can always maximize reward by proceeding directly to the goal, and as the episode ends, the gradient signal is dominated by 
the bias from the single step. This causes the expert to put additional mass on directly proceeding to the goal, even though 
the goal is not visible to the agent. We note that this is also the most extreme example of this bias, and we believe this 
environment to be somewhat of an unusual corner-case. 

However, in Tiger Doors 2 and 3, the episode does not end immediately after proceeding directly towards the goal. Therefore, 
the value of proceeding directly towards the goal is diminished, as the marginalization over state provided by GAE and the 
value function reduces the estimated advantage value. The gradient computed in these scenarios is therefore dramatically 
less biased, to the point where directly estimating the Q function not required. 

The predicted behavior is indeed observed when applying A2D to each Tiger Door variant, shown in Figure B.1. We see that 
in Tiger Door 1, the correct policy is only recovered when the Q function is explicitly estimated. When the Q function is 
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British Columbia 3Inverted AI 4Alberta Machine Learning Intelligence Institute (AMII) 5Montréal Institute for Learning Algorithms 
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(a) Tiger Door 1. (b) Tiger Door 2. (c) Tiger Door 3. 

Figure B.1: Results investigating requirement of directly estimating the Q function, as initially introduced in Section 5 
and discussed further in Section B.1. Median and quartiles across 20 random seeds are shown. The Q function is learned 
targeting the expected discounted sum of rewards ahead conditioned on a particular (belief) state-action pair. A value 
function is also learned in this way, and is used in conjunction with the Q function to directly estimate the advantage in 
(27). Hence the A2D gradient is computed without direct use of Monte Carlo rollouts. When no Q function is being used, 
the advantage is computed using GAE (c.f. Equations (27)-(29)), with λ = 0.5. We instantly anneal β = 0. Figure B.1a: 
Training curves for Tiger Door 1 (Littman et al., 1995). As predicted by the discussion in Section B.1, A2D does not 
converge to the correct policy if a Q function is not simultaneously learned. This deficiency is instrumented by the high KL 
divergence throughout training and a discrepancy between the expected reward of the expert and agent. If a Q function is 
learned, the desired partially observed behavior is recovered. Figure B.1b and B.1c: By separating the goal by at least one 
square means the desired behavior is recovered regardless of whether a Q function is used. This is because the bias has been 
reduced through the use of GAE and the introduction of additional random variables. 

not estimated, the expert directly optimizes just the reward under the MDP, earning itself a reward of 18, but rendering an 
implicit policy that performs poorly, earning a reward of −42. In Tiger Doors 2 & 3, the correct trainee policy is recovered 
regardless of whether a Q function is explicitly learned. Interestingly, we observe that the policy divergence, F (ψ), is 
often lower during training when using the Q function. This further reinforces that estimating the Q function more directly 
optimizes the reward of the trainee. We note, however, that the final divergence achieved by the Q function is often higher 
than that obtained without Q. This is likely due to the systemic bias introduced by using function approximation. Note that 
for all of these experiments we use the compact representation. 

We also explore, in Figure B.2, the affect that the GAE parameter (Schulman et al., 2015b), λ, has on A2D training. 
Inspecting (29) indicates that GAE provides the ability to diminish the unmodelled dependence on st, and hence reduce 
the bias in the estimator by attenuating future reward from the Monte Carlo rollouts and replacing this reward with the 
correctly amortized value, integrating over the true state, estimated by the value function (which in the limit of β = 0 is only 
conditioned on bt). This suggests that λ = 0, corresponding to the expected temporal difference reward, is as close to the 
theoretically ideal Q function based estimator in (26) as is possible. The dependency on st (as denoted in (29)) is maximally 
reduced, to the point where it only affects the gradient signal for a single step (further reinforcing why Tiger Door 1 fails, but 
Tiger Doors 2 & 3 succeed). In contrast, using λ = 1 maximizes the bias, by not attenuating any Monte Carlo reward signal. 

We observe this behavior in Figure B.2. We see that λ = 1 does not converge to the optimal solution, as the bias term 
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(a) Reward. (b) Divergence. 

Figure B.2: Results showing the affect of the GAE parameter λ on A2D, applied to the Tiger Door 2 environment. The 
reward is normalized such that the optimal reward under the POMDP is −100 . As predicted, we see that lower λ values 
yield faster convergence and monotonically lower policy divergences. However, as this is equivalent to TD0, the RL is 
unstable (obscured in this plot are short, sharp drops in the reward and rises in the divergence). Eventually, all traces begin 
to diverge from the optimal policy. For any λ value less than unity, convergence is stable (and the short, sharp drops do not 
exist). Finally, and again as predicted, we see that learning does not converge when λ = 1, with reward remaining flat and 
low, and the divergence remaining high. 

dominates, effectively halting learning. Lower λ values allow more state information to be integrated out, and hence the 
partially observed policy can improve. This is seen by faster and more stable convergence for lower λ values. This can 
also be observed in Figure B.2b, where lower λ values achieve a lower policy divergence. This implies that the expert is 
less able to leverage state information to learn a policy that cannot be represented by the agent. However, reducing λ must 
unfortunately be balanced against the limiting behavior of GAE, which corresponds to a TD0 estimate of the return. In this 
regime, bias introduced by function approximation can make the convergence of RL unreliable. Indeed, even in idealized 
settings, it can be shown such estimators diverge without further modifications, such parameter averaging (Maei et al., 2009). 

Therefore, the hyperparameter λ takes on additional importance when tuning A2D using the biased Monte Carlo gradient 
estimator. If the coefficient λ is too close to zero, then the effects of bootstrapping error can lead learning to stall, unstable 
solutions, or even divergence, as is often observed in RL, and may reduce the effectiveness of GAE and RL by overly 
relying on function approximators. However, this lower λ value reduces the bias in the estimator, and hence provides faster 
convergence, more stable convergence, and achieves a lower final policy divergence (c.f. λ = 0.00 in Figure B.2). If λ is too 
close to unity, there may too much bias in the gradient estimate. This bias may force, either, A2D to not converge outright 
if λ = 1.00, or, cause A2D to drift away slightly from the optimal solution after convergence as the expert aggregates 
this slight bias into the solution. In practice, we find that this second failure mode only occurs once learning has already 
converged to the optimal solution, and so the optimal policy can simply be taken prior to any divergence. Further analysis 
of this effect, both theoretically, such as defining and bounding the precise nature of this bias, and practically, such as 
adaptively adjusting λ to control the bias-variance trade-off, are interesting directions of future work. 

We note that Frozen Lake subtly exhibits the bias in the Monte Carlo gradient estimator if the value of λ is too high. First, 
the trainee quickly converges to the optimal partially observing policy (and so the environment is solved). Then, after many 
more optimization steps, the probability that the agent steps onto the ice can rise slightly. This causes the divergence to rise 
slightly and the expected stochastic reward to fall slightly before stabilizing. The rise is small enough that the deterministic 
policy evaluation remains unchanged. However, as predicted by the analysis above, this behavior can be eradicated by 
reducing the value of λ. However, in RL generally, lowering λ can stall, or even halt, learning from the outset by overreliance 
on biased function approximators. This can cause the optimization to become stuck in local minima. As eluded to above, we 
find that we can control this behavior by slightly reducing the value of λ from its initial value during the optimization. This 
minimizes the dependency on function approximators early in training and retains the fast and reliable convergence to the 
optimal policy, and then attenuates any bias after learning has converged. While we believe this behavior only presents 
in a small number of very specific environments and can be eradicated through tuning of hyperparameters, we propose 
that further investigation of adaptively controlling λ during the optimization is a promising and practical future research 
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Figure B.3: Training curves comparing convergence of A2D and vanilla RL on the POMDP for compact (one-hot vector) 
representations and image-based representations. We see that RL on the compact partial representation (orange) converges 
to the optimal POMDP reward (horizontal dotted line, −9 × 100 and −7 × 100) quickly, and in a sample complexity 
similar to the best-case convergence of RL in the MDP (gray), which converges to the optimal MDP reward (horizontal 
dashed line, −1 × 100). In contrast, RL on the images (red) converges slowly, and does not reach the optimal POMDP 
reward within the allocated computational budget. A2D on the other hand converges to the optimal POMDP reward in a 
sample complexity commensurate with RL operating directly on the compact representation, for both image-based and 
compact representations (brown and green respectively). This confirms our hypothesis that A2D can reduce the complexity 
of operating in high-dimensional, partially observed environments to a complexity commensurate with the best-possible 
convergence rate obtained by performing RL directly on the most efficient encoding or complete state. 

directions. More generally, investigating methods for quantifying and ameliorating this bias is an exciting topic of future 
research. Note that we did not apply this annealing in the experiments presented in the main text. When the Q function is 
estimated, this behavior is not observed, and the reward remains optimal and the divergence remains low. 

It is also paramount to highlight here that A2D, at its core, is underpinned by an RL step, and more specifically, a policy 
gradient step, and hence all the considerations when designing, applying and tuning a regular RL algorithm still apply in 
A2D. In fact, A2D can, in many respects, be considered a special class of projected policy gradient methods. Specifically, we 
optimize through the projection defined by AIL, guaranteeing the desired behavior through subsequent imitation. Therefore, 
in this respect, it is important to reinforce that A2D does not provide a “free lunch,” and hyperparameters are still important 
and can have direct affects on the performance of A2D – even if, in practice, we find that A2D works well when using many 
of the same hyperparameters as RL in the underlying MDP. 

The strong dependency on the Q function leads us to recommend that “default” A2D algorithm is to not directly estimate the 
Q function, and instead estimate the advantage directly from the Monte Carlo trajectories, and the bias is tolerated, or λ 
adjusted accordingly. There are then two instruments available to diagnose if a Q function must be directly approximated: if 
there is consistently a performance gap between the expert policy and the agent policy, or, if there is a non-negligible KL 
divergence between the expert and agent policy (indicating the policies are not being forced to be identifiable). If either of 
these behaviors are observed, then a Q function should be directly estimated. 

While the discussion and example presented in this example provide some explanation of this behavior, we were unable to 
provide a concrete definition, condition, or test identifying when direct estimation of the Q function is required, or, precise 
mathematical quantification of how λ influences the bias. Crucially, the core of this behavior is a function of the environment, 
and hence there may be no readily available or easy-to-test condition for when a Q function is required. Beyond this, this 
effect may manifest as a complication in any method for ameliorating the drawbacks of AIL, and hence further investigation 
of this is a challenging, interesting, and potentially pivotal theoretical topic for future research, studying the very nature of 
MDP and POMDPs. Beyond this, building further intuition, understanding, and eventually defining, the relative influence of 
different hyperparameter settings in A2D, particularly between when estimating Q and not estimating Q, is a future research 
direction with great practical benefits. 
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B.2. Differences in Representation 

In Figure B.3 we investigate A2D when the trainee uses different representations. Specifically, we investigate using a 
compact-but-partial vector representation (labeled as Compact), and the original image-based representation (labeled as 
Image). Both representations include the same partial information, but the compact representation is a much more efficient 
representation for RL. The compact representation for Frozen Lake is a length 25 one-hot vector representing the position 
of the agent. For Tiger Door the compact representation is the concatenation of three one-vectors: a length 25 one-hot 
vector encoding the position of the agent, a length two vector encoding the position of the goal, and a length two vector 
encoding the position of the hazard. The goal and hazard vectors are all zeros until the button is pressed, at which time they 
become one-hot vectors. This can be considered as the optimal encoding of the observation and action history. We note that 
analytically recovering such an encoding is not always possible (in the AV example, for instance), and learning an encoding 
(c.f. Pre-Enc in Figure 4) is unreliable, and introduces a non-trivial amount of additional complexity and hyperparameter 
tuning. 

Results are shown in Figure B.3. We see performing RL directly on the compact representation (RL (Compact)) is fast and 
stable. Direct RL in the image-based representation (RL (Image)) is slow, and does not converge within the computational 
budget. For both Frozen Lake and Tiger Door, A2D converges in a similar number of interactions for both image-based 
inputs (A2D (Image)) and the compact representation (A2D (Compact)), and that is commensurate with the convergence of 
an omniscient MDP expert. This shows that A2D has successfully abstracted the perception task into the efficient AIL step, 
and performs RL in the efficient and low-variance omniscient state representation. This means that A2D is able to exploit 
the relative strengths of RL to offset the weaknesses of AIL, and vice versa, in an efficient, low-overhead and end-to-end 
manner. Crucially, the expert is co-trained with the trainee, and hence there is no requirement for pre-specified expert 
policies or example trajectories from which to learn policies or static encoders. 
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C. Additional Proofs 
In this section we provide full proofs for the material presented in the main text. These proofs describe more completely 
how the A2D estimator is constructed. We briefly give an overview of how the following proofs and details are laid out. 

We begin in Section C.1 by discussing in more detail the occupancy dπ(s, b). This joint occupancy is a convenient term to 
define as it allows us to compactly denote the probability that an agent is in a particular state and belief state at any point in 
time. We can then construct conditional and marginal occupancies by operating on this joint occupancy. 

In Section C.2 we analyze the behavior of AIL. We first detail a full proof of Theorem 1, stating that the implicit policy 
is the solution to the minimization of the most conveniently defined AIL objective, where the trainee simply imitates the 
expert at each state-belief state pair. This allows us to compactly write and analyze the solution to AIL as the implicit policy. 
However, the implicit policy is defined by an intractable inference over the conditional occupancy, dπ(s | b), from which we 
cannot sample. 

We therefore show in Section C.2.2 that we can define a variational approximation to the implicit policy, referred to as 
a trainee, that is learned using the AIL objective. We construct an estimator of the gradient of the trainee parameters to 
learn this trainee, under a fixed distribution over trajectories, directly targeting the result of the inference defined by the 
implicit policy. Crucially, the trainee can be learned using samples from the joint occupancy, dπ(s, b), from which we can 
sample (instead of samples from the conditional dπ(s | b) as per the implicit policy). If the variational family is sufficiently 
expressive, this minimization can be performed exactly. 

We then show that an iterative AIL approach, that updates the fixed distribution over trajectories at each iteration, recovers 
the desired trainee. We then show that the limiting behavior of this iterative algorithm is equivalent to learning under the 
occupancy of the implicit policy. Finally, using these results, we prove Theorem 2, which shows that for an identifiable 
MDP-POMDP pair, the iterative AIL approach outlined above recovers an optimal partially observing policy. 

However, identifiability is a very strong condition. Therefore, mitigating unidentifiability in AIL is primary the motivation 
behind A2D. In Section C.3 we provide a proof of the “exact” form of A2D. We begin by providing additional detail on 
intermediate results, including a brief explanation of the policy bound stated in Equations (23)-(24), a derivation of the 
Q-based A2D update in Equation (26), and the advantage-based update in (27). We then use the assumptions, intermediate 
lemmas, and theorems to prove exact A2D (using a similar strategy as we used to prove Theorem 2). This verifies that, under 
exact updates, A2D converges to the optimal partially observing policy. We then conclude by evaluating the requirements of 
this algorithm. 

C.1. Occupancy Measures 

Throughout this paper we use qπ(τ) as general notation for the trajectory generation process, indicating which policy is 
used to generate the trajectory as a subscript (c.f. (1) and (5)). We define the joint occupancy, dπ (s, b), as the time-marginal 
of qπ(τ) over all variables in the trajectory other than s and b: Z ∞X 

dπ (s, b) = (1 − γ) γt qπ(τ)δ(st − s)δ(bt − b)dτ, where γ ∈ [0, 1), (C.1) 
τ ∈TZ t=0 Z 

dπ(s) = dπ(s, b0)db0 , dπ(s|b) = dπ (s, b0)δ(b0 − b)db0 , (C.2) 
b0∈B b0∈BZ Z 

0 0dπ(b) = dπ(s 0, b)ds , dπ (b|s) = dπ(s 0, b)δ(s 0 − s)ds . (C.3) 
s∈S s0∈S 

We refer the reader to §3 of Agarwal et al. (2020) for more discussion on the occupancy (described instead as a discounted 
state visitation distribution). Despite the complex form of these expressions, we can sample from the joint occupancy 
dπ(s, b) by simply rolling out under the policy π according to qπ (τ ), and taking a random state-belief state pair from the 
trajectory. We can then trivially obtain a sample from either marginal occupancy, dπ(s) or dπ(b), by simply dropping the 
other variable. We can also recover a single sample, for a sampled b, from the conditional occupancy dπ (s | b) by taking the 
associated s (and vice-versa for conditioning on a sampled s). However, and critically for this work, sampling multiple 
states or belief states from either conditional occupancy is intractable. Therefore, much of the technical work presented is 
carefully constructing and manipulating the learning task such that we can use samples from the joint occupancy (from 
which we can sample), in-place of samples from the conditional occupancy (from which we cannot sample). 
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C.2. Analysis of AIL 

We begin by analyzing the behavior of AIL. This will allow us to subsequently define the behavior of A2D by building on 
these results. 

C.2.1. PROOF OF THEOREM 1 

We first verify the claim that the implicit policy minimizes the AIL objective. 
Theorem 1 (Asymmetric IL Target, reproduced from Section 3). For any fully observing policy πθ ∈ ΠΘ and fixed policy 

ηπη , the implicit policy π̂ ∈ Π̂ 
Θ, defined in Definition 1, minimizes the following asymmetric IL objective: θ 

ηπ̂ (a|b) = arg min Edπη (s,b) [KL [πθ(a|s) || π(a|b)] ] . (C.4)θ 
π∈ΠΦ 

Proof. Considering first the optima of the right-hand side: 

π ∗ (a|b) = arg min Edπη (s,b) [KL [πθ(a|s) || π(a|b)] ] , (C.5) 
π∈Π 

and expanding the expectation and KL term: � Z Z � � � 
πθ(a|s)

π ∗ (a|b) = arg min Edπη (b) πθ(a|s) log da dπθ (s|b)ds , (C.6) 
π∈Π π(a|b)s∈S a∈A� Z Z � 

= arg min Edπη (b) πθ(a|s) log πθ(a|s)da dπη (s|b)ds − (C.7) 
π∈Π s∈S a∈A� Z Z � 

Edπη (b) πθ(a|s) log π(a|b)da dπη (s|b)ds , (C.8) 
s∈S a∈A� Z Z � 

= arg min K − Edπη (b) πθ(a|s) log π(a|b)da dπη (s|b)ds , (C.9) 
π∈Π s∈S a∈A 

where K is independent of π. Manipulating the rightmost term:� Z Z � 

π ∗ (a|b) = arg min K − Edπη (b) πθ(a|s)dπη (s|b)ds log π(a|b)da , (C.10) 
π∈Π a∈A s∈S� Z � 

η = arg min K − Edπη (b) π̂ (a|b) log π(a|b)da , (C.11)θ 
π∈Π a∈A 

We are now free to set the value of K, which we denote as K 0 , so long as it remains independent of π, as this does not alter 
the minimizing argument: � Z � 

η ηK 0 = Edπη (b) π̂ (a|b) log π̂ (a|b)da , (C.12)θ θ 
a∈A � Z � 

ηπ ∗ (a|b) = arg min K 0 − Edπη (b) π̂ (a|b) log π(a|b)da , (C.13)θ 
π∈Π a∈A� Z Z � 

η η η = arg min Edπη (b) π̂ (a|b) log π̂ (a|b)da − π̂ (a|b) log π(a|b)da . (C.14)θ θ θ 
π∈Π a∈A a∈A 

Combining the logarithms: � Z � � �η 
η π̂θ (a|b)π ∗ (a|b) = arg min Edπη (b) π̂ (a|b) log da , (C.15)θ 

π∈Π π(a|b)a∈A 
η = arg min Edπη (b) [KL [ π̂ (a|b) || π(a|b)] ] . (C.16)θ 

π∈Π 

Assuming that the policy class Π is sufficiently expressive, this KL can be exactly minimized, and hence we arrive at the 
desired result: 

ηπ ∗ (a|b) = π̂ (a|b), ∀ a ∈ A, b ∈ {b0 ∈ B | dπη (b0) > 0} . (C.17)θ 
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This proof shows that learning the trainee policy (π here, πψ later) using KL minimization imitation learning (as in (14)) 
recovers the policy defined as the implicit policy (as defined in Definition 1), and hence our definition of the implicit policy 
is well founded. 

C.2.2. VARIATIONAL IMPLICIT POLICY 

However, the implicit policy is defined as an intractable inference problem, marginalizing the conditional occupancy, 
dπ(s | b), from which we cannot sample. Therefore, we can further define a variational policy, πψ ∈ ΠΨ, to approximate 
this policy, from which evaluating densities and sampling is more tractable. This policy can be learned using gradient 
descent: 

Lemma 1 (Variational Implicit Policy Update, c.f. Section 3, Equation (18)). For an MDP MΘ, POMDP MΦ, and implicit 
policy π̂θ (Definition 1), if we define a variational approximation to π̂θ, parameterized by ψ, denoted πψ ∈ ΠΨ, such that 
the following divergence is minimized: 

ψ ∗ = arg min F (ψ) = arg min Edπ̂θ (b) [KL [ π̂θ(a|b) || πψ (a|b)] ] , (C.18) 
ψ∈Ψ ψ∈Ψ 

then an unbiased estimator for the gradient of this objective is given by the following expression: � � 
rψF (ψ) = −Edˆ Eπθ (a|s) [rψ log πψ(a|b)] . (C.19)πθ (s,b) 

Proof. Note the objective in (C.18) is corresponds to the original AIL objective via Theorem 1. By manipulating the KL 
term, pulling out terms that are constant with respect to ψ, and rearranging the expectations we obtain: 

F (ψ) = Edπ̂θ (b) [KL [ π̂θ(a|b) || πψ(a|b)] ] , (C.20)� Z � � � 
π̂θ(a|b) 

= Edπ̂θ (b) log π̂θ(a|b)da , (C.21)
πψ(a|b)Z Z a∈A 

= − log πψ(a|b)π̂θ(a|b)da dπ̂θ (b)db + C, (C.22) 
b∈B a∈AZ Z Z 

= − log πψ(a|b) πθ(a|s)dπ̂θ (s|b)ds da dπ̂θ (b)db + C, (C.23) 
b∈B a∈A s∈SZ Z Z 

= − log πψ(a|b)πθ(a|s)dπ̂θ (s, b)ds da db + C, (C.24) 
b∈B a∈A s∈S� Z � 

= −Edπ̂θ (s,b) log πψ (a|b)πθ(a|s)da + C, (C.25) � a∈A � 
= −Edπ̂θ (s,b) Eπθ (a|s) [ log πψ(a|b)] + C. (C.26) 

As neither distribution in the expectation is a function of ψ, we can pass the derivative with respect to ψ through this 
objective to obtain the gradient: � � 

rψF (ψ) = −Edπ̂θ (s,b) Eπθ (a|s) [rψ log πψ(a|b)] . (C.27) 

Note here that in AIL θ is held constant. In A2D we extend this by also updating the θ, discussed later. Importantly, the 
gradient estimator in (C.27) circumvents a critical issue in the initial definition of the implicit policy: we are unable to 
sample from the conditional occupancy, dπ̂θ (s | b). However, and as is common in variational methods, the learning the 
variational policy only requires samples from the joint occupancy, dπ̂θ (s, b). We can therefore train an approximator directly 
targeting the result of an intractable inference under the conditional density, and recover a variational policy that provides 
us with a convenient method of drawing (approximate) samples from the otherwise intractable implicit policy. Under the 
relatively weak assumption that the variational family is sufficiently expressive, ΠΨ ⊇ Π̂ 

Θ, this KL divergence can be 
exactly minimized, and exact samples from the implicit policy are recovered. However, even if the expert policy is optimal 
under the MDP, and the divergence is minimized in the feasible set, this does not guarantee that the implicit policy (and 
hence the variational policy) is optimal under the partial information in terms of reward, if the value of the divergence is not 



Robust Asymmetric Learning in POMDPs 

exactly zero. We therefore first build intermediate results by considering an identifiable process pair, where we show that 
we recover a sequence of updates which converges to the optimal partially observing policy, π̂θ∗ (a | b), or its variational 
equivalent, πψ∗ (a | b). In Section C.3 we then relax the identifiability requirement, and leverage these intermediate results 
to derive the A2D update in Theorem 3. 

C.2.3. CONVERGENCE OF ITERATIVE AIL 

We first verify the convergence of AIL for identifiable processes. We will also introduce an assumption and two lemmas 
which provide important intermediate results and intuition, and will make the subsequent presentation of both Theorem 2 
and Theorem 3 more compact. The assumption simply states that the variational family is sufficiently expressive such that 
the implicit policy can be replicated, and that the implicit policy is sufficiently expressive such that the optimal partially 
observing policy, πφ∗ ∈ ΠΦ∗ ⊆ ΠΦ, can actually be found. 

The first lemma shows that the solution to an iterative procedure, optimizing the trainee under the occupancy from the 
trainee policy at the previous iteration, actually converges to the solution of a single equivalent “static” optimization problem, 
directly optimizing over the trainee policy and the corresponding occupancy. This will allow us to solve the challenging 
optimization over the trainee policy using a simple iterative procedure. The second lemma shows that solving this static 
optimization is equivalent to an optimization under the occupancy induced by the implicit policy. This will allow us to 
substitute the distribution under which we take expectations and will allow us to prove more complex relationships. The 
assumption and both lemmas are then used in Theorem 2 to show that iterative AIL will converge as required. 

Assumption 1 (Sufficiency of Policy Representations). We assume that for any behavioral policy, πη ∈ ΠΨ, the variational 
family is sufficiently expressive such that any implicit policy, π̂θ ∈ Π̂ 

Θ, is exactly recovered in the regions of space where the 
occupancy under the occupancy under the behavioral policy places mass: 

min E [KL [ π̂θ(a|b) || πψ(a|b)] ] = 0. (C.28)
ψ∈Ψ dπη (b) 

We also assume that there exists an implicit policy, π̂θ, such that an optimal POMDP policy, πφ∗ ∈ ΠΦ∗ ⊆ ΠΦ can be 
represented: 

min E [KL [πφ∗ (a|b) || π̂θ(a|b)] ] = 0, (C.29)
θ∈Θ dπη (b) 

and hence there is a variational policy that can represent the optimal POMDP policy in states visited under πη . 

The condition in Equation (C.28) (and similarly the condition in Equation (C.29)) can also be written as: 

∃ψ ∈ Ψ such that π̂θ(a|b) = πψ(a|b), ∀ a ∈ A, b ∈ {b0 ∈ B | dπη (b0) > 0} . (C.30) 

These conditions are weaker than simply requiring π̂θ ∈ Π̂ 
Θ ⊆ ΠΨ, as this only requires that the policies are equal where 

the occupancy places mass. These assumptions are often made implicitly by AIL methods. We will use this assumption 
throughout. Note that by definition if the divergence in (C.29) is equal to zero at all π̂θ∗ , then the processes are identifiable. 

Lemma 2 (Convergence of Iterative Procedure). For an MDP MΘ and POMDP MΦ, and implicit policy π̂θ (Definition 1), 
if we define a variational approximation to π̂θ, parameterized by ψ, denoted πψ ∈ ΠΨ, then under Assumption 1, and for 
the following AIL objective: 

ψ ∗ = arg min E [KL [ π̂θ(a|b) || πψ (a|b)] ] , (C.31) 
ψ∈Ψ dπψ (b) 

the iterative scheme: 

ψk+1 = arg min E [KL [ π̂θ(a|b) || πψ(a|b)] ] , with ψ∞ = lim ψk, (C.32)
k→∞ψ∈Ψ d 

πψk (b) 

converges to the solution to the optimization problem in Equation (C.31) such that: 

E [KL [πψ∗ (a|b) || πψ∞ (a|b)] ] = 0 (C.33)
πψ∗ d (b) 

Proof. We show this convergence by showing that the total variation between dψ ∗ (b) and dψk (b), over the set of belief 
states visited in Equation (C.33), denoted b ∈ B̂ = {b0 ∈ B | dπψ∗ (b0) > 0}, converges to zero as k → ∞. We begin by 
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expressing the total variation at the kth iteration: 

∞ ∞X X 
sup |dπψk (b) − dπψ∗ (b)| = sup (1 − γ) γt qπψk 

(bt) − (1 − γ) γt qπψ∗ (bt) , (C.34) 
b∈B̂ b∈B̂ t=0 t=0 

∞ ∞X X 
= (1 − γ) sup γt qπψk 

(bt) − γt qπψ∗ (bt) , (C.35) 
b∈B̂ t=0 t=0 

k ∞ k ∞X X X X 
= (1 − γ) sup γt qπψk 

(bt) + γt qπψk 
(bt) − γt qπψ∗ (bt) − γt qπψ∗ (bt) . 

b∈B̂ t=0 t=k+1 t=0 t=k+1 

(C.36) 

where γ ∈ [0, 1), and where we use the notational shorthand by defining b0, b1, b2, . . . = b. 

We can then note that at the kth iteration, the distribution over the first k state-belief state pairs must be identical: 
qπψk 

(τ0:k−1) = qπψ∗ (τ0:k−1) (recalling that τ contains both belief state and actions). To verify this, consider the following 
inductive argument: If after a single iteration (k = 1) we have exactly minimized the KL divergence between π̂θ andn o 
πψ1 (and hence the divergence between πψ1 and πψ∗ ) for all b0 ∈ b0 ∈ B | qπψk 

(b0) > 0 ., then at time step zero the 
following equality must hold qπψ1 

(τ0) = qπψ∗ (τ0), because the distribution over actions and the underlying dynamics are 
the same at the initial state and belief state. Therefore, because both the distribution over the initial state and belief state, as 
well as the action distributions must also be the same for qπψ∗ and qπψ1 

(i.e. qπψ1 
(a0, b0) = qπψ∗ (a0, b0)) then necessarily 

we have that qπψ1 
(b1) = qπψ∗ (b1). 

Next, using the inductive hypothesis qπψk 
(bk−1) = qπψ∗ (bk−1), we can see that provided (C.28) is exactly minimized, 

then πψk−1 (ak−1|bk−1) = πψ∗ (ak−1|bk−1). This then means that again we have qπψk 
(ak−1, bk−1) = qπψ∗ (ak−1, bk−1), 

which by definition gives qπψk 
(bk) = qπψ ∗ (bk), which concludes our inductive proof. This allows us to make the following 

substitution and simplification: 

k ∞ k ∞X X X X 
sup |dπψk (b) − dπψ∗ (b)| = (1 − γ) sup γt qπψ ∗ (bt) + γt qπψk 

(bt) − γt qπψ ∗ (bt) − γt qπψ ∗ (bt) , 
b∈B̂ b∈B̂ t=0 t=k+1 t=0 t=k+1 

(C.37) 
∞ ∞X X 

= (1 − γ) sup γt qπψk 
(bt) − γt qπψ∗ (bt) , (C.38) 

b∈B̂ 
t=k+1 t=k+1 

∞X 
= (1 − γ) sup γt(qπψk 

(bt) − qπψ∗ (bt)) , (C.39) 
b∈B̂ 

t=k+1 

∞ ∞ � �X X 1 − γk+1 

≤ (1 − γ) sup γtC = C(1 − γ) γt = C(1 − γ)
1 − (C.40)

1 − γ 1 − γb∈B̂ 
t=k+1 t=k+1 

= C(1 − 1 + γk+1) = Cγk+1 = O(γk), (C.41) 

where we assume that the maximum variation between the densities is bounded by C ∈ R+. Hence, as γ ∈ [0, 1), as k →∞ 
the occupancy induced by the trainee learned through the iterative procedure, dπψ∞ , converges to the occupancy induced by 
the optimal policy recovered through direct, static optimization, dπψ∗ . As a result of this, and the expressivity assumption in 
(C.28), we can state that the iterative procedure must recover a perfect variational approximation to the implicit policy π̂θ, in 

πθbelief states with finite mass under dˆ . 

This lemma verifies that we can solve for a variational approximation to a particular implicit policy, defined by the static-
but-difficult optimization defined in (C.31), by using the tractable iterative procedure defined in (C.32). However, the 
distribution under which we take the expectation is the trainee policy. We therefore show now that this can be replaced with 
the occupancy under the implicit policy, which will allow us to utilize the identifiability condition defined in the main text. 

Lemma 3 (Equivalence of Objectives). For an MDP MΘ, POMDP MΦ, and implicit policy π̂θ (Definition 1), if we define 
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a variational approximation to π̂θ, parameterized by ψ, denoted πψ ∈ ΠΨ, and define: 

ψ ∗ = arg min E [KL [ π̂θ(a|b) || πψ(a|b)] ] , (C.42)1 
ψ∈Ψ dπψ (b) 

ψ2 
∗ = arg min E [KL [ π̂θ(a|b) || πψ(a|b)] ] , (C.43) 

ψ∈Ψ dπ̂θ (b) 

then, under Assumption 1, we are able to show that: � � � � 
E KL πψ∗ (a|b) || πψ∗ (a|b) = 0 (C.44)

πψ ∗ 2 1 
d 2 (b) 

Proof. We show this result by way of contradiction. First assume that there exists some t ∈ N such that qπ̂θ (bt) 6= qπψk 
(bt). 

As a result of Assumption 1 we can state that: 

min Edπψ (b) [KL [ π̂θ(a|b) || πψ (a|b)] ] = 0. (C.45)
ψ∈Ψ 

We now use a similar approach to the one used in Lemma 2, and consider initially the first time step. We note that 
qπ̂θ (b0) = qπψ (b0) because the initial state distribution is independent of the policy. Because both (C.42) and (C.43) 
target the same density, by Assumption 1, after the first iteration we again have that qˆ (b0)π̂θ(a0|b0) = qπψ (b0)πψ(a0|b0).πθ 

Because the dynamics are the same for both qπψ and qπ̂θ , this result directly implies that qπ̂θ (b1) = qπψ (b1). 

Inductively extending this to t − 1, we have that qπ̂θ (bt−1) = qπψ (bt−1), and further, that our action distribution again 
satisfies πψt (at−1|bt−1) = π̂θ(at−1|bt−1) due to Assumption 1. Here we again have that πψt (at−1|bt−1)qπψ (bt−1) = 
π̂θ(at−1|bt−1)qπ̂θ (bt−1), which directly implies that qπ̂θ (bt) = qπψ (bt) must also hold. However this contradicts our 
assumption that ∃t ∈ N such that qπ̂θ (bt) 6= qπψk 

(bt). Thus under the assumptions stated above, qπ̂θ (bt) = qπψ (bt) for all t, 
and by extension, dπ̂θ (b) = dπψ ∗ (b), where πψ∗ represents a solution to the right hand side of Equation (C.43). 

This lemma allows us to exchange the distribution under which we take expectations. We can now use Assumption 1, 
Lemma 2 and Lemma 3 to show that for an identifiable process pair an iterative AIL procedure converges to the correct 
POMDP policy as desired. 

Theorem 2 (Convergence of AIL, expanded from Section 4). Consider an identifiable MDP-POMDP process pair (MΘ, 
MΦ), with optimal expert policy, πθ∗ , and optimal partially observing policy πφ∗ ∈ ΠΦ∗ ⊆ ΠΦ. For a variational policy 
πψ ∈ ΠΨ, and assuming Assumption 1 holds, the following iterative procedure: 

ψk+1 = arg min E [KL [πθ∗ (a|s) || πψ(a|b)] ] , (C.46) 
ψ∈Ψ d 

πψk (s,b) 

converges to parameters ψ∗ = limk→∞ ψk that define a policy equal to an optimal partially observing policy in visited 
regions of state-space: 

E [KL [πφ∗ (a|b) || πψ∗ (a|b)] ] = 0 (C.47)
πφ∗ d (b) 

Proof. For brevity, we present this proof for the case that there is a unique optimal parameter value, ψ∗ . However, this is not 
a requirement, and can easily be relaxed to consider a set of equivalent parameters, ψ∗ , that yield the same policy over the1:N 

relevant occupancy distribution, i.e. πψ∗ (a|b) = . . . = πψ∗ (a|b) ∀b ∈ B̂. In this case, we would instead require that the 
1 N 

KL divergence between the resulting policies is zero (analogous to (C.47)), as opposed to requiring that the parameters 
recovered are equal to ψ∗ . However, including this dramatically complicates the exposition and hence we do not include 
such a proof here. We begin by considering the limiting behavior of (C.46) as k →∞: 

ψ ∗ = lim arg min E [KL [πθ∗ (a|s) || πψ(a|b)] ] . (C.48)
k→∞ ψ∈Ψ d 

πψk (s,b) 

Application of Theorem 1 to replace the expert policy with the implicit policy yields: 

= lim arg min E [KL [ π̂θ∗ (a|b) || πψ(a|b)] ] . (C.49)
k→∞ ψ∈Ψ d 

πψk (b) 
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Application of Lemma 2 to (C.49) then recovers the limiting behavior as k →∞: 

= arg min E [KL [ π̂θ∗ (a|b) || πψ(a|b)] ] . (C.50) 
ψ∈Ψ dπψ (b) 

Application of Lemma 3 to change the distribution under which the expectation is taken yields: 

= arg min E [KL [ π̂θ∗ (a|b) || πψ(a|b)] ] , (C.51) 
ψ∈Ψ dπ̂θ∗ (b) 

Identifiability then directly implies that the implicit policy defined by the optimal expert policy is an optimal partially 
observing policy: 

E [KL [πφ∗ (a|b) || π̂θ∗ (a|b)] ] = 0, (C.52)
πφ∗ d (b) 

and therefore we can replace π̂θ∗ with πφ∗ in (C.51) to yield: 

ψ ∗ = arg min E [KL [πφ∗ (a|b) || πψ(a|b)] ] , (C.53)
πφ∗ ψ∈Ψ d (b) 

Finally, under Assumption 1, the expected KL divergence in (C.51) can be exactly minimized, such that: 

E [KL [πφ∗ (a|b) || πψ∗ (a|b)] ] = 0 (C.54)
πφ∗ d (b) 

This proof shows that, if Assumption 1 holds and for an identifiable MDP-POMDP pair, we can use a convenient iterative 
scheme defined in (C.46) to recover an optimal trainee (variational) policy that is exactly equivalent to an optimal partially 
observing policy. This iterative process is more tractable than the directly solving the equivalent static optimization; instead 
gathering trajectories under the current trainee policy, regressing the trainee onto the expert policy at each state, and then 
rolling out under the new trainee policy until convergence. However, assuming that processes are identifiable is a very 
restrictive assumption. This fact motivates our A2D algorithm, which exploits AIL to recover an optimal partially observing 
policy for any process pair by adaptively modifying the expert that is imitated by the trainee. 

C.3. A2D Proofs 

In this section we provide the proofs, building on the results given above, that underpin our A2D method and facilitate 
robust exploitation of AIL in non-identifiable process pairs. We begin this section by giving a proof of the bound described 
in (23)-(24). We then give proofs of the A2D gradient estimator given in (26). We then conclude with a proof of Theorem 
3, which closely follows the proof for Theorem 2, and provides the theoretical underpinning of the A2D algorithm. We 
conclude by discussing briefly the practical repercussions of this result, as well as some additional assumptions that can be 
made to simplify the analysis. 

C.3.1. OBJECTIVES AND GRADIENTS ESTIMATORS 

We begin by expanding on the policy gradient bound given in (23)-(24). 

Lemma 4 (Policy gradients bound, c.f. Section 5, Equations (23)-(24)). Consider an expert policy, πθ, and a trainee policy 
learned through KL-minimization, πψ, targeting the implicit policy, π̂θ. If (C.29) in Assumption 1 holds, the following 
bound holds: � � 

max Jψ(θ) = max E [Qπψ (a, b)] ≤ max E Qπ̂θ (a, b) = max J(θ). (C.55)
θ∈Θ θ∈Θ π̂θ (a|b)dπψ (b) θ∈Θ π̂θ (a|b)dπψ (b) θ∈Θ 

Proof. For a more extensive discussion on this form of policy improvement we refer the reader to Agarwal et al. (2020); 
Bertsekas & Tsitsiklis (1991); Bertsekas (2011). Assumption 1 states that the optimal partially observing policy (or policies) 
is representable by an implicit policy for any occupancy distribution. We denote the optimal value function as V ∗(b), where 
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this value function is realizable by the implicit policy. Considering the right hand side of (C.55), we can write, by definition, 
the following equality: � � � � � � 

max E Qπ̂θ (a, b) = max E E E [r(b, a, b0)] + γ E [V π̂θ (b0)] (C.56)
θ∈Θ π̂θ (a|b)dπψ (b) θ∈Θ dπψ (b) π̂θ (a|b) p(b0|a,b) p(b0|a,b)� � � � 

= max E E E [r(b, a, b0)] + γ E [V ∗ (b0)] (C.57)
θ∈Θ dπψ (b) π̂θ (a|b) p(b0|a,b) p(b0|a,b) 

We then repeat this for the expression on the left side of (C.55), noting that instead of equality there is an inequality, as by 
definition the value function induced by πψ(a|b), denoted V πψ (b), cannot be greater than V ∗(b): n o 

˜V πψ (b) ≤ V ∗ (b) ∀ b ∈ b ∈ B | dπψ (b̃) > 0 , (C.58) � � � � 

max E [Qπψ (a, b)] = max E E E [r(b, a, b0)] + γ E [V πψ (b0)] (C.59)
θ∈Θ π̂θ (a|b)dπψ (b) θ∈Θ dπψ (b) π̂θ (a|b) p(b0|a,b) p(b0|a,b)� � � � 

≤ max E E E [r(b, a, b0)] + γ E [V ∗ (b0)] , (C.60)
θ∈Θ dπψ (b) π̂θ (a|b) p(b0|a,b) p(b0|a,b) 

and hence the inequality originally stated in (C.55) must hold. 

This form of improvement over a behavioral policy is well studied in the approximate dynamic programming literature (Bert-
sekas, 2019), and is a useful tool in analyzing classical methods such as approximate policy iteration. As was discussed 
in Section 5, it is also implicitly used in many policy gradient algorithms to avoid differentiating through the Q function, 
especially when a differentiable Q function is not available. In these cases (i.e. Schulman et al. (2017; 2015a;b); Williams 
(1992)) the behavioral policy is defined as the policy under which samples are gathered for Q function estimation. Then, as 
in the classical policy gradient theorem (Bertsekas, 2019; Sutton, 1992; Williams, 1992), the discounted sum of rewards 
ahead does not need to be differentiated through. We can then exploit this lower bound to construct an estimator of the 
gradient of the expert parameters with respect to the reward garnered by the implicit policy. 

Lemma 5 (A2D Q-based gradient estimator, c.f. Section 5, Equation (26)). For an expert policy, πθ, and a trainee policy 
learned through KL-minimization, πψ, targeting the implicit policy, π̂θ, we can transform the following policy gradient 
update applied directly to the trainee policy lower bound in (C.55): 

rθJψ (θ) = rθ E [Qπψ (a, b)] , (C.61) 
π̂θ (a|b)dπψ (b) 

into a policy gradient update applied to the expert: � � 

rθJψ (θ) = E E [Qπψ (a, b)rθ log πθ(a|s)] , (C.62) 
dπψ (s,b) πθ (a|s) 

Proof. To prove this we simply expand and rearrange (C.61): 

rθJψ(θ) = rθ E [Qπψ (a, b)] , (C.63) 
π̂θ (a|b)dπψ (b)Z Z 

= rθ Qπψ (a, b)π̂θ(a|b)da dπψ (b)db, (C.64) 
b∈B a∈AZ Z Z 

= rθ Qπψ (a, b) πθ(a|s)dπψ (s|b)ds da dπψ (b)db, (C.65) 
b∈B a∈A s∈SZ Z Z 

= rθ Qπψ (a, b)πθ(a|s)dπψ (s, b)da ds db, (C.66) 
s∈S b∈B a∈A� Z � 

= E rθ Qπψ (a, b)πθ(a|s)da , (C.67) 
dπψ (s,b) a∈A� � 

= E rθ E [Qπψ (a, b)] , (C.68) 
dπψ (s,b) πθ (a|s) 
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= E E [Qπψ (a, b)rθ log πθ(a|s)] , (C.69) 
dπψ (s,b) πθ (a|s) 

The A2D gradient estimator given in (26) then adds an importance weight to the inner expectation, as we rollout under πψ . 
This allows us to instead weight actions sampled under the current trainee policy, πψ , without biasing the gradient estimator. 
We can then cast this estimator in terms of advantage, where the Q function with the value function subtracted as a baseline 
to reduce the variance of the estimator. 

Lemma 6 (A2D Advantage-based gradient estimator, c.f. Section 5, Equation (27)). We can construct a gradient estimator 
from (C.69) that uses the advantage by subtracting the value function as a baseline (Bertsekas, 2019; Sutton, 1992; Williams, 
1992): � � 

rθJψ(θ) = E E [Qπψ (a, b)rθ log πθ(a|s)] , (C.70) 
dπψ (s,b) πθ (a|s)� � 

= E Eπθ (a|s) [(Q
πψ (a, b) − V πψ (b))rθ log πθ(a|s)] . (C.71) 

dπψ (s,b) 

Proof. It is sufficient to show that: � �� � 
E E V π̂θ (b)rθ log πθ(a|s) = 0, (C.72) 

dπψ (s,b) πθ (a|s) 

which can be shown easily as: � � � � � � 
V ˆ V ˆEdπψ (s,b) Eπθ (a|s) 
πθ (b)rθ log πθ(a|s) = Edπψ (s,b) 

πθ (b)Eπθ (a|s) [rθ log πθ(a|s)] (C.73)� Z � 

= Edπψ (s,b) V π̂θ (b) rθπθ(a|s)da , (C.74) 
a∈A� Z � 

= Edπψ (s,b) V π̂θ (b)rθ πθ(a|s)da , (C.75) � �a∈A 

= Edπψ (s,b) V π̂θ (b)rθ1 = 0, (C.76) 

Noting that this is an example of the baseline trick used throughout RL (Bertsekas, 2019; Sutton, 1992; Williams, 1992). 

This allows us to construct a gradient estimator using the advantage, which in conventional RL, is observed to reduce the 
variance of the gradient estimator compared to directly using the Q values. 

We are now able to prove an exact form of the A2D update. This proof is similar to Theorem 2, however, no longer assumes 
identifiability of the POMDP-MDP process pair by instead updating the expert at each iteration. 

C.3.2. THEOREM 3 

Theorem 3 (Convergence of Exact A2D, reproduced from Section 5). Under exact intermediate updates to the expert policy 
(see (C.78)), the following iteration converges to an optimal partially observed policy πψ∗ (a|b) ∈ Πφ, provided Assumption 
1 holds: � � � � 

ψk+1 = arg min E KL πθ∗ (a|s) || πψ(a|b) , (C.77)
k 

ψ∈Ψ d 
πψk (s,b) � � 

where θ̂  
k 
∗ = arg max E Qπ̂θ (a, b) . (C.78) 

θ∈Θ d 
πψk (b)π̂θ (a|b) 

Proof. We will again, for ease of exposition assume that a unique optimal policy exists, as in Theorem 2. We again reinforce 
that this is not a requirement. Extending this proof to include multiple optimal partially observable policies only requires 
that we reason about the KL divergence between πψk and πφ∗ at each step in the proof, instead of showing that the optimal 
parameters are equal. This alteration is technically simple, but is algebraically and notationally onerous. Similar to Theorem 
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2, we begin by examining the limiting behavior of (C.77) as k →∞, and apply Theorem 1 to replace the expert policy with 
the implicit policy: h h i i 

ψ ∗ = lim arg min E KL πˆ (a|s) || πψ(a|b) , (C.79)
k→∞ kψ∈Ψ d 

πψk (s,b) 
θ∗ h h i i 

= lim arg min E KL π̂θ̂∗ (a|b) || πψ(a|b) (C.80)
k→∞ kψ∈Ψ d 

πψk (b) 

We can then apply a direct extension of Lemma 2, where the parameters of the expert policy are also updated in each 
iteration of the KL minimization, now denoted θ̂∗(ψ). The induction in Lemma 2 then proceeds as before. Application of 
this extended Lemma 2 yields: h h i i 
ψ ∗ = lim arg min E KL π̂θ̂∗ (a|b) || πψ(a|b) , (C.81)

k→∞ ψ∈Ψ d 
πψk (b) k h h i i � � 

= arg min E KL π̂θ̂∗(ψ)(a|b) || πψ(a|b) , where θ̂∗ (ψ) = arg max E Qπ̂θ (a, b) (C.82) 
ψ∈Ψ dπψ (b) θ∈Θ dπψ (b)π̂θ (a|b) 

We can then apply a similarly extended a version of Lemma 3, by using the same logic to allow the parameters of the expert 
policy to be updated as a function of ψ in the KL minimization. Now θ̂∗(ψ) is defined as the expectation under the optimal 
POMDP policy. To clarify, this update is, of course, intractable; however, here we are deriving what the equivalent and 
tractable iterative scheme outlined in (C.77) converges to, and hence we never actually need to evaluate θ̂∗(ψ) as it is defined 
in Equation (C.82). Application of this extended lemma yields: h h i i 
ψ ∗ = arg min E KL π̂ˆ (a|b) || πψ(a|b) , (C.83)θ∗ (ψ)

ψ∈Ψ dπψ (b) h h i i � � 
= arg min E KL π̂θ̂∗(ψ)(a|b) || πψ(a|b) , where θ̂∗ (ψ) = arg max E Qπ̂θ (a, b) (C.84)

πφ∗ πφ∗ ψ∈Ψ d (b) θ∈Θ d (b)π̂θ (a|b) 

Lastly, Assumption 1 states that πφ∗ ∈ Π̂ ̂
 , and so we can replace π̂ˆ with the optimal partially observing policy πφ∗ . As a θ∗ θ∗ 

result, we have shown that we are implicitly solving a symmetric imitation learning problem, imitating the optimal partially 
observing policy: h h i i 

ψ ∗ = arg min 
πφ 
E 
∗ 

KL π̂ˆ (a|b) || πψ(a|b) , (C.85)θ∗(ψ)
ψ∈Ψ d (b) 

= arg min E [KL [πφ∗ (a|b) || πψ(a|b)] ] , (C.86) 
dφ∗ 

ψ∈Ψ (b) 

where this optima can be achieved by our variational policy, yielding the initially stated result: h h i i 
ψ ∗ = lim arg min E KL πˆ (a|s) || πψ(a|b) = arg min E [KL [πφ∗ (a|b) || πψ(a|b)] ] (C.87)

k→∞ k πφ∗ ψ∈Ψ d 
πψk (s,b) 

θ∗ 

ψ∈Ψ d (b) 

which can be exactly minimized, as per Assumption 1. Directly performing the imitation in the right hand side of Equation 
(C.87), although practically intractable, is guaranteed to recover a performant trainee. We have therefore shown that the 
iterative procedure outlined in Equations (C.77) and (C.78) recovers a trainee that is equivalent to an optimal partially 
observing policy as desired. 

We conclude by noting that if we assume that dπψ > 0 for all πψ ∈ Πψ , then each of the steps given in Theorems 2 
and 3 can be shown trivially. If we assume at each iteration we successfully minimize the KL divergence, we obtain a 
variational policy which perfectly matches the updated expert everywhere. In Theorem 2 this directly implies the result, 
and by definition the algorithm must have converged after just a single iteration. In Theorem 3, we need only note that the 
arg max that produces the updated expert policy parameters must itself by definition match the optimal partially observed 
policy everywhere, and thus Theorem 3 collapses to the same logic from Theorem 2. 
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C.3.3. DISCUSSION 

In this section we presented a derivation of exact A2D, where the expert is defined through the exact internal maximization 
step defined in (C.78). We include these derivations to show the fundamental limitations of imitation learning and thus 
A2D under ideal settings. Exactly performing this maximization is difficult unto itself, and therefore the A2D algorithm 
presented in Algorithm 1 simply assumes that this maximization is performed sufficiently accurately to produce meaningful 
progress in policy space. Although we note that empirically A2D is robust to inexact updates, we defer the challenging task 
of formally and precisely quantifying the convergence properties of A2D under inexact internal updates to future work. 
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D. Experimental Configurations 
D.1. Gridworld 

We implemented both gridworld environments by adapting the MiniGrid environment provided by Chevalier-Boisvert 
et al. (2018). For both gridworld experiments, the image is rendered as a 42 × 42 RGB image. The agent has four actions 
available, moving in each of the compass directions. Each movement incurs a reward of −2, hitting the weak patch of ice or 
tiger incurs a reward of −100, and reaching the goal incurs a reward of 20. Pushing the button in Tiger Door is free, but 
effectively costs 4 due to its position, or 2 in the Q function experiments. Policy performance is evaluated every five steps 
by sampling 2000 interactions under the stochastic policy. A discount factor of γ = 0.995 was used and an upper limit of 
T = 200 is placed on the time horizon. 

For experts and agents/trainees that use the compact representation, the policy is a two layer MLP that accepts a compact 
vector as input, with 64 hidden units in each layer, outputting the log-probabilities of each action. The value function uses 
the same architecture and input, but outputs a number representing the reward ahead. The value function is learned by 
minimizing the mean squared error in the discounted reward-to-go. 32 batches are constructed from the rollout and are 
used to update the value function using ADAM (Kingma & Ba, 2014) with a learning rate of 7 × 10−4, for 25 epochs. Q 
functions are only used here with compact representations, and so we can simply append a one-hot encoding of the action to 
the (flat) input vector. The Q function is then learned in the same way as the value function, except for with a slightly lower 
learning rate of 3 × 10−4 . Policies and value functions conditioned on images use a two layer convolutional encoder, each 
with 32 filters, and a single output layer mapping to a flat hidden state with 50 hidden units. Image-based policies and value 
functions learn separate image encoders in the gridworld examples, whereas in the CARLA examples, a shared encoder is 
used. This output is then used as input into a two layer MLP, each with 64 hidden units, outputting the log-probabilities 
of each action or the expected discounted reward ahead. L2 regularization is applied to all networks, with a coefficient of 
0.001. 

We learn the MDP expert (RL (MDP)) by applying TRPO with batch sizes of 2, 000 and a trust region of 0.01. An 
entropy regularizer is applied directly to the advantages computed, with coefficient 1. We set λ = 0.95 in the GAE 
calculation (Schulman et al., 2015b). This trust region, regularization and λ value are used throughout, unless otherwise 
stated. Reinforcement learning in the POMDP (RL) uses separate policies and value functions conditioned on the most 
recent image. In asymmetric reinforcement learning (RL (Asym)) the policy is conditioned on the image, but the value 
function takes the compact and omniscient state representation (st) as input. Policies and value functions are then learned 
using the same process as before. 

The policy learned by RL (MDP) is then used as the expert in AIL (AIL), where 2, 000 samples are collected at each iteration 
and appended to a rolling buffer of 5, 000 samples. The KL-divergence between the expert and trainee action distributions 
is minimized by performing stochastic gradient descent, using ADAM with a learning rate of 3 × 10−4 , using a batch 
size of 64 for two whole epochs per iteration. We find that the MDP converges within approximately 80, 000 environment 
interactions, and so we begin the AIL line at this value. β is annealed to zero after the first time step (as recommended by 
Ross et al. (2011)). 

For experiments using a pretrained encoder (Pre-Enc), we roll out for 10, 000 environment interactions under a trained 
MDP expert from RL (MDP) to generate the data buffer. The encoder, that takes images as input and targets the true state 
vector, is learned by regressing the predictions on to the true state. We perform 100 training epochs with a learning rate of 
3 × 10−4 . We start this curve at the 80, 000 interactions required to train the expert from which the encoder is learned. We 
use an asymmetric value function conditioned on the true state. The encoder is then frozen and a two-layer, 64 hidden unit 
MLP policy head is learned using TRPO. We found that a lower trust region size of 0.005 was required for Tiger Door to 
stably converge. We confirmed separately for both pretrained encoders and AIL that the encoder class can represent and 
learn the required policies and transforms, and both converge to the solution of the MDP when conditioned on omniscient 
image-based input. 

For A2D, expert and trainee policies are initialized from scratch, and are learned using the broadly the same settings as RL 
(MDP) and AIL. In A2D, we decay β with coefficient 0.8 at each iteration, although faster β decays did not hurt performance. 
Slower β decays can lead to higher and longer divergences during training, and can lead to the agent becoming trapped 
in local optima. We use a higher entropy regularization coefficient, equal to 10, finding that this increased regularization 
helped A2D avoid falling into local minima, although this can be further ameliorated by setting β = 0 throughout, as we do 
in the CARLA experiments. We found for Frozen Lake that a lower λ = 0.9 value of yielded more stable convergence and a 
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lower final policy divergence (we refer the reader to Section B.1 for more information). Value and Q functions are learned 
by individually targeting the sum of rewards ahead (i.e. is not back-propagated through any mixture). We note that choosing 
to parameterize the mixture value function as the weighted sum of individual value functions is an assumption. However, we 
note that we require β → 0 for the gradient to be unbiased. In this limit the mixture is equal to just the value function of the 
agent. Therefore, explicitly parameterizing the value function in this way ensures that state information is removed from the 
estimation. Exploring different ways of parameterizing the value function is a potential topic for future research. 

In Section B.1 we use a λ value of 0.5 in GAE (Schulman et al., 2015b) (when not sweeping over λ). We used an entropy 
regularizer of 0.02 is applied directly to the surrogate loss. We also use TRPO with a trust region KL-divergence of 0.001. 

D.2. CARLA Experiments 

We implemented our autonomous vehicle experiment using CARLA (Dosovitskiy et al., 2017). This scenario represents a 
car driving forward at the speed limit, while avoiding a pedestrian which may run out from behind a vehicle 50% of the time, 
at a variable speed. There are a total of 10 waypoints, indicating the path the vehicle should take as produced by an external 
path planner. We enforce that the scenario will end prematurely if one of the following occurs: a time limit of 90 time-steps 
is reached, a collision with a static object, a lane invasion occurs, if a waypoint is not gathered within 35 time-steps, or, the 
car’s path is not within a certain distance of the nearest waypoint. We found that inclusion of these premature endings was 
crucial for efficient learning. The reward surface for this problem is generated using a PID controller which is computed 
using an example nominal trajectory. The reward at any given time-step is defined as the product of the absolute difference 
between the agents actions and the optimal actions by a low-level PID controller to guide the vehicle to the next waypoint, 
and is bounded to lie in [0, 1]. 

For the expert policy used both in AIL and A2D, we use a two layer MLP with 64 hidden units and ReLU activations. The 
agent and trainee policies use a shared image encoder (Laskin et al., 2020a;b; Yarats et al., 2021), followed by the same 
MLP architecture as the expert policy to generate actions. The RL algorithm used in both the expert and agent RL updates is 
PPO (Schulman et al., 2017) with generalized advantage estimation (GAE) (Schulman et al., 2015b). We detach the encoder 
during the policy update and learn the encoder during the value function update (Laskin et al., 2020a;b; Yarats et al., 2021). 
In A2D we use the MLP defined above for the expert policy. The trainee policy and value functions use a common encoder, 
updated during the trainees value update and frozen during the policy update, and the MLP defined above as the policy head 
or value head network. For all algorithms we used a batch size of 64 in both the PPO policy update, value function update, 
and the imitation learning update. As in the previous experiments, in the imitation learning step, we iterate through all data 
seen and stored in the replay buffer. We found that starting the β parameter at zero produced faster convergence. 

We performed a coarse-grained hyperparameter search using the Bayesian optimization routine provided by the experimental 
control and logging software Weights & Biases (Biewald, 2020). This allows us to automate hyperparameter search and 
distribute experimental results for more complex experiments in a reproducible manner. Each method was provided 
approximately the same amount of search time, evaluating at least 60 different hyperparameter settings. The optimal settings 
were then improved manually over the course of approximately 5 further tests. We score each method and hyperparameter 
setting using a running average of the reward over the previous 25 evaluation steps, and used early stopping if a run 
consistently performed poorly. 

Each algorithm uses different learning rates and combinations of environment steps between updates. For example, we 
found that all AIL algorithms performed best when taking 10 steps between updates, RL in the expert tended to work better 
by taking more steps in between updates (≈ 400) with a larger step-size ≈ 4 × 10−4, where the agents RL updates favored 
fewer steps ≈ 75 with smaller steps 7 × 10−5 . For all algorithms 4 parallel environments were run concurrently, as this was 
observed to improve performance across all algorithms. This was especially the case for the RL methods, which relied on 
more samples to accurately compute the advantage. 

We note that there is a point of diminishing returns for PPO specifically (Engstrom et al., 2020), where policy learning 
degrades as the number of examples per update increases. Even though the advantage becomes progressively more accurate 
with increasing sample size, the mini-batch gradient decent procedure in PPO eventually leads to off-policy behavior that 
can be detrimental to learning. We also found that pre-generating a number of trajectories and pretraining the value function 
tended to improve performance for both A2D, as well as the compact expert RL algorithm. For A2D specifically, this 
ensured that the replay buffer for imitation learning was reasonably large prior to learning in the expert. This ensures that 
for any given update, the agent tends to be close to the expert policy, ensuring that the ”off-policy” RL update is not too 
severely destabilized through importance weighting. To further improve this, we also introduced delayed policy updates, 
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which further reduced the divergence between expert and the agent in A2D. In both A2D and the RL setups, this also helped 
ensure that the value function is always converging faster than the policy, ensuring that the error in the resulting advantage 
estimates are low. 
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E. Additional Related Work 
We now present a comprehensive review of existing literature not already covered. Exploiting asymmetric learning to 
accelerate learning has been explored in numerous previous work under a number of different frameworks, application 
domains, and levels of theoretical analysis. 

The notion of using fully observed states unavailable at deployment time is often referred to as exploiting “privileged 
information” (Vapnik & Vashist, 2009; Lambert et al., 2018). For clarity, we refer to the expert as having access to privileged 
information, and the agent as only having access to a partial observation. We note that the use of the term “expert” does not 
imply that this policy is necessarily optimal under the MDP. Indeed, in A2D, the expert is co-trained with the agent, such 
that the expert is approximately a uniform random distribution at the start of the learning procedure. The term privileged 
information is more general than simply providing the world state, and may include additional loss terms or non-trivial 
transforms of the world state that expedite learning the agent. In this work, we exclusively consider the most general scenario 
where the privileged information is the full world state. However, there is nothing precluding defining an extended state 
space to include hand-designed features extracted from the state, or, using additional, hand crafted reward shaping terms 
when learning (or adapting) the expert. 

E.1. Encodings 

The first use-case we examine is probably the simplest, and the most widely studied. Asymmetric information is used to 
learn an encoding of the observation that reduces the dimensionality while retaining information. Standard reinforcement 
learning approaches are then employed freezing this encoding. Two slight variations on this theme exist. In the first 
approach, an MDP policy is learned to generate rollouts conditioned on omniscient information, and an encoder is learned 
on state-observation pairs visited during these rollouts (Finn et al., 2016; Levine et al., 2016). Either the encoder acts to 
directly recover the underlying states, or simply learns a lower-dimensional embedding where performing reinforcement 
learning is more straightforward. 

Andrychowicz et al. (2020) explore learning to manipulate objects using a mechanical hand using both state information 
from the robot (joint poses, fingertip positions etc) and RGB images. This particular application is an interesting hybrid 
approach dictated by the domain. State information pertaining to the manipulator is easily obtained, but state information 
about the pose of the object being manipulated is unavailable and must be recovered using the images. A controller is 
learned in simulation (MDP), while simultaneously (and separately from the MDP) a separate perception network is learned 
that maps the image to the pose of the object being manipulated. State information and pose encoding are then concatenated 
and used as the state vector on which the policy acts. While the pose of the object is unobserved, it is readily recoverable 
from a single frame (or stack of frames), and hence the partial observation is predominantly a high-dimensional and bijective 
embedding of the true state. If the true position of the hand was not available, this would be less certain as the object and 
other parts of the manipulator obfuscates much of the manipulator from any of the three viewpoints (more viewpoints would 
of course reverse this to being a bijection). The use of a recurrent policy further improves the recovery of state as only the 
innovation in state needs to be recovered. 

E.2. Asymmetric values 

Another well-explored use-case is to instead exploit asymmetric information for to improve learning a value or Q- func-
tion (Kon¨ önen, 2004; Pinto et al., 2017; Andrychowicz et al., 2020). This is achieved by conditioning either the value 
function or Q-function on different information than the policy that is either more informative, or lower dimensional 
representations, and can help guide learning (Kon¨ önen, 2004; Pinto et al., 2017). Learning the value or Q function in a 
lower-dimensional setting enables this function to be learned more stably and with fewer samples, and hence can track 
the current policy more effectively. Since the value and Q-function are not used at test time, there is no requirement for 
privileged information to be available when deployed. Pinto et al. (2017) introduce this in a robotics context, using an 
asymmetric value function, conditioned on the true underlying state of a robotic manipulator, to learn a partially observing 
agent conditioned only on a third-person monocular view of the arm. Similar ideas were explored previously by Kon¨ önen 
(2004) in relation to semi-centralized multi-agent systems, where each agent only partially observes the world state, but a 
central controller is able to observe the whole state. The state used by the central controller is used to evaluate the value of a 
particular world state, whilest each agent only acts on partial information. 
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E.3. Behavioral Cloning & Imitation Learning 

Behavioral cloning and imitation learning (Kang et al., 2018; Ross et al., 2011), introduced in Main Section 2.3, is, in our 
opinion, an under-explored avenue for expediting learning in noisy and high-dimensional partially observed processes. 
The main observation is that this process separates learning to act and learning to perceive (Chen et al., 2020). The fully 
observing expert learns to act, without the presence of extraneous patterns or noise. The agent then learns to perceive 
such that it can replicate the actions of the expert. A major benefit of cloning approaches is that perception is reduced to a 
supervised learning task, with lower variance than the underlying RL task. 

Pinto et al. (2017) briefly assess using asymmetric DAgger as a baseline. It is observed that the agent learns quickly, but 
actually converges to a worse solution than the asymmetric actor-critic solution. This difference is attributed to the experts 
access to (zero variance) state information otherwise unavailable to the partially observing agent. Our work builds on this 
observation, seeking to mitigate such weaknesses. Surprisingly, and to the best of our knowledge, no work (including Pinto 
et al. (2017)) has provided and in-depth analysis of this method, or directly built off this idea. 

Chen et al. (2020) showed that large performance gains can be found in an autonomous vehicles scenario by using IL through 
the use of an asymmetric expert, specifically for learning to drive in the autonomous vehicle simulator CARLA (Dosovitskiy 
et al., 2017). Chen et al. (2020) train an expert from trajectories, created by human drivers, using behavioral cloning 
conditioned on an encoded aerial rendering of the environment including privileged information unavailable to the agent at 
deployment time. The aerial rendering facilitates extensive data augmentation schemes that would otherwise be difficult, 
or impossible, to implement in a symmetric setting. The agent is then learned using DAgger-based imitation learning. 
However, this general approach implicitly makes assumptions about the performance of the expert, as well as the underlying 
identifiability (as we define in Section 4) between the underlying fully and partially observed Markov decision processes. 

Other works combine RL and IL to gain performance beyond that of the expert by considering that the expert is sub-
optimal (Choudhury et al., 2018; Sun et al., 2018; Weihs et al., 2020), where the performance differential is either as a result 
of asymmetry, or, the expert simply not being optimal. These works, most often, train a policy that exploits knowledge of 
the performance differential between the expert and agent, or, the difference in policies. The weight applied to the sample in 
IL is increased for policies that are similar, or, where the performance gap is small. The example is then down-weighted 
when it is believed that the expert provides poor supervision in that state. However, these works do not consider updating 
the expert, and instead focus on ameliorating the drawbacks of AIL using derived statistics. In our work, we seek to define a 
method for updating an expert directly. 

E.4. Co-learning Expert and Agent 

Work that is maybe thematically most similar to ours investigates co-training of the agent and expert. This builds on the AIL 
approach, where instead of assuming an optimal expert exists, the expert and agent policies are learned simultaneously, 
where either an additional training phase as added to “align” the expert and agent (Salter et al., 2019; Song et al., 2019), 
architectural modification (Kamienny et al., 2020), or both (Schwab et al., 2019). An alternative method for deriving such 
an aligning gradient is to introduce an auxiliary loss regularizing the representation used by the agent to be predictive of the 
the underlying state, or, a best-possible belief representation (Nguyen et al., 2020). 

Salter et al. (2019) trains separate policies for agent and expert using spatial attention, where the expert is conditioned on the 
state of the system, and the agent is conditioned on a monocular viewpoint. By inspecting the attention map of expert and 
agent, it is simple to establish what parts of the state or image the policy is using to act. An auxiliary (negative) reward term 
is added to the reward function that penalizes differences in the attention maps, such that the agent and expert are regularized 
to use the same underlying features. This auxiliary loss term transfers information from the MDP to the POMDP. The main 
drawbacks of this approach however are its inherent reliance on an attention mechanism, and tuning the hyperparameters 
dictating the weight of having a performant agent, expert and the level of alignment between the attention mechanisms. 
Further, using a attention as the transfer mechanism between the agent and expert somewhat introduces an additional layer 
of complexity and obfuscation of the actual underlying mechanism of information transfer. 

Song et al. (2019) present an algorithm, CoPiEr, that co-trains two policies, conditioned on different information (any 
combination of fully or partially observing). CoPiEr rolls out under both policies separately, and then selects the rollouts 
from the policy that performs the best. These samples are then used in either an RL or IL (or hybrid of the two) style 
update. In this sense, the better performing policy (with ostensibly “better” rollouts) provides high-quality supervision to the 
policy with lower quality rollouts. MDP to POMDP transfer or privileged information is not considered. Most significantly, 
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imitation learning is proposed as a method of transferring from one policy to another, or, RL augmented with an IL loss to 
provide better supervision while retaining RLs capability to explore policy space. 

Schwab et al. (2019) on the other hand extend Pinto et al. (2017) by introducing multitask reinforcement learning themes. A 
“task” is uniquely described by the set of variables that the policy is conditioned on, such as images from different view 
points, true state information and proprioceptive information. An input-specific encoder encodes each observation before 
mixing the encoded input features and passing these to a head network which outputs the actions. Instead of aligning 
attention mechanisms (as per Salter et al. (2019)), Schwab et al. (2019) the head network is shared between tasks providing 
alignment between the single-input policies. At test time, only those observations that are available need to be supplied to the 
policy, respecting the partial observability requirement at test time. This approach does not explicitly use an expert, instead 
using a greater range of more informative information channels to efficiently learn the policy head, while simultaneously 
co-training the channel-specific encoders. 

Finally, the work of Kamienny et al. (2020) present privileged information dropout (PI-D). The general approach of 
information dropout (Achille & Soatto, 2018) is to lean a model while randomly perturbing the internal state of the model, 
effectively destroying some information. The hypothesis is that this forces the model to learn more robust and redundant 
features that can survive this corruption. Kamienny et al. (2020) use this theme by embedding both partial observation and 
state, where the state embedding is then used to corrupt (through multiplicative dropout) the internal state of the agent. The 
PI expert is then able to mask uninformative patterns in the observations (using the auxiliary state information), facilitating 
more efficient learning. The PI can then be easily marginalized out by not applying the dropout term. Importantly however, 
reinforcement learning is still performed in the partially observing agent, a characteristic we wish to avoid due to the 
high-variance nature of this learning. 
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