
Tilting the playing field: Dynamical loss functions for machine learning

Miguel Ruiz-Garcia 1 2 Ge Zhang 1 Samuel S. Schoenholz 3 Andrea J. Liu 1

Abstract

We show that learning can be improved by us-
ing loss functions that evolve cyclically during
training to emphasize one class at a time. In un-
derparameterized networks, such dynamical loss
functions can lead to successful training for net-
works that fail to find deep minima of the stan-
dard cross-entropy loss. In overparameterized
networks, dynamical loss functions can lead to
better generalization. Improvement arises from
the interplay of the changing loss landscape with
the dynamics of the system as it evolves to min-
imize the loss. In particular, as the loss func-
tion oscillates, instabilities develop in the form of
bifurcation cascades, which we study using the
Hessian and Neural Tangent Kernel. Valleys in
the landscape widen and deepen, and then nar-
row and rise as the loss landscape changes during
a cycle. As the landscape narrows, the learning
rate becomes too large and the network becomes
unstable and bounces around the valley. This
process ultimately pushes the system into deeper
and wider regions of the loss landscape and is
characterized by decreasing eigenvalues of the
Hessian. This results in better regularized mod-
els with improved generalization performance.

1. Introduction
In supervised classification tasks, neural networks learn as
they descend a loss function that quantifies their perfor-
mance. Given a task, there are many components of the
learning algorithm that may be tuned to improve perfor-
mance including: hyperparameters such as the initializa-

Code reproducing our main results can be found at
https://github.com/miguel-rg/dynamical-loss-functions.

1Department of Physics and Astronomy, University of Penn-
sylvania, Philadelphia, PA, USA 2Department of Applied
Mathematics, ETSII, Universidad Politécnica de Madrid, Madrid,
Spain 3Google Research: Brain Team. Correspondence to:
Miguel Ruiz-Garcia <miguel.ruiz.garcia@uc3m.es>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

tion scale (Glorot & Bengio, 2010; Xiao et al., 2018) or
learning rate schedule (He et al., 2016); the neural network
architecture itself (Zoph & Le, 2016); the types of data aug-
mentation (Cubuk et al., 2018); or the optimization algo-
rithm (Kingma & Ba, 2015). The structure of the loss func-
tion also plays an important role in the outcome of learn-
ing (Choromanska et al., 2015; Soudry & Carmon, 2016;
Cooper, 2018; Verpoort et al., 2020; Ballard et al., 2017;
Mannelli et al., 2019; Arous et al., 2019), and it promotes
phenomenology reminiscent of physical systems, such as
the jamming transition (Franz & Parisi, 2016; Geiger et al.,
2019; Franz et al., 2019a;b; Geiger et al., 2020a;b). A pos-
sible strategy to improve learning could be to vary the loss
function itself; is it possible to tailor the loss function to
the training data and to the network architecture to facil-
itate learning? The first step along this path is to com-
pare how different loss functions perform under the same
conditions, see for example (Janocha & Czarnecki, 2017;
Rosasco et al., 2004; Kornblith et al., 2020). However,
the plethora of different types of initializations, optimizers,
or hyper-parameter combinations, makes it very difficult to
find the best option even for a specified set of tasks. Given
that choosing an optimal loss function landscape from the
beginning is difficult, one might ask if transforming the
landscape continuously during training can lead to a bet-
ter final result. This takes us to continuation methods, very
popular in computational chemistry (Stillinger & Weber,
1988; Wawak et al., 1998; Wales & Scheraga, 1999), which
had their machine learning counterpart in curriculum learn-
ing (Bengio et al., 2009).

Curriculum learning was introduced by Bengio et al. (Ben-
gio et al., 2009) as a method to improve training of deep
neural networks. They found that learning can be improved
when the training examples are not randomly presented but
are organized in a meaningful order which illustrates grad-
ually more concepts, and gradually more complex ones.
In practice, this “curriculum” can be achieved by weigh-
ing the contribution of easier samples (e.g. most common
words) to the loss function more at the beginning and in-
creasing the weight of more difficult samples (e.g. less fre-
quent words) at the end of training. In this way one expects
to start with a smoothed-out version of the loss landscape
that progressively becomes more complex as training pro-
gresses. Since its introduction in 2009, curriculum learn-



Dynamical loss functions for machine learning

ing has played a crucial role across deep learning (Amodei
et al., 2016; Graves et al., 2016; Silver et al., 2017). While
this approach has been very successful, it often requires
additional supervision: for example when labelling images
one needs to add a second label for its difficulty. This re-
quirement can render curriculum learning impractical when
there is no clear way to evaluate the difficulty of each train-
ing example.

These considerations raised by curriculum learning suggest
new questions: if continuously changing the landscape fa-
cilitates learning, why do it only once? Furthermore, train-
ing data is already divided into different classes–is it possi-
ble to take advantage of this already-existing label for each
training example instead of introducing a new label for dif-
ficulty? In physical systems, cyclical landscape variation
has proven effective in training memory (Keim & Nagel,
2011; Keim & Arratia, 2014; Pine et al., 2005; Hexner
et al., 2020; Sachdeva et al., 2020). In human learning,
as well, many educational curricula are developed to ex-
pose students to concepts by cycling through them many
times rather than learning everything at the same time or
learning pieces randomly. Here we extend this approach
to neural network training by introducing a dynamical loss
function. In short, we introduce a time-dependent weight
for each class to the loss function. During training, the
weight applied to each class oscillates, shifting within each
cycle to emphasize one class after another. We show in
this work that this approach improves training and test ac-
curacy in the underparametrized regime, when the neural
network was unable to optimize the standard (static) loss
function. Even more surprisingly, it improves test accu-
racy in the overparameterized regime where the landscape
is nearly convex and the final training accuracy is always
perfect. Finally, we show how changes in the curvature of
the landscape during training lead to bifurcation cascades
in the loss function that facilitate better learning.

The advantage of using a dynamical loss function can be
understood conceptually as follows. The dynamical loss
function changes the loss landscape during minimization,
so that although the system is always descending in the in-
stantaneous landscape, it can cross loss-barriers in the static
version of the loss function in which each class is weighted
equally. The process can be viewed as a sort of peristaltic
movement in which the valleys of the landscape alternately
sink/grow and rise/shrink, pushing the system into deeper
and wider valleys. Progress also occurs when the system
falls into valleys that narrow too much for a given learning
rate, so that the system caroms from one side of the valley
to another, propelling the system into different regions of
the landscape. This behavior manifests as bifurcation cas-
cades in the loss function that we will explain in terms of
eigenvalues of the Hessian and the Neural Tangent Kernel
(NTK) (Jacot et al., 2018; Lee et al., 2019). Together, this

leads networks trained using dynamical loss functions to
move towards wider minima – a criterion which has been
shown to correlate with generalization performance (Zhang
et al., 2016).

2. Myrtle5 and CIFAR10 phase diagrams
During learning, we denote the number of minimization
steps as t. We define a dynamical loss function that is a
simple variation of cross entropy and changes during learn-
ing:

F =
∑
j≤P

Γyj (t)

(
− log

(
efyj (xj ,W)∑
i e
fi(xj ,W)

))
(1)

Where Γi is a different oscillating factor for each class i.
We further denote (xj , yj) to be an element of the the train-
ing set of size P , f(xj ,W) is the logit output of the neural
network given a training sample xj and the value of the
trainable parameters W. Here f(xj ,W) ∈ RC where C is
the number of classes. Depending on the values of Γi, the
topography of the loss function will change, but the loss
function will still vanish at the same global minima, which
are unaffected by the value of Γi. This transformation was
motivated by recent work in which the topography of the
loss function was changed to improve the tuning of physi-
cal flow networks (Ruiz-Garcı́a et al., 2019). Here, we use
Γi to emphasize one class relative to the others for a period
T , and cycle through all the classes in turn so the total du-
ration of a cycle that passes through all classes is CT . To
simplify the expression, let us define the time within every
period T as

tT = t mod T. (2)

For simplicity we use a function that linearly increases then
decreases with amplitude A so that

g(tT ) =

{
1 +mtT for 0 < tT ≤ T/2
2A−mtT − 1 for T/2 < tT ≤ T

(3)

where A ≥ 1 is the amplitude (A = 1 corresponds to no
oscillations) and m = 2(A−1)/T . During each period, Γi
increases for one class i. We cycle through the classes one
by one:

Γ̂i =

{
g(tT ) for t/T mod C = i

1 for t/T mod C 6= i
(4)

where C is the number of classes in the dataset. Finally, we
normalize these factors,

Γi = C
Γ̂i∑C
j=1 Γ̂j

. (5)

Figure 4 (a) shows the oscillating factors Γi for the case of
a dataset with three classes. Note that due to the normal-
ization, when Γi increases, Γj 6=i decreases.



Dynamical loss functions for machine learning

Pe
rio

d 
(T

)

Pe
rio

d 
(T

)

Tr
ai

ni
ng

 A
cc

ur
ac

y

Va
lid

at
io

n 
Ac

cu
ra

cy

Amplitude (A) Amplitude (A)

(a) (b)

Figure 1. Phase diagrams for the dynamical loss function (1) applied to Myrtle5 (Shankar et al., 2020) and CIFAR10. The contour plots
represent the training (a) and validation accuracy (b) depending on the amplitude (A) and period (T ) of the oscillations. To create the
contour plot we averaged the result of 30 simulations for each point in a grid in the (T,A) plane. Note that using the standard cross
entropy loss function without the oscillations (Γi = 1, A = 1 line in both panels) the system already fitted all the training data (training
accuracy∼ 1) and achieved a∼ 0.73 validation accuracy. However, the validation accuracy improved up to 6% thanks to the oscillations
for A ∼ 50 and T ∼ 100. This neural network is a realistic setup adapted from (Shankar et al., 2020). We used 64 channels, Nesterov
optimizer with momentum = 0.9, minibatch size 512, a linear learning rate schedule starting at 0, reaching 0.02 in the epoch 300 and
decreasing to 0.002 in the final epoch (700). For all A and T the oscillations stopped at epoch 600 (see the Supplementary Materials for
more details).

To test the effect of oscillations on the outcome of training,
we use CIFAR10 as a benchmark, without data augmenta-
tion. We train the model 30 times with the same hyperpa-
rameter values to average the results over random initial-
izations of W. We use the Myrtle neural network, intro-
duced in (Shankar et al., 2020), since it is an efficient con-
volutional network that achieves good performance with
CIFAR10. To obtain enough statistics, we use Myrtle5
with 64 channels instead of the 1024 channels used in
Ref. (Shankar et al., 2020). In all of the experiments we
use JAX (Bradbury et al., 2018) for training, Neural Tan-
gents for computation of the NTK (Novak et al., 2020),
and an open source implementation of the Lanczos algo-
rithm for estimating the spectrum of the Hessian (Ghorbani
et al., 2019a).

In the standard case without oscillations (A = 1 in Figure
1) this model fits all the training data essentially perfectly
(training accuracy ∼ 1) and achieves a modest ∼ 0.73
validation accuracy. In figure 1 we vary the amplitude
A and period T of oscillations to explore the parameter
space of the dynamical loss function. We find a region at
25 . A . 70, T . 250 where validation accuracy in-
creases by ∼ 6% to ∼ 0.79, showing that the dynamical
loss function improves generalization significantly.

In addition to the Myrtle5 network, we additionally ran sev-
eral experiments on a standard Wide Residual Network ar-
chitecture (Zagoruyko & Komodakis, 2016) (see Supple-
mentary Information Sec. IV). Over our limited set of ex-
periments, we did not observe a statistically significant im-
provement to the test accuracy from using an oscillatory
loss. We have several hypotheses for why the oscillatory
loss was unhelpful in this case: 1) the oscillatory loss may

Figure 2. Spiral dataset adapted from (Karpathy et al., 2020).
Samples are 2D arrays belonging to three classes, represented by
different colors in the image. Each class follows a different spiral
arm plus a small noise.

interact poorly with batch normalization, 2) the network is
already well-conditioned and so the oscillations may not
lead to further improvements to conditioning, and 3) we
used a larger batch size than is typical (1024 vs 128) and
trained for only 200 epochs; thus, it might be that the model
trained in too few steps to take advantage of the oscilla-
tions. It is an interesting avenue for future work to disen-
tangle these effects.

3. Understanding the effect of the dynamical
loss function in a simpler model

3.1. Phase diagrams for the spiral dataset

To better understand how the oscillations of the dynamical
loss function improve generalization, we study a simple but
illustrative case. We use synthetic data consisting of points
in 2D that follow a spiral distribution (see Figure 2), with
the positions of points belonging to each class following a



Dynamical loss functions for machine learning

Pe
rio

d 
(T

)

Tr
ai

ni
ng

 A
cc

ur
ac

y

Amplitude (A)

Pe
rio

d 
(T

)

Amplitude (A)

Va
lid

at
io

n 
Ac

cu
ra

cy

(a)

(b)

(c)

(d)

Figure 3. Phase diagrams using the spiral dataset and a neural network with only one hidden layer. We show two examples where the
neural network width is 100 (panels a and b) and 1000 (panels c and d) respectively. To create the contour plot we averaged the result
of 50 simulations for each point in a grid in the (T,A) plane. In each simulation we used full batch gradient descent for 35000 steps, a
constant learning rate of 1, and we stopped the oscillations (Γi = 1) for the last period. The training dataset is shown in Fig. 2 and the
validation dataset is analogous to it but with a different distribution of the points along the arms.

different arm of the spiral with additional noise (different
colors in Fig. 2). In this case we use a neural network with
one hidden layer and full batch gradient descent.

Figure 3 shows phase diagrams similar to those in Figure
1, where we vary the amplitude A and period T of oscilla-
tion, for two different network widths, which we will call
narrow (100 hidden units) and wide (1000 hidden units), re-
spectively. For the narrow network (left side of Fig. 3) with
the standard cross-entropy loss function (no oscillations;
A = 1) the model is unable to fit the training data, leading
to very poor training and validation accuracies (∼ 0.65),
suggesting that the standard loss function landscape is com-
plex and the network is unable to find a path to a region
of low loss. For the dynamical loss function (A > 1),
on the other hand, there is a region in the phase diagram
(5 . A . 20, T . 300), where the training accuracy is
nearly perfect and the validation accuracy reaches ∼ 0.9.
Similarly, as we saw in the previous case with Myrtle5 and
CIFAR10, when the network is wide enough so that the
standard loss landscape is convex (at least in the subspace
where training occurs) and the training accuracy is already
∼ 1 for the standard (static) loss function (A = 1), there is
a regime (5 . A . 25, T . 700) in which the dynamical
loss function improves generalization.

3.2. Studying the dynamics of learning with a
dynamical loss function in terms of the curvature
of the landscape

Let us now take a closer look at the training process to
understand how loss function oscillations affect learning.
During each period T , Γi > 1 for one class i and Γj 6=i < 1.
In the most extreme case, A→∞, the network only needs
to learn class i during that period. For any initial value of
the parameters (W) the model can find a solution (the sim-
plest solution is for the network to output the chosen class
regardless of input) without making any uphill moves, and
therefore the landscape is convex. However, in the next
period the network will have to learn a different class, sug-
gesting that the transition between periods will mark the
points at which the topography of the landscape becomes
more interesting. (Note that right at the transition all Γi are
1 and we recover the standard loss function).

Even without the oscillations (A = 1), the system does not
fully reach a minimum of the loss function after training–
most of the eigenvalues of the Hessian are very small in
modulus (even negative) and only a few of the outliers seem
to control learning (Sagun et al., 2017; 2016). We will re-
fer not to minima but rather to valleys of the loss func-
tion, where we consider the projection of parameter space



Dynamical loss functions for machine learning

Figure 4. Example of the learning dynamics using a dynamical loss function (1). The width of the hidden layer is 100. We use T = 5000
and A = 70. Panel (a) shows Γi as training progresses, with colors identifying the corresponding classes shown in figure 2. Panel (b)
displays the value of the dynamical loss function F(t). Panel (c) shows F(t) − F(t − 1) to display the instabilities more clearly.
Panel (d) shows the accuracy of the model during training. Panel (e) shows the largest eigenvalue of the Hessian of the loss function
computed using the Lanczos algorithm as described in (Ghorbani et al., 2019b) (we have used an implementation in Google-JAX
(Gilmer, 2020)) and panel (f) displays the largest eigenvalue of the NTK (Jacot et al., 2018). Panels (g-l) correspond to a zoom of
panels (a-f) into a region where one bifurcation cascade is present. Vertical green and red dashed lines mark the times at which Hessian
λmax(t)− λmax(t− 1) ∼ 0.1 corresponding to the start and finish of the instabilities. Averaging Hessian λmax at these times we get
the horizontal dashed line in panel (e), the threshold above which instabilities occur.

Figure 5. Dependence of the curvature threshold on the learning rate. Panel (a) shows how the threshold of the largest eigenvalue of the
Hessian (see Fig. 4) changes as a function of the learning rate for the two NN widths in Fig. 3. Panel (b) and (c) correspond to two
simulations without oscillations (A = 1) and learning rate 1. The horizontal dashed line marks the threshold (computed in panel (a)). In
panel (b) the system does not find a valley that is wide enough, this prevents learning and λmax stays above threshold. Panel (c) presents
the same case but with a wider network. The system finds a valley that is wide enough to accommodate the learning rate, the model
learns the data and after a transitory it stays below the threshold computed in panel (c) using the dynamical loss function.



Dynamical loss functions for machine learning

spanned by large-eigenvalue outliers of the Hessian (Gur-
Ari et al., 2018).

The behavior of the system as it descends in the dynam-
ical loss function landscape is summarized in Fig. 4, for
the spiral dataset for a case with a rather high period of
T = 5000 minimization steps and amplitude of A = 70,
chosen for ease of visualization. Panel (a) shows the values
of Γi as learning progresses. Note that due to the normal-
ization (5) these values are bounded between 0 and 3 (the
number of classes C). Panel (b) displays the value of the
dynamical loss function at each step: in the first half of
each period T , the loss function decreases as the system
descends in a valley, the change of the loss function in each
step is small (panel (c)) and the training accuracy is roughly
constant (panel (d)). Panel (e) shows the largest eigenvalue
of the Hessian, which provides a measure of the width of
the valley; during the first half of the period, the system
follows a valley that prioritizes learning samples from the
chosen class and the largest eigenvalue decreases (the val-
ley widens) as that class is increasingly emphasized. In this
way, the system will move towards a region of parameter
space where many (or all) samples belonging to the chosen
class are correctly classified.

It follows that during the first half of the oscillation:

• The valley that the system is descending shifts down-
wards because the network is focusing on learning
one class and the contributions to the loss function
from the misclassified samples belonging to other
classes contribute less and less as learning progresses
(Γi(t) > Γi(t− 1) and Γj 6=i(t) < Γj 6=i(t− 1)).

• This valley also widens as other valleys that correctly
classify less samples belonging to the chosen class
move upwards and shrink (we know about the evo-
lution of the other valleys because it is analogous to
the second part of the oscillation, explained below).

In the second half of each oscillation Γi decreases so that
the chosen class is now being weighted less and less as
time, t, progresses. The valley narrows (the largest eigen-
value λmax of the Hessian increases; see panel (e)) and
rises (the loss function increases even though the system is
undergoing gradient descent; see panel (b)).

To summarize, during the second half of each oscillation,
we see the following:

• The valley occupied by the system shifts upwards, as
the class that the network is focusing on contributes
less and less to the loss function and misclassified
samples from other classes contribute more (Γi(t) <
Γi(t− 1) and Γj 6=i(t) > Γj 6=i(t− 1)).

• The valley also narrows as other valleys that correctly
classify samples belonging to other classes grow and
sink (as we saw from the first part of the oscillation).

Additionally, during the second part of each period some-
thing remarkable happens when Hessian λmax crosses a
threshold value, marked by the horizontal dashed line in
panel (e). At this time (marked by green dashed lines span-
ning panels (b-f)), a bifurcation instability appears. Panel
(c) and (i) showF(t)−F(t−1) where the bifurcation insta-
bilities are clearly visible. As Γi → 1 there are additional
bifurcation instabilities, forming a cascade.

What is the origin of these bifurcation instabilities? Mini-
mizing the dynamical loss function interweaves two differ-
ent dynamics: the loss landscape is changing at the same
time that the position of the system evolves as it tries to lo-
cally minimize the loss function. Thus, both the period T
and the learning rate are important. If the learning rate is
high enough and the valley is narrow enough, the system
is unable to descend the valley and an instability emerges;
when other eigenvalues cross this threshold they trigger
subsequent bifurcations creating a cascade. A similar phe-
nomenon is described in detail in Lewkowycz et al. (2020)
where they discuss early learning dynamics with a large
learning rate. At the end of the period T (start of the next
period) the loss function begins to emphasize another class.
Once the system falls into a valley that is favorable to the
new class, the valley widens (Hessian λmax decreases) and
falls below the learning-rate dependent threshold, so the
system no longer bounces and begins to smoothly descend
the sinking landscape of that valley. In the specific case de-
picted in Fig. 4, the system manages after 10 oscillations
to find a valley that is wide enough so that λmax never ex-
ceeds threshold during subsequent oscillations. To confirm
this hypothesis in the next section we study how the cur-
vature threshold at which instabilities emerge depends on
the learning rate. See also the Supplementary Materials for
simulations where we plot more than one eigenvalue of the
Hessian, and for an example of bifurcating dynamics using
Myrtle5 to classify CIFAR10.

3.3. Dependence of the threshold on the learning rate.

At each step in the minimization process, the system fol-
lows the negative gradient of the loss function,−∇F . Tak-
ing into account the Taylor series of the loss,

F(~x) ∼ F(~a)+∇F(~a)(~x−~a)+
1

2
(~x−~a)THF(~a)(~x−~a),

(6)
where HF(~a) is the Hessian matrix evaluated at the point
~a, our minimization algorithm may fail when the second or-
der terms are of the same order or larger than the first order
terms. This is similar to the upper bound for the learning
rate using standard loss functions (Le Cun et al., 1991). In



Dynamical loss functions for machine learning

this case one step in the direction of −∇F can actually
take you to a higher value of the loss, as it occurs in the
bifurcation cascades. For a learning rate η, (~x − ~a) ∝ η,
the threshold (λThmax) at which the largest eigenvalue of the
Hessian makes the first and second order terms in (6) com-
parable scales as

λThmax ∝ η−1, (7)

where we have kept only the term corresponding to the
largest eigenvalue of the Hessian in (6). We have also as-
sumed that −∇F is not perpendicular to the eigenvector
associated to the largest eigenvalue.

In Fig. 5 (a) we perform simulations equivalent to the one
presented in Fig. 4 but with different learning rates. To
make the protocol equivalent we rescale the hyperparame-
ters as T = 5000/η and the total time 70000/η. Panel 5 (a)
shows that λThmax does not depend on the network width and
it scales as ∼ η0.9, remarkably close to our prediction (7).
Furthermore, although these thresholds are computed using
the dynamical loss function, they also control learning in
the static loss function (the standard cross entropy). With-
out oscillations, panel (b) depicts how a NN of width 100
cannot learn with η = 1 because its loss function valleys
are too narrow (λmax is always above threshold). On the
other side, panel (c) shows that after a transitory λmax de-
cays below threshold indicating that a wider network pro-
duce wider valleys in the loss function what enables learn-
ing with higher learning rates. Note that at least in this
case, the underparametrized regime prevents learning be-
cause the valleys are too narrow for the learning rate. Even
if no bad local minima existed, one may be unable to train
the network because an unreasonably small learning rate is
necessary.

In figure 4 we observed that when the learning rate is too
large for the curvature to accommodate, a instability oc-
curs. The values of Hessian λmax, F , F(t) − F(t − 1)
and training accuracy bifurcate into two branches that the
system visits alternatively in each minimization step. This
effect can be understood in terms of the gradient and the
Hessian of F : each minimization step is too long for the
curvature so that the system bounces between the walls of
the valley. However, in the next section we show that the
bifurcation in two branches appears naturally when study-
ing the discrete dynamics of the system using the NTK.

3.4. Understanding the bifurcations with the NTK

In addition to the Hessian, the NTK has emerged as a cen-
tral quantity of interest for understanding the behavior of
wide neural networks (Jacot et al., 2018; Lee et al., 2019;
Yang & Littwin, 2021) whose conditioning has been shown
to be closely tied to training and generalization (Xiao et al.,
2020; Dauphin & Schoenholz, 2019). Even away from the
infinite width limit, the NTK can shed light on the dynam-

ics. Figure 4 (f) shows the largest eigenvalue of the NTK.
During each of the first 10 oscillations, it increases until the
system undergoes a bifurcation instability. It then decreases
during the bifurcation cascade. In this section we explain
the origin of this phenomenology. We do not develop a
rigorous proof but provide the intuition to understand the
behavior of the system from the perspective of the NTK.

While the training dynamics in the NTK regime for cross
entropy losses have been studied previously (Agarwala
et al., 2020), here we find that it suffices to consider the
case of the Mean Squared Error (MSE) loss. Note that the
arguments in this section closely resemble a previous anal-
ysis of neural networks at large learning rates (Lewkowycz
et al., 2020). We write the MSE loss as,

L =
1

2N

∑
i,k

(fk(xi,W)− yi,k)
2
, (8)

where (xi, yi,k) is the training dataset. Indices i and k are
for each sample and class, respectively. fk(xi,W) is the
output of the neural network (array of dimension C) given
a training sample xi and the value of the internal parame-
ters of the NN, W = {wp}. Using gradient descent, the
evolution of parameter wp is

∂wp
∂t

= −η ∂L
∂wp

= − η

N

∑
i,k

∂fk(xi,W)

∂wp
(fk(xi,W)− yi,k) . (9)

We focus on the evolution of the output of the neural net-
work for an arbitrary sample of the training dataset x′,

∂fk′(x
′,W)

∂t
=
∑
p

∂fk′(x
′,W)

∂wp

∂wp
∂t

=

− η

N

∑
i,k,p

∂fk′(x
′,W)

∂wp

∂fk(xi,W)

∂wp
(fk(xi,W)− yi,k) ,

(10)

and define the NTK as

Θk′,k′′(x
′, x′′) =

∑
p

∂fk′(x
′,W)

∂wp

∂fk′′(x
′′,W)

∂wp
. (11)

As an example, in our spiral dataset (300 samples and three
classes) the NTK can be viewed as a 900x900 matrix. It is
useful to consider the difference between the output of the
network and the correct label for that sample:

gk(x) = (fk(x,W)− yk) . (12)

Combining (10), (11) and (12) one obtains

∂

∂t
gk′(x

′) = − η

N

∑
i,k

Θk′,k′′(x
′, x′′)gk(xi). (13)



Dynamical loss functions for machine learning

In the limit of infinitely small learning rates we can diag-
onalize the NTK and equation (13) leads to exponential
learning of the data, with a rate that is fastest in the di-
rections of the eigenvectors of the NTK associated with the
largest eigenvalues. In our case it is more useful to rewrite
equation (13) making explicit our discrete dynamics:

gt+1
k′ (x′) = gtk′(x

′)− η

N

∑
i,k

Θt
k′,k′′(x

′, x′′)gtk(xi). (14)

Diagonalizing the NTK as Θt
k′,k′′(x

′, x′′)g̃j = λj g̃j one
finds again a stable learning regime when 0 < 1− η

N λj < 1
(all g̃j decrease exponentially). When one NTK eigen-
value increases such that −1 < 1 − η

N λj < 0, there is
still convergence although g̃j flips sign with each step. Fi-
nally, if one or more eigenvalues cross a threshold such that
1 − η

N λj < −1, learning is unstable and the magnitude of
g̃j diverges while the sign flips in each step, creating two
branches.

Note that in our case the loss function changes during train-
ing, and the NTK (as we have defined it here) cannot ac-
count for this change, since it only depends on the data
and the parameters W. However, we can interpret the in-
stabilities in Figure 4 in terms of the NTK if we take into
account the change of the landscape with an effective learn-
ing rate that changes during training. This agrees with our
observations: instabilities emerge in the NTK as bifurca-
tions that change sign between one step and the next one
(reminiscent of Fig. 4 (c)); after the first bifurcation starts,
the largest eigenvalue of the NTK decreases (Fig. 4 (e)) to
try to prevent the divergence. Since the values of the NTK
largest eigenvalue (Fig. 4 (e)) are not the same every time
that a bifurcation starts (as is the case for the largest eigen-
value of the Hessian) we know that the effective learning
rate has a non-trivial dependence on the topography of the
loss function.

4. Discussion
In this work we have shown that dynamical loss functions
can facilitate learning and elucidated the mechanism by
which they do so. We have demonstrated that the dynami-
cal loss function can lead to higher training accuracy in the
underparametrized region, and can improve the generaliza-
tion (test or validation accuracy) of overparametrized net-
works. We have shown this using a realistic model (Myrtle
network and CIFAR10) and also using a simple neural net-
work on synthetic data (the spiral dataset). In the latter case
we have presented a detailed study of the learning dynam-
ics during gradient descent on the dynamical loss function.
In particular, we see that the largest eigenvalue of the Hes-
sian is particularly important in understanding how cycles
in the dynamical loss function improve training accuracy
by giving rise to bifurcation cascades that allow the system

to find wider valleys in the dynamical loss function land-
scape.

One interesting feature is that the improvement in learning
comes in part from using a learning rate that is too fast for
the narrowing valley, so that the system bounces instead
of descending smoothly within the valley. This feature
is somewhat counterintuitive but highly convenient. Our
results show that dynamical loss functions introduce new
considerations into the trade-off between speed and accu-
racy of learning.

In the underparametrized case, learning succeeds with the
dynamical loss function while it fails with the standard
static loss function for the same values of the hyper-
parameters. The attention of most practitioners is focused
now on the overparametrized limit, where the model has no
problem reaching zero training error. However, for com-
plex problems where the overparametrized limit is infeasi-
ble, our results suggest that dynamical loss functions can
provide a useful path for learning.

Learning each class can be considered a different task, so
our approach corresponds to switching tasks in a cycli-
cal fashion. The fact that such switching helps learning
may seem to be in contradiction with catastrophic forget-
ting (Goodfellow et al., 2013; Ratcliff, 1990; McCloskey
& Cohen, 1989), where learning new tasks can lead to the
forgetting of previous ones. Figure 3 shows that there is an
optimum amplitude of the dynamical weighting of the loss
function (A ≈ 30), and that larger values lead to worse per-
formance, in agreement with catastrophic forgetting. Our
results show that a strategy that allows learning to proceed
on all tasks at all times, but with an oscillating emphasis on
one task after another not only avoids catastrophic forget-
ting but also achieves better results. Our results imply that
task-switching schedules should be viewed as a resource
for improving learning rather than a liability. Indeed, our
results open up a host of interesting questions about how
to optimize the choice of static loss function that forms the
basis of the dynamical one (e.g. MSE vs. cross entropy) as
well as the time-dependence and form of the weighting in
the dynamical loss function.

Finally, we note that in the limit A → ∞, the loss func-
tion can achieve arbitrarily small values without any uphill
moves, starting from any initial weights. The fact that this
limit leads to a convex landscape suggests that it could be
interesting to carry out a detailed study of the complexity
(number of local minima and saddles of different indices)
of the landscape as one varies A. This could provide ad-
ditional valuable insight into the learning process for dy-
namical loss functions. However, it is probably not enough
to simply consider minima and saddles–it is clear from our
analysis that valleys play an extremely important role and
that their width and depth are important. Studying these



Dynamical loss functions for machine learning

topographical features of landscapes as A changes should
be very enlightening, although likely very challenging.

Acknowledgements
We would like to thank the reviewers for their useful com-
ments and enthusiasm regarding our work. We also thank
Stanislav Fort for running some preliminary CIFAR10 ex-
periments. This research was supported by the Simons
Foundation through the collaboration “Cracking the Glass
Problem” award #454945 to AJL (MRG,AJL), and Inves-
tigator award #327939 (AJL), and by the U.S. Department
of Energy, Office of Basic Energy Sciences under Award
DE-SC0020963 (GZ). MRG and GZ acknowledge support
from the Extreme Science and Engineering Discovery En-
vironment (XSEDE) (Towns et al., 2014) to use Bridges-2
GPU-AI at the Pittsburgh Supercomputing Center (PSC)
through allocation TG-PHY190040. MRG wishes to thank
the Istanbul Center for Mathematical Sciences (IMBM) for
its hospitality during the workshop on “Theoretical Ad-
vances in Deep Learning”.

References
Agarwala, A., Pennington, J., Dauphin, Y. N., and Schoen-

holz, S. S. Temperature check: theory and practice
for training models with softmax-cross-entropy losses.
CoRR, abs/2010.07344, 2020.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,
Battenberg, E., Case, C., Casper, J., Catanzaro, B.,
Cheng, Q., Chen, G., Chen, J., Chen, J., Chen, Z.,
Chrzanowski, M., Coates, A., Diamos, G., Ding, K., Du,
N., Elsen, E., Engel, J., Fang, W., Fan, L., Fougner, C.,
Gao, L., Gong, C., Hannun, A., Han, T., Johannes, L.,
Jiang, B., Ju, C., Jun, B., LeGresley, P., Lin, L., Liu, J.,
Liu, Y., Li, W., Li, X., Ma, D., Narang, S., Ng, A., Ozair,
S., Peng, Y., Prenger, R., Qian, S., Quan, Z., Raiman,
J., Rao, V., Satheesh, S., Seetapun, D., Sengupta, S.,
Srinet, K., Sriram, A., Tang, H., Tang, L., Wang, C.,
Wang, J., Wang, K., Wang, Y., Wang, Z., Wang, Z., Wu,
S., Wei, L., Xiao, B., Xie, W., Xie, Y., Yogatama, D.,
Yuan, B., Zhan, J., and Zhu, Z. Deep speech 2 : End-
to-end speech recognition in english and mandarin. In
Balcan, M. F. and Weinberger, K. Q. (eds.), Proceed-
ings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learn-
ing Research, pp. 173–182, New York, New York, USA,
20–22 Jun 2016. PMLR.

Arous, G. B., Mei, S., Montanari, A., and Nica, M. The
landscape of the spiked tensor model. Communications
on Pure and Applied Mathematics, 72(11):2282–2330,
2019.

Ballard, A. J., Das, R., Martiniani, S., Mehta, D., Sagun,
L., Stevenson, J. D., and Wales, D. J. Energy land-
scapes for machine learning. Physical Chemistry Chem-
ical Physics, 19(20):12585–12603, 2017.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pp. 41–
48, 2009.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J.,
Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
VanderPlas, J., Wanderman-Milne, S., and Zhang, Q.
JAX: composable transformations of Python+NumPy
programs, 2018. URL http://github.com/
google/jax.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B.,
and LeCun, Y. The loss surfaces of multilayer net-
works. In Artificial intelligence and statistics, pp. 192–
204. PMLR, 2015.

Cooper, Y. The loss landscape of overparameterized neural
networks. arXiv preprint arXiv:1804.10200, 2018.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation policies
from data. arXiv preprint arXiv:1805.09501, 2018.

Dauphin, Y. N. and Schoenholz, S. Metainit: Initializ-
ing learning by learning to initialize. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates,
Inc., 2019.

Franz, S. and Parisi, G. The simplest model of jamming.
Journal of Physics A: Mathematical and Theoretical, 49
(14):145001, 2016.

Franz, S., Hwang, S., and Urbani, P. Jamming in multilayer
supervised learning models. Physical review letters, 123
(16):160602, 2019a.

Franz, S., Sclocchi, A., and Urbani, P. Critical jammed
phase of the linear perceptron. Physical review letters,
123(11):115702, 2019b.

Geiger, M., Spigler, S., d’Ascoli, S., Sagun, L., Baity-Jesi,
M., Biroli, G., and Wyart, M. Jamming transition as a
paradigm to understand the loss landscape of deep neural
networks. Physical Review E, 100(1):012115, 2019.

Geiger, M., Jacot, A., Spigler, S., Gabriel, F., Sagun, L.,
d’Ascoli, S., Biroli, G., Hongler, C., and Wyart, M. Scal-
ing description of generalization with number of param-
eters in deep learning. Journal of Statistical Mechanics:
Theory and Experiment, 2020(2):023401, 2020a.

http://github.com/google/jax
http://github.com/google/jax


Dynamical loss functions for machine learning

Geiger, M., Petrini, L., and Wyart, M. Perspective:
A phase diagram for deep learning unifying jamming,
feature learning and lazy training. arXiv preprint
arXiv:2012.15110, 2020b.

Ghorbani, B., Krishnan, S., and Xiao, Y. An investigation
into neural net optimization via hessian eigenvalue den-
sity. CoRR, abs/1901.10159, 2019a.

Ghorbani, B., Krishnan, S., and Xiao, Y. An investigation
into neural net optimization via hessian eigenvalue den-
sity. arXiv preprint arXiv:1901.10159, 2019b.

Gilmer, J. Large scale spectral density estimation for deep
neural networks. https://github.com/google/
spectral-density, 2020.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Teh,
Y. W. and Titterington, M. (eds.), Proceedings of the
Thirteenth International Conference on Artificial Intel-
ligence and Statistics, volume 9 of Proceedings of Ma-
chine Learning Research, pp. 249–256, Chia Laguna Re-
sort, Sardinia, Italy, 13–15 May 2010. JMLR Workshop
and Conference Proceedings.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and
Bengio, Y. An empirical investigation of catastrophic
forgetting in gradient-based neural networks. arXiv
preprint arXiv:1312.6211, 2013.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., et al. Hybrid
computing using a neural network with dynamic external
memory. Nature, 538(7626):471–476, 2016.

Gur-Ari, G., Roberts, D. A., and Dyer, E. Gradient
descent happens in a tiny subspace. arXiv preprint
arXiv:1812.04754, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Hexner, D., Liu, A. J., and Nagel, S. R. Periodic training of
creeping solids. Proceedings of the National Academy
of Sciences, 117(50):31690–31695, 2020.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
In Advances in neural information processing systems,
pp. 8571–8580, 2018.

Janocha, K. and Czarnecki, W. M. On loss functions for
deep neural networks in classification. arXiv preprint
arXiv:1702.05659, 2017.

Karpathy, A. et al. Convolutional neural networks for vi-
sual recognition. Course notes hosted on GitHub. Re-
trieved from: http://cs231n. github. io, 2020.

Keim, N. C. and Arratia, P. E. Mechanical and microscopic
properties of the reversible plastic regime in a 2d jammed
material. Physical review letters, 112(2):028302, 2014.

Keim, N. C. and Nagel, S. R. Generic transient memory
formation in disordered systems with noise. Physical
review letters, 107(1):010603, 2011.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2015.

Kornblith, S., Lee, H., Chen, T., and Norouzi, M. What’s in
a loss function for image classification? arXiv preprint
arXiv:2010.16402, 2020.

Le Cun, Y., Kanter, I., and Solla, S. A. Eigenvalues of co-
variance matrices: Application to neural-network learn-
ing. Physical Review Letters, 66(18):2396, 1991.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J., and Pennington, J. Wide neural net-
works of any depth evolve as linear models under gradi-
ent descent. In Advances in neural information process-
ing systems, pp. 8572–8583, 2019.

Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein, J.,
and Gur-Ari, G. The large learning rate phase of
deep learning: the catapult mechanism. arXiv preprint
arXiv:2003.02218, 2020.

Mannelli, S. S., Biroli, G., Cammarota, C., Krzakala, F.,
and Zdeborová, L. Who is afraid of big bad min-
ima? analysis of gradient-flow in a spiked matrix-tensor
model. arXiv preprint arXiv:1907.08226, 2019.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pp. 109–165. Elsevier, 1989.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-
Dickstein, J., and Schoenholz, S. S. Neural tangents:
Fast and easy infinite neural networks in python. In
International Conference on Learning Representations,
2020.

Pine, D. J., Gollub, J. P., Brady, J. F., and Leshansky, A. M.
Chaos and threshold for irreversibility in sheared suspen-
sions. Nature, 438(7070):997–1000, 2005.

Ratcliff, R. Connectionist models of recognition memory:
constraints imposed by learning and forgetting functions.
Psychological review, 97(2):285, 1990.

https://github.com/google/spectral-density
https://github.com/google/spectral-density


Dynamical loss functions for machine learning

Rosasco, L., Vito, E. D., Caponnetto, A., Piana, M., and
Verri, A. Are loss functions all the same? Neural Com-
putation, 16(5):1063–1076, 2004.

Ruiz-Garcı́a, M., Liu, A. J., and Katifori, E. Tuning and
jamming reduced to their minima. Physical Review E,
100(5):052608, 2019.

Sachdeva, V., Husain, K., Sheng, J., Wang, S., and Mu-
rugan, A. Tuning environmental timescales to evolve
and maintain generalists. Proceedings of the National
Academy of Sciences, 117(23):12693–12699, 2020.

Sagun, L., Bottou, L., and LeCun, Y. Eigenvalues of the
hessian in deep learning: Singularity and beyond. arXiv
preprint arXiv:1611.07476, 2016.

Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and
Bottou, L. Empirical analysis of the hessian of
over-parametrized neural networks. arXiv preprint
arXiv:1706.04454, 2017.

Shankar, V., Fang, A., Guo, W., Fridovich-Keil, S., Ragan-
Kelley, J., Schmidt, L., and Recht, B. Neural kernels
without tangents. In International Conference on Ma-
chine Learning, pp. 8614–8623. PMLR, 2020.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without hu-
man knowledge. nature, 550(7676):354–359, 2017.

Soudry, D. and Carmon, Y. No bad local minima: Data in-
dependent training error guarantees for multilayer neural
networks. arXiv preprint arXiv:1605.08361, 2016.

Stillinger, F. and Weber, T. Nonlinear optimization simpli-
fied by hypersurface deformation. Journal of statistical
physics, 52(5-6):1429–1445, 1988.

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K.,
Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D.,
Peterson, G. D., et al. Xsede: accelerating scientific dis-
covery. Computing in science & engineering, 16(5):62–
74, 2014.

Verpoort, P. C., Wales, D. J., et al. Archetypal landscapes
for deep neural networks. Proceedings of the National
Academy of Sciences, 117(36):21857–21864, 2020.

Wales, D. J. and Scheraga, H. A. Global optimization of
clusters, crystals, and biomolecules. Science, 285(5432):
1368–1372, 1999.

Wawak, R. J., Pillardy, J., Liwo, A., Gibson, K. D., and
Scheraga, H. A. Diffusion equation and distance scaling
methods of global optimization: Applications to crystal
structure prediction. The Journal of Physical Chemistry
A, 102(17):2904–2918, 1998.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S.,
and Pennington, J. Dynamical isometry and a mean
field theory of CNNs: How to train 10,000-layer vanilla
convolutional neural networks. In Dy, J. and Krause,
A. (eds.), Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 5393–5402, Stock-
holmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

Xiao, L., Pennington, J., and Schoenholz, S. Disentangling
trainability and generalization in deep neural networks.
In III, H. D. and Singh, A. (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
10462–10472. PMLR, 13–18 Jul 2020.

Yang, G. and Littwin, E. Tensor programs iib: Architec-
tural universality of neural tangent kernel training dy-
namics, 2021.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
CoRR, abs/1605.07146, 2016. URL http://arxiv.
org/abs/1605.07146.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,
O. Understanding deep learning requires rethinking gen-
eralization. arXiv preprint arXiv:1611.03530, 2016.

Zoph, B. and Le, Q. V. Neural architecture search with re-
inforcement learning. arXiv preprint arXiv:1611.01578,
2016.

http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146

