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Abstract
Natural-gradient descent (NGD) on structured
parameter spaces (e.g., low-rank covariances)
is computationally challenging due to difficult
Fisher-matrix computations. We address this issue
by using local-parameter coordinates to obtain a
flexible and efficient NGD method that works well
for a wide-variety of structured parameterizations.
We show four applications where our method (1)
generalizes the exponential natural evolutionary
strategy, (2) recovers existing Newton-like algo-
rithms, (3) yields new structured second-order
algorithms, and (4) gives new algorithms to learn
covariances of Gaussian and Wishart-based distri-
butions. We show results on a range of problems
from deep learning, variational inference, and evo-
lution strategies. Our work opens a new direction
for scalable structured geometric methods.

1. Introduction
A wide-variety of problems that arise in the field of opti-
mization, inference, and search can be expressed as

min
q(w)∈Q

Eq(w) [`(w)]− γH(q(w)), (1)

where w is the parameter of interest, q(w) ∈ Q is a distribu-
tion,H(q(w)) is Shannon’s entropy, `(w) is a loss function,
and γ ≥ 0. For example, in problems involving random
search (Baba, 1981), stochastic optimization (Spall, 2005),
and evolutionary strategies (Beyer, 2001), q(w) is the so-
called ‘search’ distribution used to find a global minimum
of a black-box function `(w). In reinforcement learning, it
can be the policy distribution which minimizes the expected
value-function `(w) (Sutton et al., 1998), sometimes with
entropy regularization (Williams & Peng, 1991; Teboulle,
1992; Mnih et al., 2016). For Bayesian problems, q(w) is
the posterior distribution or its approximation and the `(w)
is the log of the joint distribution (Zellner, 1986) (γ set to 1).
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Finally, many robust or global optimization techniques em-
ploy q(w) to smooth out local minima (Mobahi & Fisher III,
2015; Leordeanu & Hebert, 2008; Hazan et al., 2016), where
often γ = 0. Developing fast and scalable algorithms for
solving (1) potentially impacts all these fields.

Natural-gradient descent (NGD) is an attractive algorithm
to solve (1) and can speed up the optimization by exploiting
the information geometry of q(w) (Wierstra et al., 2008;
Sun et al., 2009; Hoffman et al., 2013; Khan & Lin, 2017;
Salimbeni et al., 2018). It also unifies a wide-variety of
learning algorithms, which can be seen as its instances with
a specific q(w) (Khan & Rue, 2020). This includes deep
learning (Khan et al., 2018), approximate inference (Khan
& Lin, 2017), and optimization (Khan & Rue, 2020; Khan
et al., 2017). NGD also has better convergence properties
compared to methods that ignore the geometry, for example,
Ranganath et al. (2014); Lezcano Casado (2019).

We consider NGD where parameters of q(w) assume spe-
cial structures, for example, low-rank or sparse Gaussian
covariances. For such cases, NGD is often intractable and/or
costly due to difficult Fisher Information Matrix (FIM) com-
putations. First, the FIM can be singular for restricted
parametrizations (see Fig. 1(I)), which is often addressed
with ad-hoc structural approximations, derived on a case-by-
case basis (Sun et al., 2013; Akimoto & Hansen, 2016; Li
& Zhang, 2017; Mishkin et al., 2018; Tran et al., 2020) (also
see Appx. D.4). Second, while we can switch parameteri-
zations, the computation could be ineffecient because the
structure might be lost, for example, when switching from
sparse precision to covariances. Using automatic differenti-
ation could make the situation worse because such tools are
often unaware of the structure (Salimbeni et al., 2018) (also
see Appx. G.1). Finally, the choice of parameterizations and
approximations themselves involve delicate choices to get a
desired computation-accuracy trade-off. For example, for
neural networks layer-wise approximations (Sun & Nielsen,
2017; Zhang et al., 2018; Lin et al., 2019a) might be bet-
ter than low-rank/diagonal structures (Mishkin et al., 2018;
Tran et al., 2020; Ros & Hansen, 2008; Khan et al., 2018),
but may also involve more computations. Our goal is to
address these difficulties and design a flexible method that
works well for a variety of structured parameterizations.

We present local-parameter coordinates to design flexible
and tractable NGD for a variety of structured-parameter
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which is a case considered in Tran et al. (2020), where the global parameterization is chosen to be ⌧ = {µ,v,d} so that the
covariance ⌃ = vv

T +Diag(d2) has a rank-one structure. We will give two examples to show that the FIM F⌧ is singular
when ⌧ = {µ,v,d}, where µ,v,d 2 Rp are all learnable vectors. To avoid the singularity issue, Tran et al. (2020) have to
use a block approximation of the FIM F⌧ . Mishkin et al. (2018) also consider a rank-one matrix in the precision matrix S of
Gaussians, where an additional approximation is used to fix this singularity issue. Sun et al. (2013) reduce the degree of
freedom in a p-dimensional low-rank Gaussians such as ⌃ = vv

T + d
2
I to avoid this issue21, where d is chosen to be a

learnable scalar instead of a vector. However, the covariance used in Sun et al. (2013) is less flexible than the covariance
induced by our group structures since the degree of freedom for the covariance used in Sun et al. (2013) is p+ 1 while the
degree of freedom for the covariance induced by the block triangular group with k = 1 is 2p� 1.

Now, we give two examples to illustrate the singularity issue in a rank-one p-dimensional Gaussian with constant mean and
the covariance structure ⌃ = vv

T +Diag(d2), where ⌧ = {v,d} and v,d 2 Rp are all learnable vectors.

Example (1): First of all, in 2-dimensional (p = 2) Gaussian cases with constant mean, we know that the degree of freedom
of the full covariance ⌃ is 3 since ⌃ 2 S

2⇥2
++ is symmetric. It is easy to see when ⌧ = {v,d}, the degree of freedom in the

rank-one Gaussian case with constant mean is 4, which implies the FIM is singular since the maximum degree of freedom is
3 obtained in the full Gaussian case.

Example (2): This issue also appears in higher dimensional cases. We consider an example in a 3-dimensional (p = 3)

rank-one Gaussian with constant zero mean. Let’s consider the following case where v =

2

4
1
0
0

3

5, and d =

2

4
1
1
1

3

5 so that

⌃ := vv
T + Diag(d2). Let � =


d

v

�
2 R6. The FIM in this case is denoted by F⌧ (�), where the global parameter is

⌧ = {v,d}. In this case, F⌧ (�) computed by Auto-Diff is given below.

F⌧ (�) =

2

6666664

0.5 0 0 0.5 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0.5 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

3

7777775

where � =
⇥
1 1 1 1 0 0

⇤T when d =
⇥
1 1 1

⇤T and v =
⇥
1 0 0

⇤T .

It is easy to see that F⌧ (�) is singular. Therefore, the FIM F⌧ under the global parameterization ⌧ = {v,d} for the
rank-one Gaussian can be singular.

Even when we allow to learn the mean µ in the rank-one Gaussian cases, the FIM F⌧ is still singular where ⌧ = {µ, v,d|{z}
�

}

since F⌧ =


F⌧ (µ) 0

0 F⌧ (�)

�
is block-diagonal and F⌧ (�) is singular at µ = 0.

J.1.7. COMPLEXITY ANALYSIS AND EFFICIENT COMPUTATION

When B 2 Bup(k) is a p-by-p invertible matrix, it can be written as

B =


BA BB

0 BD

�

where BA is a k-by-k invertible matrix and BD is a diagonal and invertible matrix.

To generate samples, we first compute the following matrix.

B
�T =


B

�T
A 0

�B
�T
D B

T
BB

�T
A B

�T
D

�

21When p = 1, the FIM of the low-rank Gaussian considered by Sun et al. (2013) is still singular.
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Figure 1. (I) The FIM can be singular, for example, when the covariance Σ has a low rank structure (more details in Appx. J.1.6). The
two identical columns of FIM are shown in yellow. (II) We fix such issues by using a local parameterization η (here M, an unconstrained
structured matrix) which is related to the global variable τ (= Σ for the low-rank example) through an auxiliary parameter λ (= A,
an invertible matrix with a specific structure to get a low-rank Σ = AA>). The three parameter-spaces are related through maps
τ = ψ(λ) = AA> and λ = φλold

(η) = A = AoldExp(M), and need to satisfy Assumptions 1 and 2 given in Section 3. This results
in a valid NGD step (shown at the bottom) in the local-parameter space (defined at η0 = 0 with learning rate β). (III) For a 1-D Bayesian
logistic-regression, our NGD is invariant to two different parameterizations, which is not the case for GD (details in Appx. D.3).

spaces. The method is summarized in Fig. 1(II), and in-
volves specifying (i) a ‘local parameter coordinate’ that
satisfies the structural constraints of the original (global)
parameters, (ii) a map to convert back to the global parame-
ters via ‘auxiliary’ parameters, and finally (iii) a tractable
natural-gradient computation in the local-parameter space.
This construction ensures a valid NGD update in local pa-
rameter spaces, while maintaining structures (often via ma-
trix groups) in the auxiliary parameters. This decoupling
enables a tractable NGD that exploits the structure, when
these parameters and the map are chosen carefully.

We show four applications of our method.

1. We generalize Glasmachers et al. (2010)’s method to
more general distributions and structures (Section 3.1).

2. In Section 3.2, we recover Newton-like methods de-
rived by Lin et al. (2020) using Riemannian-gradients
and by Khan et al. (2018) using the standard NGD.

3. Our approach is easily generalizable to other non-
Gaussian cases; see Setion 3.3 and 3.4.

4. In Section 4, we derive new 2nd-order methods for low-
rank, diagonal, and sparse covariances. The methods
are only slightly more costly than diagonal-covariance
methods. Moreover, they can be used as structured
2nd-order methods for unconstrained optimization.

We show applications to various problems for search, varia-
tional inference, and deep learning, obtaining much faster
convergence than methods that ignore geometry. An exam-
ple for 1-D logistic regression is shown in 1(III). Overall,
our work opens a new direction to design efficient and struc-
tured geometric methods via local parameterizations.

2. Structured NGD and its Challenges
The distributions q(w) ∈ Q are often parameterized, say
using parameters τ ∈ Ωτ , for which we write q(w|τ ). The
problem can then be conveniently expressed as an optimiza-
tion problem in the space Ωτ ,

τ ∗ = arg min
τ∈Ωτ

Eq(w|τ ) [`(w)] , (2)

where we assume γ = 0 for simplicity (general case is in
Lemma 4 of Appx. C). The NGD step is τ t+1 ← τ t−βĝτ t
where β > 0 is the step size and natural gradients are as

ĝτ t := Fτ (τ t)
−1∇τEq(w|τ ) [`(w)] , (3)

where Fτ (τ ):= Eq[∇τ log q(w|τ )(∇>τ log q(w|τ ))] is an
invertible and well-defined FIM following the regularity
condition (see Appx. C). The iterates τ t+1 may not always
lie inside Ωτ and a projection step might be required.

In some cases, the NGD computation may not require an
explicit FIM inversion. For example, when q(w|τ ) is a min-
imal exponential-family (EF) distribution, FIM is always in-
vertible, and natural gradients are equal to vanilla gradients
with respect to the ‘expectation parameter’ (Malagò et al.,
2011; Khan & Nielsen, 2018). By appropriately choosing
Q, the NGD then takes forms adapted by popular algo-
rithms (Khan & Rue, 2020), for example, for Gaussians
q(w|τ ) = N (w|µ,S−1) where S denotes the precision, it
reduces to a Newton-like update (Khan et al., 2018),

µt+1 ← µt − βS−1
t+1Eq(w|τ t)[∇w`(w)],

St+1 ← St + βEq(w|τ t)
[
∇2
w`(w)

]
. (4)

The standard Newton update for optimization is recovered
by approximating the expectation at the mean and using a
step-size of 1 with γ = 1 (Khan & Rue, 2020). Several
connections and extensions have been derived in the recent
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years establishing NGD as an important algorithm for opti-
mization, search, and inference (Khan & Lin, 2017; Khan
& Nielsen, 2018; Lin et al., 2019a; Osawa et al., 2019b).

This simplification of NGD breaks down when (2) involves
structured-parameter spaces Ωτ , for example, spaces with
constrains such as low-rank or sparse structures. Even for
the simplest Gaussian case, where covariances lie in the
positive-definite space, the update (4) may violate the con-
straint (Khan et al., 2018). Extensions have been derived
using Riemannian gradient descent (RGD) to fix this issue
(Lin et al., 2020). Other solutions based on Cholesky (Sun
et al., 2009; Salimbeni et al., 2018) or square-root parameter-
ization (Glasmachers et al., 2010) have also been considered,
where the problem is converted to an unconstrained param-
eter space. For example, Glasmachers et al. (2010) use
a square-root parameterization q(w) = N (w|µ,AAT ),
where A is the square-root of S−1, to get the update,

µt+1 ← µt − βEq(w|τ t)
[(

Atzt
)
`(w)

]
,

At+1 ← AtExp

(
−β

2
Eq(w|τ t)

[(
ztz

T
t − I

)
`(w)

])
, (5)

where zt = A−1
t (w − µt) and Exp(X) = I +

∑∞
k=1

Xk

k!
is the matrix exponential function. These solutions however
do not easily generalize. For example, it is not obvious how
to apply these updates to cases where the covariance is low-
rank (Mishkin et al., 2018; Tran et al., 2020), Kronecker
structured (Zhang et al., 2018; Lin et al., 2019a), or to cases
involving non-Gaussian distributions such as the Wishart,
univariate exponential family distributions (Lin et al., 2020)
and Gaussian mixtures (Lin et al., 2019a).

In fact, the issue with the structure and its effect on parame-
terization is a bit more involved than it might appear at first.
Certain choices of the structure/parameterization can make
the Fisher matrix singular which can make NGD invalid,
for example, for low-rank Gaussians as shown in Fig. 1(I)
where it requires new tricks such as auxiliary parameteriza-
tion (Lin et al., 2019a), block approximations (Tran et al.,
2020), algorithmic approximations (Mishkin et al., 2018),
or damping (Zhang et al., 2018). The computational cost
depends on the parameterization, the choice of which is
often not obvious. Some methods exploit structure in the co-
variances (Glasmachers et al., 2010) while the others work
with its inverse such as (4). Customized structures, such
as layer-wise and Kronecker-factored covariances in deep
neural nets, may work well in one parameterization but not
in the other. Thus, it is essential to have a flexible method
that works well for a variety of structured-parameterizations
and distributions. Our goal is to propose such a method.

3. Local Parameter Coordinates
We present local-parameter coordinates to obtain a flexible
and efficient NGD method that works well for a wide-variety

of structured parameterizations. Table 1 in Appx. A summa-
rizes the examples and extensions we consider. We describe
the method in three steps.

Step 1. The first step involves specifying a ‘local’ param-
eterization, denoted by η ∈ Ωη, so that the following as-
sumption is satisfied (throughout, we set η0 = 0).

Assumption 1: The Fisher matrix Fη(η0) is non-singular.

Step 2. The second step involves specifying two maps
shown below to connect to the original ‘global’ parameters
τ via an ‘auxiliary’ parameter λ ∈ Ωλ,

τ = ψ(λ) and λ = φλt(η), (6)

where the first map is surjective and the second map is de-
fined such that λt = φλt(η0), i.e., the function is tight at
η0 to match the current λt. The local parameter η0 can
be seen as a relative origin tied to λt. The overall map is
τ = ψ◦φλt(η) (the map could change with iterations). No-
tice that we make no assumption about the non-singularity
of the FIM in the auxiliary space Ωλ. The FIM in the auxil-
iary space Ωλ can be singular (see Section 3.1). The only
restriction is a mild coordinate compatibility assumption.

Assumption 2 : ∀λt ∈ Ωλ, the map η 7→ ψ ◦ φλt(η) is
locally C1-diffeomorphic at an open neighborhood of η0.

Assumption 2 implies that the local η has the same degrees
of freedom as τ , but the auxiliary λ can have a different
one (an example is in Section 3.1). Assumption 1-2, to-
gether with surjective ψ(·), imply a non-singular FIM in the
global space Ωτ , so there is no need to check it for specific
cases. On the other hand, if we know the non-singularity
of the FIM in Ωτ beforehand, Assumption 2 together with
surjective ψ(·) imply that Assumption 1 is satisfied.

Step 3. The final step is to compute the natural gradient
at η0 in the local-parameter space to update the global τ ,
which can be done by using the chain rule,

ĝ(t)
η0

= Fη(η0)−1 ∇η0

[
ψ ◦ φλt(η)

]
gτ t , (7)

where gτ := ∇τEq(w|τ )[`(w)] is the vanilla gradient. An
indirect computation is given in (26) in Appx. C. The above
computation is most useful when the computation of ĝ(t)

η0
is

tractable, which ultimately depends on the choice ofψ◦φλt
which in turn depends on the form of q(w). Then, by using
an NGD step η0 − βĝ

(t)
η0

in the local-parameter space, we
get the following overall update for τ ,

Structured NGD using local parameters
λt+1 ← φλt

(
−βĝ(t)

η0

)
, τ t+1 ← ψ (λt+1) (8)

since we assume η0 = 0. In summary, given an auxiliary
parameter λt, we can use the natural gradient ĝ(t)

η0
to update

τ according to (8). The NGD step using (3) is a special case
of the above NGD step (see details in Appx. F).



Tractable Structured Natural-Gradient Descent Using Local Parameterizations

Finally, we require the following Assumption to be satis-
fied to ensure that the NGD step −βĝ(t)

η0
∈ Ωη in (8) (this

assumption is satisfied for all examples we discuss).

Assumption 3 : Ωη has a vector space structure so that the
vector addition, the vector subtraction, and the real scalar
multiplication are valid.

We will now discuss three applications of our method where
we derive existing NGD strategies as special cases.

3.1. Gaussian with square-root covariance structure

For a Gaussian distribution N (w|µ,Σ), the covariance ma-
trix Σ is positive definite. Standard NGD steps such as (4),
may violate this constraint (Khan et al., 2018). Glasmachers
et al. (2010) use Σ = AA> where A is an invertible matrix
(not a Cholesky), and derive an update using a specific local
parameterization. We now show that their update is a special
case of our method.

Following Glasmachers et al. (2010), we choose the follow-
ing parameterizations, where we use Sp×p++ , Sp×p, andRp×p++

to denote the set of symmetric positive definite matrices,
symmetric matrices, and invertible matrices, respectively,

τ :=
{
µ ∈ Rp, Σ ∈ Sp×p++

}
,

λ :=
{
µ ∈ Rp, A ∈ Rp×p++

}
,

η :=
{
δ ∈ Rp, M ∈ Sp×p

}
,

(9)

where δ and M are the local parameters. The map ψ ◦
φλt(η) at λt := {µt,At} is chosen to be1{

µ
Σ

}
= ψ(λ) :=

{
µ

AA>

}
{
µ
A

}
= φλt(η) :=

{
µt + Atδ

AtExp
(

1
2M

) } . (10)

Finally, we can get the natural gradients (7) by using the
Fisher matrix Fη(η0) (see Appx. D.2 for a derivation),( ĝ

(t)
δ0

vec(ĝ
(t)
M0

)

)
=
(Ip 0

0 1
2Ip2

)−1( A>t gµt

vec(A>t gΣt
At)

)
(11)

By plugging (10) and (11) in (7), our update can be written
in the space of λ as below, where S−1

t = Σt.
µt+1 ← µt − βS−1

t gµt

At+1 ← AtExp
(
− βAT

t gΣtAt

) (12)

By the REINFORCE trick (Williams, 1992), the gradients
with respect to global parameters are

gµ = Eq(w|τ )

[(
A−T z

)
`(w)

]
gΣ = 1

2Eq(w|τ )

[
A−T

(
zzT − I

)
A−1`(w)

] (13)

1The 1/2 shown in red in (10) is used to match the parameteri-
zations in Glasmachers et al. (2010), but the update in (12) remains
unchanged even when without it.

where z = A−1(w − µ). By plugging in (13) into (12),
we recover the update (5) used in Glasmachers et al. (2010).
Appx. D.2 shows that Assumptions 1-2 are satisfied.

Parameterizations η = {δ,M} and λ = {µ,A} play dis-
tinct roles. Local parameter M is chosen to be symmetric
with p(p+ 1)/2 degrees of freedom so that Assumption 1
holds (also see Appx. D.1.3). Auxiliary parameter A can
be an invertible matrix with p2 degrees of freedom and the
Fisher matrix Fλ(λ) is singular. Note that we perform
natural-gradient descent in η instead of λ. This is in con-
trast with the other works (Sun et al., 2009; Salimbeni et al.,
2018) that require a Cholesky structure in A with p(p+1)/2
degrees of freedom to ensure that Fλ(λ) is non-singular.

Glasmachers et al. (2010) only demonstrated their method
in the Gaussian case without complete derivations2 and a
formal formulation. It is difficult to generalize their method
without explicitly knowing the distinct roles of parameteri-
zations η and λ. Moreover, their approach only applied to a
square-root structure of the covariance and it is unclear how
to generalize it to other structures (e.g., low-rank structures).
Our method fixes these issues of their approach.

3.2. Connection to Newton’s method

We now show that the update (5) derived using local pa-
rameterization is in fact closely related to a Newton-like
algorithm. Specifically, we will convert the update of At+1

in (5) to the update over St+1, as in (4), and recover the New-
ton’s update derived by Lin et al. (2020). To do so, we need
to make two changes. First, we will expand Exp

(
βM

)
=

I +

∞∑
k=1

(βM)k

k!
= I + βM + 1

2 (βM)2 +O(β3). (14)

Second, instead of using (13), we will use Stein’s identity
(Opper & Archambeau, 2009; Lin et al., 2019b):

gµ = Eq[∇w`(w)], gΣ = 1
2Eq
[
∇2
w`(w)

]
(15)

Using these changes, the update over St+1 can be rewritten
as a modified Newton’s update proposed by Lin et al. (2020),

St+1 =
(
At+1A

T
t+1

)−1
= A−Tt Exp

(
2βAT

t gΣAt

)
A−1
t

= St + βEq
[
∇2
w`(w)

]
+
β2

2
GS−1

t G +O(β3) (16)

where G = Eq
[
∇2
w`(w)

]
. Ignoring the red term gives

us the update (4) derived by Khan et al. (2018). The term
is added by Lin et al. (2020) to fix the positive-definite
constraint violation, by Riemannian gradient descent. Thus,
these methods can be seen as special cases of ours with an
approximation of the exponential map.

2There are a few typos in their paper. The matrix A is missing
in their Eq 8 and a factor 2 is missing in Eq 11.



Tractable Structured Natural-Gradient Descent Using Local Parameterizations

3.3. Wishart with square-root precision structure

We will now show an example that goes beyond Gaussians.
We consider a Wishart distribution which is a distribution
over p-by-p positive-definite matrices,

Wp(W|S, n) =
|W|(n−p−1)/2|S|n/2

Γp(
n
2 )2np/2

e−
1
2 Tr(SW),

where Γp(·) is the multivariate gamma function. Here, the
global parameters are based on the precision matrix S, un-
like the example in Sec. 3.1. We will see that our update
will automatically take care of this difference and report a
similar update to the one obtained using Σ in (12).

We start by specifying the parameterization,

τ :=
{
n ∈ R, S ∈ Sp×p++ | n > p− 1

}
,

λ :=
{
b ∈ R, B ∈ Rp×p++

}
,

η :=
{
δ ∈ R, M ∈ Sp×p

}
,

and their respective maps defined at λt := {bt,Bt}{
n
S

}
= ψ(λ) :=

{
2f(b) + p− 1

(2f(b) + p− 1)BB>

}
,{

b
B

}
= φλt(η) :=

{
bt + δ

BtExp (M)

}
.

where f(b) = log(1 + exp(b)) is the soft-plus function3.
The auxiliary parameter B here is defined as the square-root
of the precision matrix S, unlike in the previous examples.

Denoting the gradients by

GS−1 := ∇s−1Eq [`(W)] , gn := ∇nEq [`(W)] , (17)

we can write the updates as (derivation in Appx. E):

Bt+1 ← BtExp

(
β

n2
t

B−1
t GS−1

t
B−Tt

)
(18)

bt+1 ← bt − βct
[
gn −

1

nt
Tr
(
GS−1

t
S−1
t

)]
(19)

where ct = 2(1+exp(bt))
exp(bt)

(
− 2p
nt

+Dψ,p(
nt
2 )
)−1

andDψ,p(x)
is the multivariate trigamma function. Moreover, we can
use re-parameterizable gradients (Figurnov et al., 2018; Lin
et al., 2019b) for GS−1

t
and gn due to the Bartlett decompo-

sition (Smith et al., 1972) (see Appx. E.1 for details).

The update (18) for B (square-root of the precision matrix)
is very similar to the update for A (square-root for covari-
ance) in (12). The change from covariance to precision
parameterization changes the sign of the update. The step
size is modified using the parameter nt. The local param-
eterization can automatically adjust to such changes in the
parameter specification, giving rise to intuitive updates.

3We use the soft-plus function instead of the scalar exponential
map for numerical stability.

3.4. Connection to Riemannian Gradient Descent

We will show that the updates on the Wishart distribution
is a generalization of Riemannian Gradient Descent (RGD)
over the space of positive-definite matrices. Given an opti-
mization problem

min
Z∈Sp×p++

`(Z)

over the space of symmetric positive-definite matrices, the
RGD update with retraction can be written in terms of the
inverse U = Z−1 (see Appx. E.2 for the details),

Ut+1 ← Ut + β1∇`(Zt) +
β2

1

2

[
∇`(Zt)]U−1

t

[
∇`(Zt)]

where ∇ is taken with respect to Z, and β1 is the step
size. We now show that this is a special case of (18) where
gradients (17) are approximated at the mean of the Wishart
distribution as Eq [W] = nS−1. Denoting the mean by Zt,
the approximation is (see the derivation in Appx. E.3),

GS−1
t
≈ nt∇`(Zt), gnt ≈ Tr

[
∇`(Zt)S−1

t

]
(20)

Plugging (20) into (19), b remains constant after the update,

bt+1 ← bt − βct
[
((((((((
Tr
[
∇`(Zt)S−1

t

]
−((((((((

Tr
[
∇`(Zt)S−1

t

]]
so that bt+1 ← bt and nt is constant since n = 2f(b)+p−1.
Resetting the step-size to be β = 1

2β1n,4 (18) becomes

Bt+1 ← BtExp

(
β1

2
B−1
t

[
∇`(Zt)

]
B−Tt

)
(21)

Finally, we express the update in terms of Ut := Z−1
t =

BtB
T
t to rewrite (21) as by using the second-order terms in

the matrix exponential (14),

Ut+1 ← BtExp(β1B
−1
t

[
∇`(Zt)

]
B−Tt )BT

t

← Ut + β1∇`(Zt) +
β2

1

2

[
∇`(Zt)]U−1

t

[
∇`(Zt)] +O(β3

1)

recovering the RGD update. Thus, the RGD update is a
special case of our update, where the expectation is approxi-
mated at the mean. This is a local approximation to avoid
sampling from q(W). This derivation is another instance of
reduction to a local method using NGD over distributions,
similar to the ones obtained by Khan & Rue (2020).

3.5. Generalizations and Extensions

In previous sections, we use the matrix exponential map
to define φλt(η), but other maps can be used. This is
convenient since the map can be difficult to compute and
numerically unstable. We propose to use another map:

h(M) = I + M + 1
2M2.

Map h(·) plays a key role for complexity reduction in Sec. 4,
since it simplifies the natural-gradient computation in Gaus-
sian and Wishart cases without changing the form of the

4Since n remains constant, β = 1
2
β1n is a constant step-size.
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updates (due to Lemma 6-8 in Appx. C). For example, con-
sider the Gaussian case in Sec. 3.1 where covariance Σ
is used. Using our approach, we could easily change the
parameterization to the precision S = Σ−1 instead, by
changing the parameters in (9) to

τ :=
{
µ ∈ Rp, S ∈ Sp×p++

}
λ :=

{
µ ∈ Rp, B ∈ Rp×p++

}
η :=

{
δ ∈ Rp, M ∈ Sp×p

}
.

(22)

We can use map h(·) in the following transformations:{
µ
S

}
= ψ(λ) :=

{
µ

BB>

}
{
µ
B

}
= φλt(η) :=

{
µt + B−Tt δ
Bth(M)

}
.

(23)

An update (see (39) in Appx. D.1) almost identical to (16) is
obtained with this parameterization and map. The difference
only appears in a O(β3) term. Unlike the method originally
described by Glasmachers et al. (2010), our formulation
makes it easy for a variety of parameterizations and maps,
while keeping the natural-gradient computation tractable.

To avoid computing the Hessian∇2
w`(w) in Gaussian cases,

we could use the re-parameterizable trick5 for the covariance
matrix (Lin et al., 2019b; 2020) in the update of (16):

gΣ = 1
2Eq
[
S(w − µ)∇Tw`(w)

]
. (24)

By the identities in (24, 13, 15), we establish the connection
of our Gaussian update to variational inference by the re-
parameterizable trick, to numerical optimization by Stein’s
identity, and to black-box search by the REINFORCE trick.

Our approach also gives NGD updates for common uni-
variate exponential family (EF) distributions via Auto-
Differentiation (see Appx. G for the detail).

In practice, the FIM under global parameter τ or local pa-
rameter η can be singular. For example, the FIM of curved
EFs (Lin et al., 2019a) and MLPs (Amari et al., 2018) can
be singular. The FIM of the low-rank structured Gaussian
(Tran et al., 2020; Mishkin et al., 2018) has the same issue.
(see Appx. J.1.6 for a discussion). We extend our approach
to the following two kinds of curved EFs, where we relax
Assumption 1 for local parameterizations.

In Appx. I, we adapt our local parameterization approach
to a block approximation for matrix Gaussian cases, where
cross-block terms in the FIM are set to zeros (see (48) in
Appx. I). Our approximated FIM is guaranteed to be non-
singular since matrix Gaussian is a minimal multi-linear
EF (Lin et al., 2019a). Our approach is very different from
noisy-KFAC (Zhang et al., 2018). In noisy-KFAC, KFAC

5∇w`(w) is only required to exist almost surely.

approximation along with a block-approximation is used,
where the approximated FIM can be singular without damp-
ing. Damping introduces an extra tuning hyper-parameter.

In Appx. H, we extend our approach to mixtures such as
Gaussian mixtures using the FIM defined by the joint dis-
tribution of a mixture. For mixture distributions, Lin et al.
(2019a) show that the FIM of the joint distribution of a min-
imal conditional mixture is guaranteed to be non-singular.

4. NGD for Structured Matrix Groups
We now show applications to NGD on matrices with special
structures. The key idea is to use the fact that the auxiliary-
parameter space Rp×p++ used in Sec. 3 is a general linear
group (GL group) (Belk, 2013), and structured restrictions
give us its subgroups. We can specify local parameteriza-
tions for the subgroups to get a tractable NGD. We will use
the Gaussian example considered in Sec. 3.5 to illustrate this
idea. A similar technique could be applied to the Wishart
example. We will discuss the triangular group first, and then
discuss an extension inspired by the Heisenberg group.

We use Bup(k) to denote the space of following block upper-
triangular p-by-p matrices as an auxiliary parameter space,
where k is the block size with 0 < k < p and d0 = p− k,
and Dd0×d0++ is the space of diagonal and invertible matrices.

Bup(k) =
{[

BA BB

0 BD

] ∣∣∣BA ∈ Rk×k++ , BD ∈ Dd0×d0++

}
When k = 0, Bup(k) = Dp×p++ becomes a diagonal auxiliary
space. When k = p, Bup(k) = Rp×p++ becomes a full space.
The following lemma shows Bup(k) is a matrix group.

Lemma 1 Bup(k) is a matrix group that is closed under
matrix multiplication.

A local parameter space for Bup(k) is defined below with
less degrees of freedom than the local space Sp×p in (22).

Mup(k) =
{[MA MB

0 MD

] ∣∣∣MA ∈ Sk×k, MD ∈ Dd0×d0
}

where Dd0×d0 denotes the space of diagonal matrices.
Lemma 2 shows that h(·) defined in Sec. 3.5 is essential.

Lemma 2 For any M ∈Mup(k), h(M) ∈ Bup(k).

Using these spaces, we specify the parametrization for the
Gaussian N (w|µ,S−1), where the precision S belongs to
a sub-manifold6 of Sp×p++ ,

τ :=
{
µ ∈ Rp, S = BBT ∈ Sp×p++ | B ∈ Bup(k)

}
,

λ := {µ ∈ Rp, B ∈ Bup(k)} ,
η := {δ ∈ Rp, M ∈Mup(k)} .

6η locally gives a parametric representation of the submanifold.
See (51) in Appx. J.1.3 for an equivalent global parameterization
of this sub-manifold.

https://en.wikipedia.org/wiki/Parametric_equation
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Figure 2. Comparison results of structured Gaussian mixtures to fit a 80-Dim mixture of Student’s t distributions with 10 components. The
first marginal dimension obtained by our updates is shown in the figure, where an upper triangular structure in the precision form achieves
better approximation than a lower triangular structure and a diagonal structure. The upper triangular structure performs comparably to the
full covariance structure with lower computational cost. Figure 6-8 in Appx. B show more dimensions and results on other structures.

The map ψ ◦ φλt(η) at λt := {µt,Bt} is chosen to be
the same as (23) due to Lemma1 and Lemma 2. Lemma 3
below shows that this local parameterization is valid.

Lemma 3 Assumption 1-2 are satisfied in this case.

The natural-gradients (shown in Appx. J.1.4) are

ĝ
(t)
δ0

= B−1
t gµt ; ĝ

(t)
M0

= Cup � κup
(
− 2B−1

t gΣtB
−T
t

)
where � is the element-wise product, κup(X) extracts non-
zero entries ofMup(k) from X so that κup(X) ∈Mup(k),
J is a matrix of ones, Cup is a constant matrix defined as
below, where factor 1

2 appears in the symmetric part of Cup.

Cup =

[
1
2JA JB
0 1

2ID

]
∈Mup(k)

The NGD update over the auxiliary parameters is
structured update

µt+1 ← µt − βS−1
t gµt

Bt+1 ← Bth
(
βCup � κup

(
2B−1

t gΣtB
−T
t

))
(25)

where (25) preserves the structure: Bt+1 ∈ Bup(k) if Bk ∈
Bup(k). When k = p, the update (25) recovers the update
(38) of the example in Sec. 3.5 and connects to Newton’s
method in (16) (see (39) in Appx. D.1). When k < p, (25)
becomes a ‘structured update’ preserved the group structure.

By exploiting the structure of B (shown in Appx. J.1.7),
the update enjoys low time complexity O(k2p). The prod-
uct S−1gµ can be computed in O(k2p). We can compute
Bh(M) in O(k2p) when B and h(M) are block upper tri-
angular matrices. The gradient gΣ is obtained using Hessian
where we only compute/approximate diagonal entries of
the Hessian and use O(k) Hessian-vector-products for non-
zero entries of κup

(
2B−1gΣB−T

)
(see (53) in Appx. J.1.7).

We store the non-zero entries of B with space complexity
O((k + 1)p). Map h(·) simplifies the computation and re-
duces the time complexity, whereas the exponential map
suggested by Glasmachers et al. (2010) does not.

As shown in Appx. J.1.5, this parameterization induces
a special structure over Sup = BBT , which is a block
arrowhead matrix (O’leary & Stewart, 1990):

Sup =

[
BABT

A + BBBT
B BBBD

BDBT
B B2

D

]
and over Σup = S−1

up , which is a low-rank matrix7:

Σup = UkU
T
k +

[
0 0

0 B−2
D

]
; Uk =

[
−B−TA

B−1
D BT

BB−TA

]
where Uk is a rank-k matrix since B−TA is invertible.

As shown in Appx. J.1.8, we obtain a similar update for a
block lower-triangular group Blow(k).

Blow(k) =
{[

BA 0
BC BD

] ∣∣∣BA ∈ Rk×k++ , BD ∈ Dd0×d0++

}
Our update with a structure B ∈ Blow(k) enjoys a low-rank
structure in precision Slow = BBT . Likewise, our update
with a structure B ∈ Bup(k) has a low-rank structure in
covariance S−1

up = (BBT )−1. These are ‘structured second-
order updates’ where the precision can be seen as approxi-
mations of Hessians in Newton’s method (see Sec. 3.2).

An extension is to construct a hierarchical structure inspired
by the Heisenberg group (Schulz & Seesanea, 2018) by
replacing a diagonal group in BD with a block triangular
group, where 1 < k1 + k2 < p and d0 = p− k1 − k2

Bup(k1, k2) =
{[

BA BB

0 BD

] ∣∣∣BD =

[
BD1 BD2

0 BD4

]}
where BA ∈ Rk1×k1++ , BD1 ∈ D

d0×d0
++ , BD4 ∈ R

k2×k2
++ .

This group has a flexible structure and recovers the block
triangular group as a special case when k2 = 0. Likewise,
We can define a lower block Heisenberg group Blow(k1, k2).
In Appx. J.2, we show that these groups can be used as struc-
tured parameter spaces, which could be useful for problems
of interest in optimization, inference, and search.

If the Hessian ∇2`(w) has a model-specific structure, we
could design a customized group to capture such structure
in the precision. For example, the Hessian of layer-wise
matrix weights of a neural network admits a Kronecker form

7 The zero block highlighted in red in the expression of Σup
guarantees the FIM to be non-singular (see Appx. J.1.6).
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(see Appx. I.2). We can use a Kronecker product group to
capture such structure. The Kronecker structure is preserved
even when the Gauss-Newton approximation is employed.
This group structure can further reduce the time complexity
from the quadratic complexity to a linear complexity in k
(see Appx. I.1 and Figure 4).

In general, many subgroups (e.g., block (invertible) triangu-
lar Toeplitz groups and groups constructed from an existing
group via the group conjugation by an element of the rota-
tion group) of the GL group Rp×p++ can be used as structured
auxiliary parameter spaces B. Our approach to construct a
structured Gaussian-precision is valid if there exists a local
parameter spaceM so that h(M) ∈ B for any M ∈ M
and Assumptions 1-3 are satisfied. If these conditions hold,
the inverse of FIM F−1

η (η0) usingM will be easy to com-
pute due to Lemma 11 in Appx. D.1. We can even weaken
Assumption 1 as discussed in Sec. 3.5. The computational
requirements are (1) group product and inverse can be ef-
ficiently implemented and (2) κ

(
2B−1gΣB−T

)
∈M can

be implemented without the whole Hessian in (15), where
κ(·) converts Rp×p toM.

5. Numerical Results
We present results on problems involving search, inference,
optimization, and deep learning, where Table 1 in Appx. A
summarizes our updates. We use h(·) defined in Sec. 3.5 to
replace the matrix exponential map in our proposed updates.

5.1. Search with Re-parameterizable Gradients

We validate our update in the metric nearness task (Brick-
ell et al., 2008) using a Wishart distribution as a search
distribution q with γ = 0 in (1). The objective function
is `(W) = 1

2N

∑N
i=1 ‖WQxi − xi‖22, where xi ∈ Rd,

Q ∈ Sd×d++ and W ∈ Sd×d++ . The optimal solution is
Q−1. We randomly generate xi and Q with d = 50,
Ntrain = 125, 000 for training and Ntest = 25, 000 for test-
ing. All methods are trained using mini-batches, where
the size of mini-batch is 100. We use re-parameterizable
gradients with 1 Monte Carlo (MC) sample in our update
(referred to as “our-rep”), where we update B and b. we
also consider to only update B with re-parameterizable gra-
dients (referred to as “our-fixed-rep”). To numerically show
the similarity between RGD and our update, we consider
a case where gradients are evaluated at the mean (referred
to as “-mean”). We consider baseline methods: the RGD
update for positive-definite manifolds and the Riemannian
trivialization8 (Lezcano Casado, 2019), where gradients
are evaluated at the mean. For the trivialization method,
we consider trivializations for the positive-definite mani-

8In variational inference (VI), trivializing a parametric distribu-
tion is known as black-box VI (Ranganath et al., 2014).

fold: a Cholesky factor and the matrix logarithmic function.
We report the best result of the trivializations denoted by
“Adam”, where we use Adam to perform updates in a trivi-
alized (Euclidean) space. From Figure 3a, we can see our
update performs similarly to RGD if gradients are evaluated
at the mean while the trivialization method is trapped in a
local mode. If we use re-parameterizable gradients, jointly
updating both parameters is better than only updating B.

5.2. Variational Inference with Gaussian Mixtures

We consider the Gaussian mixture approximation problem
(Lin et al., 2020), where we use a Gaussian mixture with K
components q(w) = 1

K

∑K
k=1N (w|µk,S

−1
k ) as a varia-

tional distribution q with γ = 1 in (1). The goal of the prob-
lem is to approximate a mixture of d-dimensional Student’s
t distributions exp(−`(w)) = 1

C

∑C
c=1 T (w|uc,Vc, α)

with α = 2. We consider six kinds of structures of each
Gaussian component: full precision (referred to as “full”),
diagonal precision (referred to as “diag”), precision with
the block upper triangular structure (referred to as “Tri-
up”), precision with the block lower triangular structure
(referred to as “Tri-low”), precision with the block up-
per Heisenberg structure (referred to as “Hs-up”), preci-
sion with the block lower Heisenberg structure (referred
to as “Hs-low”). Each entry of uc is generated uniformly
in an interval (−s, s). Each matrix Vc is generated as
suggested by Lin et al. (2020). We consider a case with
K = 40, C = 10, d = 80, s = 20. We update each com-
ponent during training, where 10 MC samples are used to
compute gradients. We compute gradients as suggested by
Lin et al. (2020), where second-order information is used.
For structured updates, we compute Hessian-vector prod-
ucts and diagonal entries of the Hessian without directly
computing the Hessian ∇2

w`(w). From Figure 2, we can
see an upper structure is better for inference problems9. Fig-
ure 6-8 in Appx. B show more results on dimensions and
structures such as Heisenberg structures.

5.3. Structured Second-order Optimization

We consider non-separable valley-shaped test functions for
optimization: Rosenbrock: `rb(w) = 1

d

∑d−1
i=1

[
100(wi+1−

wi)
2+(wi−1)2

]
, and Dixon-Price: `dp(w) = 1

d

[
(wi−1)2+∑d

i=2 i(2w
2
i − wi−1)2

]
. We test our structured Newton’s

updates, where we set d = 200 and γ = 1 in (1). We con-
sider these structures in the precision: the upper triangular
structure (denoted by “Tri-up”), the lower triangular struc-
ture (denoted by “Tri-low”), the upper Heisenberg structure
(denoted by “Hs-up”), and the lower Heisenberg structure
(denoted by “Hs-low”), where second-order information is
used. For our updates, we compute Hessian-vector products

9For variational inference, an upper structure in the precision
is better than a lower structure to capture off-diagonal correlations.
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Figure 3. The performances of our updates for search and optimization problems. Figure 3a shows the performances using a Wishart
distribution to search the optimal solution of a metric nearness task where our method evaluated at the mean behaves like RGD and
converges faster than the Riemannian trivialization (Lezcano Casado, 2019) with Adam. Our updates with re-parameterizable gradients
also can find a solution near the optimal solution. Figure 3b and 3c show the performances using structured Newton’s updates to optimize
non-separable, valley-shaped, 200-dimensional functions, where our updates only require to compute diagonal entries of Hessian and
Hessian-vector products. Our updates with a lower Heisenberg structure in the precision form converge faster than BFGS and Adam.

103 104

Iterations

30

40

50

60

70

80

Te
st

 A
cc

u

CIFAR-10

Tri-low (k= 5)
Tri-low (k= 3)
Tri-low (k= 1)
Adam

0 100 200 300 400 500 600 700
Seconds

30

40

50

60

70

80

Te
st

 A
cc

u

CIFAR-10

Tri-low (k= 5)
Tri-low (k= 3)
Tri-low (k= 1)
Adam

103 104

Iterations

30

40

50

60

70

Te
st

 A
cc

u

STL-10

Tri-low (k= 5)
Tri-low (k= 3)
Tri-low (k= 1)
Adam

0 200 400 600 800 1000
Seconds

30

40

50

60

70

Te
st

 A
cc

u

STL-10

Tri-low (k= 5)
Tri-low (k= 3)
Tri-low (k= 1)
Adam

Figure 4. The performances for optimization of a CNN using matrix Gaussian with low-rank in a Kronecker precision form, where our
updates (O(k|w|)) have a linear iteration cost like Adam (O(|w|)) and are automatically parallelized by Auto-Diff. Our updates achieve
higher test accuracy (75.8% on “STL-10” and 85.0% on “CIFAR-10”) than Adam (69.5% on “STL-10” and 82.3% on “CIFAR-10”).

and diagonal entries of the Hessian without directly comput-
ing the Hessian. We consider baseline methods: the BFGS
method provided by SciPy and the Adam optimizer, where
the step-size is tuned for Adam. We evaluate gradients at
the mean for all methods. Figure 3b-3c show the perfor-
mances of all methods10, where our updates with a lower
Heisenberg structure converge faster than BFGS and Adam.

5.4. Optimization for Deep Learning

We consider a CNN model with 9 hidden layers, where 6 lay-
ers are convolution layers. For a smooth objective, we use
average pooling and GELU (Hendrycks & Gimpel, 2016)
as activation functions. We employ L2 regularization with
weight 10−2. We set γ = 1 in (1) in our updates. We train
the model with our updates derived from matrix Gaussian
(see Appx. I) for each layer-wise matrix weight11 on datasets
“CIFAR-10”, “STL-10”. Each Gaussian-precision has a
Kronecker product group structure of two lower-triangular
groups (referred to as “Tri-low”) for computational com-

10Empirically, we find out that a lower structure in the precision
performs better than an upper structure for optimization tasks
including optimization for neural networks.

11 W ∈ Rcout×cinp
2

is a weight matrix, where p, cin, cout are the
kernel size, the number of input, output channels, respectively.

plexity reduction (see Appx. I.1). For “CIFAR-10” and
“STL-10”, we train the model with mini-batch size 20. Ad-
ditional results on “CIFAR-100” can be found at Figure 5
in Appx. B. We evaluate gradients at the mean and approxi-
mate the Hessian by the Gauss-Newton approximation. We
compare our updates to Adam, where the step-size for each
method is tuned by grid search. We use the same initializa-
tion and hyper-parameters in all methods. We report results
in terms of test accuracy, where we average the results over
5 runs with distinct random seeds. From Figure 4, we can
see our structured updates have a linear iteration cost like
Adam while achieve higher test accuracy.

6. Conclusion
We propose a tractable NGD for structured spaces. The
method enables more flexible covariance structures with
lower complexity than other methods. Preliminarily results
show the method is promising. An interesting direction is
to evaluate its performance on large-scale problems.
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