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Abstract

The posterior over Bayesian neural network
(BNN) parameters is extremely high-dimensional
and non-convex. For computational reasons, re-
searchers approximate this posterior using in-
expensive mini-batch methods such as mean-
field variational inference or stochastic-gradient
Markov chain Monte Carlo (SGMCMC). To in-
vestigate foundational questions in Bayesian deep
learning, we instead use full-batch Hamiltonian
Monte Carlo (HMC) on modern architectures. We
show that (1) BNNs can achieve significant per-
formance gains over standard training and deep
ensembles; (2) a single long HMC chain can pro-
vide a comparable representation of the posterior
to multiple shorter chains; (3) in contrast to re-
cent studies, we find posterior tempering is not
needed for near-optimal performance, with lit-
tle evidence for a “cold posterior” effect, which
we show is largely an artifact of data augmenta-
tion; (4) BMA performance is robust to the choice
of prior scale, and relatively similar for diagonal
Gaussian, mixture of Gaussian, and logistic priors;
(5) Bayesian neural networks show surprisingly
poor generalization under domain shift; (6) while
cheaper alternatives such as deep ensembles and
SGMCMC can provide good generalization, their
predictive distributions are distinct from HMC.
Notably, deep ensemble predictive distributions
are similarly close to HMC as standard SGLD,
and closer than standard variational inference.

1. Introduction
Over the last 25 years, there have been several strong ar-
guments favouring a Bayesian approach to deep learning
(e.g., MacKay, 1995; Neal, 1996; Blundell et al., 2015;
Gal, 2016; Wilson & Izmailov, 2020). Bayesian inference
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for neural networks promises improved predictions, reli-
able uncertainty estimates, and principled model compar-
ison, naturally supporting active learning, continual learn-
ing, and decision-making under uncertainty. The Bayesian
deep learning community has designed multiple success-
ful practical methods inspired by the Bayesian approach
(Blundell et al., 2015; Gal & Ghahramani, 2016; Welling
& Teh, 2011; Kirkpatrick et al., 2017; Maddox et al., 2019;
Izmailov et al., 2019; Daxberger et al., 2020), with applica-
tions ranging from astrophysics (Cranmer et al., 2021) to
automatic diagnosis of Diabetic Retinopathy (Filos et al.,
2019), click-through rate prediction in advertising (Liu et al.,
2017) and fluid dynamics (Geneva & Zabaras, 2020).

However, inference with modern BNNs is distinctly chal-
lenging. We wish to compute a Bayesian model average cor-
responding to an integral over a multi-million dimensional
multi-modal posterior, with unusual topological properties
like mode-connectivity (Garipov et al., 2018; Draxler et al.,
2018), under severe computational constraints.

There are therefore many unresolved questions about
Bayesian deep learning practice. Variational procedures
typically provide unimodal Gaussian approximations to the
multimodal posterior. Practically successful methods such
as deep ensembles (Lakshminarayanan et al., 2017; Fort
et al., 2019) have a natural Bayesian interpretation (Wil-
son & Izmailov, 2020), but only represent modes of the
posterior. While Stochastic MCMC (Welling & Teh, 2011;
Chen et al., 2014; Zhang et al., 2020b) is computationally
convenient, it could be providing heavily biased estimates
of posterior expectations. Moreover, Wenzel et al. (2020)
question the quality of standard Bayes posteriors, citing
results where “cold posteriors”, raised to a power 1/T with
T < 1, improve performance.

Additionally, Bayesian deep learning methods are typically
evaluated on their ability to generate useful, well-calibrated
predictions on held-out or out-of-distribution data. However,
strong performance on benchmark problems does not imply
that the algorithm accurately approximates the true Bayesian
model average (BMA).

In this paper, we investigate fundamental open questions in
Bayesian deep learning, using multi-chain full-batch Hamil-
tonian Monte Carlo (HMC, Neal et al., 2011). HMC is
a highly-efficient and well-studied Markov Chain Monte
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Carlo (MCMC) method that is guaranteed to asymptotically
produce samples from the true posterior. However it is
enormously challenging to apply HMC to modern neural
networks due to its extreme computational requirements:
HMC can take tens of thousands of training epochs to pro-
duce a single sample from the posterior. To address this
computational challenge, we parallelize the computation
over hundreds of Tensor processing unit (TPU) devices.

We argue that full-batch HMC provides the most precise
tool for studying the BNN posterior to date. Indeed, we are
not proposing HMC as a computationally efficient method
for practical applications. Rather, using our implementation
of HMC we are able to explore fundamental questions about
posterior geometry, the performance of BNNs, approximate
inference, effect of priors and posterior temperature.

In particular, we show: (1) BNNs can achieve significant
performance gains over standard training and deep ensem-
bles; (2) a single long HMC chain can provide a comparable
performance to multiple shorter chains; (3) in contrast to
recent studies, we find posterior tempering is not needed for
near-optimal performance, with little evidence for a “cold
posterior” effect, which we show is largely an artifact of data
augmentation; (4) BMA performance is robust to the choice
of prior scale, and relatively similar for diagonal Gaussian,
mixture of Gaussian, and logistic priors over weights. This
result highlights the importance of architecture relative to
parameter priors in specifying the prior over functions. (5)
While Bayesian neural networks have good performance for
out-of-distribution (OOD) detection, they show surprisingly
poor generalization under domain shift; (6) while cheaper
alternatives such as deep ensembles and SGMCMC can
provide good generalization, their predictive distributions
are distinct from HMC. Notably, deep ensemble predictive
distributions are similarly close to HMC as standard SGLD,
and closer than standard variational inference.

We additionally show how to effectively deploy full batch
HMC on modern neural networks, including insights about
how to tune crucial hyperparameters for good performance,
and parallelize sampling over hundreds of TPUs. Our HMC
samples and implementation is a public resource. We hope
this resource will serve as a reference in evaluating and
calibrating more practical alternatives to HMC, and aid re-
searchers in pursuing a better understanding of approximate
inference in Bayesian deep learning.

2. Background
Bayesian neural networks. The goal of classical learning
is to find a single best setting of the parameters for the
model, typically through maximum-likelihood optimization.
In the Bayesian framework, the learner instead infers a
posterior distribution p(w|D) over the parameters w of the

model after observing the data D. The posterior distribution
is given by Bayes’ rule: p(w|D) ∝ p(D|w)p(w), where
p(D|w) is the likelihood of D given by the model with
parameters w, and p(w) is the prior distribution over the
parameters. The predictions of the model on a new test
example x are then given by the Bayesian model average
(BMA)

p(y|x,D) =
∫
w
p(y|x,w)p(w|D)dw, (1)

where p(y|x,w) is the predictive distribution for a given
value of the parameters w. This BMA is particularly com-
pelling in Bayesian deep learning, because the posterior over
parameters for a modern neural network can represent many
complementary solutions to a given problem, correspond-
ing to different settings of parameters (Wilson & Izmailov,
2020). Unfortunately, the BMA integral in Eq. (1) cannot be
evaluated in closed form for neural networks, so one must
resort to approximate inference. Moreover, approximating
Eq. (1) is challenging due to a high dimensional and so-
phisticated posterior p(w|D). For a detailed discussion of
Bayesian deep learning, see e.g. Wilson & Izmailov (2020).

Markov Chain Monte Carlo. The integral in Eq.
(1) can be approximated by sampling: p(y|x,D) ≈
1
M

∑M
i=1 p(y|x,wi), where wi ∼ p(w|D) are samples

drawn from the posterior. MCMC methods construct a
Markov chain that, if simulated for long enough, gen-
erates approximate samples from the posterior. In this
work, we focus on Hamiltonian Monte Carlo (Neal et al.,
2011), a method that produces asymptotically exact sam-
ples assuming access to the unnormalized posterior density
p(D|w)p(w) and its gradient.

3. Related Work
The bulk of work on Bayesian deep learning has focused
on scalable approximate inference methods. These meth-
ods include stochastic variational inference (Hoffman et al.,
2013; Graves, 2011; Blundell et al., 2015; Kingma et al.,
2015; Molchanov et al., 2017; Louizos & Welling, 2017;
Khan et al., 2018; Zhang et al., 2018; Wu et al., 2018; Os-
awa et al., 2019; Dusenberry et al., 2020), dropout (Sri-
vastava et al., 2014; Gal & Ghahramani, 2016; Kendall &
Gal, 2017; Gal et al., 2017), the Laplace approximation
(MacKay, 1992; Kirkpatrick et al., 2017; Ritter et al., 2018;
Li, 2000; Daxberger et al., 2020), expectation propagation
(Hernández-Lobato & Adams, 2015), and leveraging the
stochastic gradient descent (SGD) trajectory, either for a de-
terministic approximation, or sampling as in SGLD (Mandt
et al., 2017; Maddox et al., 2019; Izmailov et al., 2018; Wil-
son & Izmailov, 2020). Foong et al. (2019) and Farquhar
et al. (2020) additionally consider the role of expressive
posterior approximations in variational inference.

While these (and many other) methods often provide im-

https://github.com/google-research/google-research/tree/master/bnn_hmc
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proved predictions or uncertainty estimates, to the best of
our knowledge none of these methods have been directly
evaluated on their ability to match the true posterior distri-
bution using practical architectures and datasets. Moreover,
many of these methods are often designed with train-time
constraints in mind, to take roughly the same amount of
compute as regular SGD training. To evaluate approximate
inference procedures, and explore fundamental questions in
Bayesian deep learning, we attempt to construct a posterior
approximation of the highest possible quality, ignoring the
practicality of the method.

The Monte Carlo literature for Bayesian neural networks
has mainly focused on stochastic gradient-based methods
(Welling & Teh, 2011; Ahn et al., 2014; Chen et al., 2014;
Ma et al., 2015; Ahn et al., 2012; Ding et al., 2014; Zhang
et al., 2020b; Garriga-Alonso & Fortuin, 2021) for computa-
tional efficiency reasons. These methods are fundamentally
biased: (1) they omit the Metropolis-Hastings (MH) correc-
tion, and (2) the noise from subsampling the data perturbs
their stationary distribution. In particular, Betancourt (2015)
argues that HMC is incompatible with data subsampling.
Notably, Zhang et al. (2020a) recently proposed a stochastic
gradient MCMC method that is asymptotically exact.

Since the classic work of Neal (1996), there have been a
few recent attempts at using full-batch HMC in BNNs (e.g.;
Cobb & Jalaian, 2020; Wenzel et al., 2020). These studies
tend to use relatively short trajectory lengths (generally not
considering a number of leapfrog steps greater than 100),
and tend to focus on relatively small datasets and networks.
We on the other hand experiment with practical architectures
and datasets and use up to 105 leapfrog steps per iteration
to ensure good mixing.

Our work is aimed at understanding the properties of true
Bayesian neural networks. In a similar direction, Hron et al.
(2020); Novak et al. (2018) explore the infinite-width Gaus-
sian process (GP) (Williams & Rasmussen, 2006) limits of
BNNs. In particular, these works propose GP limits that can
be used as an approximation of the true BNN posterior.

In another recent work, Wenzel et al. (2020) have explored
the effect of the posterior temperature in Bayesian neural
networks. We discuss their results in detail in Section 7,
and provide our own exploration of the posterior temper-
ature with a different result: we find that BNNs achieve
strong performance at temperature 1 and do not require pos-
terior tempering. Moreover, the scope of our paper extends
well beyond temperature scaling, revealing for instance that
while BNNs can provide strong in-domain generalization,
they surprisingly suffer on the covariate shift problems that
approximate inference methods are often applied to. We
also show that while deep ensembles are often treated as a
non-Bayesian alternative, they in fact provide higher fidelity
approximations of the Bayesian model average than stan-

dard approximate inference procedures, as argued in Wilson
& Izmailov (2020). We also explore several other key ques-
tions, including prior selection and posterior geometry.

4. HMC for Deep Neural Networks
We use full-batch Hamiltonian Monte Carlo (HMC) to sam-
ple from the posterior over the parameters for Bayesian neu-
ral networks. In this section, we show how to make HMC
effective for modern Bayesian neural networks, discussing
important details such as hyper-parameter specification. In
the next sections, we use the HMC samples to explore fun-
damental questions about approximate inference in modern
deep learning. We summarize HMC in Appendix Algo-
rithm 1 and Algorithm 2. Intuitively, HMC is simulating
the dynamics of a particle sliding on the plot of the density
function that we are trying to sample from.1

Implementation. To scale HMC to modern neural net-
work architectures and for datasets like CIFAR-10 and
IMDB, we parallelize the computation over 512 TPUv3
devices2 (Jouppi et al., 2020). We execute HMC in a single-
program multiple-data (SPMD) configuration, wherein a
dataset is sharded evenly over each of the devices and an
identical HMC implementation is run on each device. Each
device maintains a synchronized copy of the Markov chain
state, where the full-batch gradients needed for leapfrog
integration are computed using cross-device collectives. We
release our JAX (Bradbury et al., 2018) implementation.

HMC hyper-parameters. We set the hyper-parameters
of HMC to ensure that the Metropolis-Hastings accept rates
are high and the correlation of samples is low. Specifically,
we set the trajectory length in each HMC iteration to be
τ̂ =

παprior

2 , whereαprior is the standard deviation of the prior;
when applied to spherical Gaussian distributions, HMC with
trajectory length τ̂ will generate exact samples. We set
the step size to the highest value that still provides high
MH accept rates: in general higher step sizes lead to lower
accept probabilities. In our main experiments, we run 3
independent HMC chains and combine the samples from all
chains. In Appendix B we provide a detailed discussion and
extensive ablations of the HMC hyper-parameters, verifying
that our choices lead to optimal results in practice.

Neural network architectures. In our evaluation, follow-
ing Wenzel et al. (2020), we primarily focus on two architec-
tures: ResNet-20-FRN and CNN-LSTM. ResNet-20-FRN
is a residual architecture (He et al., 2016) of depth 20 with
batch normalization layers (Ioffe & Szegedy, 2015) replaced

1For a detailed introduction to HMC please see Neal et al.
(2011). See also interactive visualization here: http://
chi-feng.github.io/mcmc-demo/.

2We use other hardware configurations in several experiments.
We state the hardware that we used in the corresponding sections.

https://github.com/google-research/google-research/tree/master/bnn_hmc
http://chi-feng.github.io/mcmc-demo/
http://chi-feng.github.io/mcmc-demo/
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with filter response normalization (FRN; Singh & Krishnan,
2020). Batch normalization makes the likelihood harder to
interpret by creating dependencies between training exam-
ples, whereas the outputs of FRN layers are independent
across inputs. We use Swish (SiLU) activations (Hendrycks
& Gimpel, 2016; Elfwing et al., 2018; Ramachandran et al.,
2017) instead of ReLUs to ensure smoothness of the poste-
rior density surface, which we found improves acceptance
rates of HMC proposals without hurting the overall per-
formance. The CNN-LSTM is a long short-term memory
network (Hochreiter & Schmidhuber, 1997) adapted from
Wenzel et al. (2020) without modifications.

Datasets and Data Augmentation. In our main evalu-
ations we use the CIFAR image classification datasets
(Krizhevsky et al., 2014) and the IMDB dataset (Maas et al.,
2011) for sentiment analysis. We do not use any data aug-
mentation, both because the random augmentations intro-
duce stochasticity into the evaluation of the posterior log-
density and its gradient, and because the expected randomly
perturbed log-likelihood does not have a clean interpretation
as a valid likelihood function (Wenzel et al., 2020).

5. How Well does HMC Mix?
The primary goal of our paper is to construct accurate sam-
ples from the posterior, and use them to understand the prop-
erties of Bayesian neural networks better. In this section we
consider several diagnostics to evaluate whether our HMC
sampler has converged, and discuss their implications to
the posterior geometry. We consider mixing in both weight
space and function space. A distribution over weights w
combined with a neural network architecture f(x,w) in-
duces a distribution over functions f(x). Ultimately, since
we are using functions to make predictions, we care mostly
about mixing in function space.

Summary: HMC is able to mix surprisingly well in
function space, and better than in parameter space.
Geometrically, HMC is able to explore connected
basins of the posterior with high functional diversity.

5.1. R̂ Diagnostics

We apply the Gelman et al. (1992) “R̂” potential-scale-
reduction diagnostic to our HMC runs. Given two or more
chains, R̂ estimates the ratio between the between-chain
variance (i.e., the variance estimated by pooling samples
from all chains) and the average within-chain variance (i.e.,
the variances estimated from each chain independently). In-
tuitively, if the chains are stuck in isolated modes, then com-
bining samples from multiple chains will yield greater di-
versity than taking samples from one chain. For the precise
mathematical definition of R̂, please see the Appendix D.

Weight Space Function Space

C
IF

A
R

-1
0

1 20 40 60
R̂

101

103

105

1 2 3 4
R̂

101

103

105

IM
D

B

1 5 10 15
R̂

101

103

105

1.0 1.2 1.4 1.6 1.8
R̂

101

103

Figure 1. Log-scale histograms of R̂ convergence diagnostics.
Function-space R̂s are computed on the test-set softmax predic-
tions of the classifiers and weight-space R̂s are computed on
the raw weights. About 91% of CIFAR-10 and 98% of IMDB
posterior-predictive probabilities get an R̂ less than 1.1. Most
weight-space R̂ values are quite small, but enough parameters
have very large R̂s to make it clear that the chains are sampling
from different distributions in weight space.

We compute R̂ using TensorFlow Probability’s implementa-
tion3 (Lao et al., 2020) for both the weights and the test-set
softmax predictions on CIFAR-10 with ResNet-20-FRN and
on IMDB with CNN-LSTM. We report the results in Fig-
ure 1. On both IMDB and CIFAR, the bulk of the function-
space R̂ values is concentrated near 1, meaning intuitively
that a single chain can capture the diversity of predictions on
most of the test data points nearly as well as multiple chains.
The mixing is especially good on the IMDB dataset, where
only 2% of inputs correspond to R̂ larger than 1.1. In Ap-
pendix C we apply HMC to a synthetic regression problem
and show that HMC can indeed mix in the prediction space:
different HMC chains provide very similar predictions.

In weight space, although most parameters show no evi-
dence of poor mixing, some have very large R̂s, indicating
that there are directions in which the chains fail to mix.

Implications for the Posterior Geometry. The fact that
a single HMC chain is able to mix well in function (predic-
tion) space suggests that the posterior contains connected
regions which correspond to high functional diversity. In-
deed, a single HMC chain is extremely unlikely to jump be-
tween isolated modes, but appears able to produce samples
with diverse predictions. Prior work on mode connectivity
(Garipov et al., 2018; Draxler et al., 2018) has shown that
there exist paths of high density connecting different modes
of the posterior. Our observations suggest a stronger ver-
sion of mode connectivity: not only do mode-connecting
paths exist between functionally diverse modes, but also at
least some of these paths can be leveraged by Monte Carlo
methods to efficiently explore the posterior. In Appendix E
we provide visualizations of the posterior density surface to
provide further intuition.

3tfp.mcmc.potential scale reduction

https://www.tensorflow.org/probability/api_docs/python/tfp/mcmc/potential_scale_reduction
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Figure 2. UCI regression datasets. Performance of Hamilto-
nian Monte Carlo (HMC), stochastic gradient Langevin dynamics
(SGLD), stochastic gradient descent (SGD), subspace inference
(SI) (Izmailov et al., 2019), SWAG (Maddox et al., 2019) and
deterministic variational inference (DVI; Wu et al., 2018). We use
a fully-connected architecture with a single hidden layer of 50 neu-
rons. The results reported for each method are mean and standard
deviation computed over 20 random train-test splits. For SI, SWAG
and DVI we report the results presented in Izmailov et al. (2019).
Top: test root-mean-squared error. Bottom: test log-likelihood.
HMC performs on par with or better than all other baselines in
each experiment, often providing a significant improvement.

Does HMC converge? In Appendix F we study the con-
vergence of the accuracy and log-likelihoods for individual
HMC samples and the BMA ensembles. Based on the re-
sults of this ablation, we set the number of burn-in iterations
to 50 to ensure that the HMC chains converge before we
begin collecting the samples.

6. Evaluating Bayesian Neural Networks
Now that we have a procedure for effective HMC sampling,
we are primed to explore exciting questions about the fun-
damental behaviour of Bayesian neural networks, such as
the role of tempering, the prior over parameters, generaliza-
tion performance, and robustness to covariate shift. In this
section we evaluate Bayesian neural networks in various
problems using our implementation of HMC. Throughout
the experiments, we use posterior temperature T = 1.

We emphasize that the main goal of our paper and this
section in particular is to understand the behaviour of true
BNNs using HMC as a precise tool, and not to argue for
HMC as a practical method for Bayesian deep learning.

Summary: Bayesian neural networks achieve
strong results, outperforming even large deep en-
sembles in a range of evaluations. Surprisingly,
however, BNNs are less robust to distribution shift
than conventionally-trained models.

6.1. Regression on UCI Datasets

Bayesian deep learning methods are often evaluated on
small-scale regression problems using fully connected net-
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Figure 3. Image and text classification. Performance of Hamilto-
nian Monte Carlo (HMC), stochastic gradient Langevin dynamics
(SGLD) with 1 and 5 chains, mean field variational inference
(MFVI), stochastic gradient descent (SGD), and deep ensembles.
We use ResNet-20-FRN on CIFAR datasets, and CNN-LSTM on
IMDB. Bayesian neural networks via HMC outperform all base-
lines on all datasets. For full results, see Appendix G.

works (e.g., Wu et al., 2018; Izmailov et al., 2019; Maddox
et al., 2019). Following these works, we evaluate BNNs us-
ing HMC on five UCI regression datasets: Concrete, Yacht,
Boston, Energy and Naval. For each of these datasets, we
construct 20 random 90-to-10 train-test splits and report
the mean and standard deviation of performance over the
splits. We use a fully connected neural network with a sin-
gle hidden layer of size 50 and 2 outputs representing the
predictive mean and standard deviation. For HMC we used
a single chain with 10 burn-in iterations and 90 iterations of
sampling. For more details, please see Appendix A.

We report the results in Figure 2. HMC typically outper-
forms all the baselines, often by a significant margin, both
in test RMSE and log-likelihood. On the Boston dataset,
HMC achieves a slightly higher average RMSE compared
to subspace inference and SWAG (Izmailov et al., 2019;
Maddox et al., 2019) but outperforms both these methods
significantly in terms of log-likelihood.

6.2. Image Classification on CIFAR

Next, we evaluate Bayesian neural networks using HMC on
image classification problems. We use the ResNet-20-FRN
architecture on CIFAR-10 and CIFAR-100. We picked a
random subset of 40960 of the 50000 images for each of
the datasets to be able to evenly shard the data across the
TPU devices; we use the same subset for both HMC and the
baselines. We run 3 HMC chains using step size 10−5 and
a prior variance of 1/5, resulting in 70,248 leapfrog steps
per sample. In each chain we discard the first 50 samples
as burn-in, and then draw 240 samples (720 in total for
3 chains)4. For SGLD, we use a single chain with 1000
burn-in epochs and 9000 epochs of sampling producing 900
samples; we also report the performance of an ensemble of 5
independent SGLD chains. Next, we report the performance

4In total, on CIFAR-10 our HMC run requires as many compu-
tations as over 60 million epochs of standard SGD training.
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Figure 4. OOD Robustness. Accuracy and log-likelihood of
HMC, SGD, deep ensembles, SGLD and MFVI under covari-
ate shift, where the CIFAR-10 test set is corrupted in 16 different
ways at intensities on the scale of 1 to 5. We use the ResNet-20-
FRN architecture. Boxes capture the quartiles of performance over
corruption types, with the whiskers indicating the minimum and
maximum. HMC is surprisingly the worst of the considered meth-
ods: even a single SGD solution provides better OOD robustness.

of a mean field variational inference (MFVI) solution; we
initialize the mean of MFVI with a solution pre-trained
with SGD and use an ensemble of 50 samples from the VI
posterior at evaluation. Finally, we report the performance
of a single SGD solution and a deep ensemble of 50 models.
For more details, see Appendix A.

We report the results in Figure 3 and Appendix G.. Bayesian
neural networks outperform all baselines in terms of accu-
racy and log-likelihood on both datasets. In terms of ECE,
SGD provides the worst results across the board, and the
rest of the methods are competitive.

BNNs under distribution shift. Bayesian methods are
often specifically applied to covariate shift problems (e.g.,
Ovadia et al., 2019; Wilson & Izmailov, 2020; Dusenberry
et al., 2020). We evaluate the the performance of HMC and
baselines on the CIFAR-10-C dataset (Hendrycks & Diet-
terich, 2019), which applies a set of corruptions to CIFAR-
10 with varying intensities. Following the setup in Ovadia
et al. (2019), we use the same 16 corruptions, evaluating
the performance at all intensities. We report the results in
Figure 4. Surprisingly, we find that Deep Ensembles and
SGLD are consistently more robust to distribution shift than
HMC-based BNNs. For high corruption intensities, even
a single SGD model outperforms the HMC ensemble. We
note that while BNNs are not robust to covariate shift, they
can detect it (see Appendix I).

In Appendix H we provide further exploration of this effect,
where we see HMC samples are significantly less robust
to many types of noise compared to conventionally-trained
SGD models. We see in the Appendix that the performance
of HMC-based BNNs under data corruption can be signifi-
cantly improved by using posterior tempering.

Inspired by our findings, Izmailov et al. (2021) provide a
detailed explanation for why high-fidelity Bayesian model
averaging can fail under covariate shift.

6.3. Language Classification on IMDB

We use a CNN-LSTM architecture on the IMDB binary
text classification dataset. In Figure 3 we report the results
for HMC and the same baselines as in Section 6.2. We
use HMC with a step size of 10−5 and a prior variance of
1/40, resulting in 24,836 leapfrog steps per sample. We
run 3 chains, burning-in for 50 samples, and drawing 400
samples per chain (1,200 total). For more details, please see
Appendix A and Appendix G.. Analogously to the image
classification experiments, HMC outperforms the baselines
on accuracy and log-likelihood.

7. Do We Need Cold Posteriors?
Multiple works have considered tempering the posterior
in Bayesian neural networks (e.g. Wenzel et al., 2020;
Wilson & Izmailov, 2020; Zhang et al., 2020b; Aitchi-
son, 2020). Specifically, we can consider a distribution
pT (w|D) ∝

(
p(D|w) · p(w)

)1/T
, where w are the param-

eters of the network, D is the training dataset, p(D|w) is
the likelihood of D for the network with parameters w and
T is the temperature. Note that at temperature T = 1, pT
corresponds to the standard Bayesian posterior over the pa-
rameters of the network. Temperatures T < 1 correspond
to cold posteriors, distributions that are sharper than the
Bayesian posterior. Similarly, temperatures T > 1 corre-
spond to warm posteriors which are softer than the Bayesian
posterior. See Appendix Figure 9(e) for a visualization.

Wenzel et al. (2020) argue that Bayesian neural networks
require a cold posterior, and the performance at temperature
T = 1 is inferior to even a single model trained with SGD.
The authors refer to this phenomenon as the cold posteriors
effect. However, our results are different:

Summary: We show that cold posteriors are not
needed to obtain near-optimal performance with
Bayesian neural networks and may even hurt per-
formance. We show that the cold posterior effect is
largely an artifact of data augmentation.

7.1. Testing the Cold Posteriors Effect

Wenzel et al. (2020) demonstrate the cold posteriors with
two main experiments: ResNet-20 on CIFAR-10 and CNN-
LSTM on IMDB. In these experiments the authors show
poor performance at temperature T = 1, with strong ben-
efits from decreasing the temperature. However, for the
CIFAR-10 experiment, it is apparent (Wenzel et al., 2020,
Appendix K, Figure 28) that the results at T = 1 are near-
optimal for the ResNet on CIFAR-10 if data augmentation
is turned off and batch normalization is replaced with filter
response normalization, which is in fact necessary for a
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Figure 5. Effect of posterior temperature. Log-likelihood, accu-
racy and expected calibration error using the CNN-LSTM on the
IMDB dataset as a function of posterior temperature T . For both
the likelihood and accuracy T = 1 provides optimal performance,
while for the ECE the colder posteriors provide a slight improve-
ment. For all three metrics, the posterior at T = 1 outperforms the
SGD baseline as well as a deep ensemble of 10 models.

clear Bayesian interpretation of the inference procedure.

Furthermore, in Section 6, we show that Bayesian neural
networks can achieve performance superior to SGD and
even deep ensembles at temperature T = 1, in particular
using the same ResNet-20-FRN model on CIFAR-10 and
CNN-LSTM model on IMDB used by Wenzel et al. (2020).

To further understand the effect of posterior temperature T ,
we compare the performance of the CNN-LSTM model at
different T using our HMC sampler. In all runs we used
a fixed prior variance α2 = 1

40 . We report the results in
Figure 5. The performance of the BNN at T = 1 is better
than the SGD baseline as well as a deep ensemble of 50
independent models. Moreover, the performance at T = 1
is better compared to all other temperatures we tested in
terms of both test accuracy and log-likelihood.

We also note that while posterior tempering does not seem
necessary for good predictive performance with BNNs, it
may be helpful under distribution shift (Appendix H). Wil-
son & Izmailov (2020) additionally argue that tempering
may be a reasonable procedure in general, and is not neces-
sarily at odds with Bayesian principles.

Role of data augmentation. Our results are in contrast
with Wenzel et al. (2020), who argue that cold posteriors are
needed for good performance with BNNs, and claim that
data augmentation “likely does not account for the cold pos-
terior effect”. In Appendix J we provide an additional study
of what may have caused the poor performance of BNNs in
Wenzel et al. (2020), using the code for inference provided
by Wenzel et al. (2020). We identify data augmentation as
the key factor responsible for the cold posterior effect, and
also show that batch normalization does not significantly
influence this effect: when the data augmentation is turned
off, we do not observe the cold posteriors effect5. Data aug-
mentation cannot be naively incorporated in the Bayesian

5In a concurrent work, Fortuin et al. (2021) also note that data
augmentation strengthens the cold posteriors effect.

PRIOR GAUSSIAN MOG LOGISTIC

ACCURACY 0.866 0.863 0.869
LOG LIKELIHOOD -0.311 -0.317 -0.304

Table 1. Effect of prior. BMA accuracy and log-likelihood under
different prior families using CNN-LSTM on IMDB. We produce
80 samples from a single HMC chain for each of the priors. The
heavier-tailed logistic prior provides slightly better performance
compared to the Gaussian and mixture of Gaussians (MoG) priors.

neural network model (see the discussion in Appendix K
of Wenzel et al. (2020)), and arguably it may be reasonable
to decrease the temperature when using data augmentation:
intuitively, data augmentation increases the amount of data
observed by the model, and should lead to higher posterior
contraction. We leave incorporating data augmentation in
our HMC evaluation framework as future work.

8. What is the Effect of Priors in Bayesian
Neural Networks?

Bayesian deep learning is often criticized for the lack of
intuitive priors over the parameters. For example, Wenzel
et al. (2020) hypothesize that the popular Gaussian priors
of the form N (0, α2I) are inadequate and lead to poor per-
formance. Tran et al. (2020) propose a new prior for BNNs
inspired by GPs (Williams & Rasmussen, 2006) based on
this hypothesis. In concurrent work, Fortuin et al. (2021)
also explore several alternatives to standard Gaussian priors
inspired by the cold posteriors effect. Wilson & Izmailov
(2020), on the other hand, argue that vague Gaussian priors
in the parameter space induce useful function-space priors.

In Section 6 we have shown that Bayesian neural networks
can achieve strong performance with vague Gaussian priors.
In this section, we explore the sensitivity of BNNs to the
choice of the prior scale as well as several alternative prior
families, as a step towards a better understanding of the role
of the prior in BNNs.

Summary: High-variance Gaussian priors over pa-
rameters of BNNs lead to strong performance. The
results are robust with respect to the prior scale.
Mixture of Gaussian and logistic priors over param-
eters are similar in performance to Gaussian priors.
These results highlight the relative importance of
architecture over parameter priors in specifying a
useful prior over functions.

In Table 1, we report BMA accuracy and log-likelihood for
two non-Gaussian priors on the IMDB dataset: logistic and
mixture of Gaussians (MoG). For the MoG prior we use a
mixture of two Gaussians centered at 0, one with variance
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SGMCMC

METRIC
HMC

(REFERENCE) SGD DEEP ENS MFVI SGLD SGHMC SGHMC
CLR

SGHMC
CLR-PREC

C
IF

A
R

-1
0 ACCURACY

89.64 83.44 88.49 86.45 89.32 89.38 89.63 87.46
±0.25 ±1.14 ±0.10 ±0.27 ±0.23 ±0.32 ±0.37 ±0.21

AGREEMENT
94.01 85.48 91.52 88.75 91.54 91.98 92.67 90.96
±0.25 ±1.00 ±0.06 ±0.24 ±0.15 ±0.35 ±0.52 ±0.24

TOTAL VAR
0.074 0.190 0.115 0.136 0.110 0.109 0.099 0.111
±0.003 ±0.005 ±0.000 ±0.000 ±0.001 ±0.001 ±0.006 ±0.002

C
IF

A
R

-1
0-

C ACCURACY
70.91 71.04 76.99 75.40 78.80 78.20 76.43 73.42
±0.93 ±1.80 ±0.39 ±0.34 ±0.17 ±0.25 ±0.39 ±0.39

AGREEMENT
86.00 72.01 79.29 75.47 77.99 78.98 80.93 79.65
±0.44 ±0.82 ±0.18 ±0.27 ±0.22 ±0.22 ±0.73 ±0.35

TOTAL VAR
0.133 0.334 0.220 0.245 0.214 0.203 0.194 0.205
±0.004 ±0.007 ±0.003 ±0.002 ±0.002 ±0.002 ±0.010 ±0.005

Table 2. Evaluation of cheaper alternatives to HMC. Agreement and total variation between predictive distributions of HMC and
approximate inference methods: deep ensembles, mean field variational inference (MFVI), and stochastic gradient Monte Carlo
(SGMCMC) variations. For all methods we use ResNet-20-FRN trained on CIFAR-10 and evaluate predictions on the CIFAR-10 and
CIFAR-10-C test sets. For CIFAR-10-C we report the average results across all corruptions and corruption intensities. We additionally
report the results for HMC for reference: we compute the agreement and total variation between one of the chains and the ensemble of the
other two chains. For each method we report the mean and standard deviation of the results over three independent runs. MFVI provides
the worst approximation of the predictive distribution. Deep ensembles despite often being considered non-Bayesian, significantly
outperform MFVI. SG-MCMC methods provide the best results with SGHMC-CLR showing the best overall performance.

1
40 and the other with variance 1

160 . We pick a logistic prior
with a variance of 1

40 . We additionally provide the results
for a Gaussian prior with variance 1

40 . We approximate the
BMA using 80 samples from a single HMC chain for each
of the priors. We find that the heavier-tailed logistic prior
performs slightly better than the Gaussian and MoG.

In Appendix K, we additionally show that performance of
BNNs with Gaussian priors N (0, αI) is fairly robust to the
choice of α with vague priors avhieving the best results.

Importance of Architecture in Prior Specification. We
often think of the prior narrowly in terms of a distribution
over parameters p(w). But the prior that matters is the prior
over functions p(f(x)) that is induced when a prior over
parameters p(w) is combined with the functional form of
a neural network f(x,w). All of the results in this sec-
tion point to the relative importance of the architecture in
defining the prior over functions, compared to the prior over
parameters. A vague prior over parameters is not necessarily
vague in function-space. Moreover, while the details of the
prior distribution over parameters p(w) have only a minor
effect on performance, the choice of architecture certainly
has a major effect on performance.

9. Do Scalable BDL Methods and HMC Make
Similar Predictions?

While HMC shows strong performance in our evaluation in
Section 6, in most realistic BNN settings it is an impractical
method. However, HMC can be used as a reference to

evaluate and calibrate more practical alternatives. In this
section, we evaluate the fidelity of SGMCMC, variational
methods, and deep ensembles in representing the predictive
distribution (BMA) given by our HMC reference.

Summary: While SGMCMC and Deep Ensembles
can provide good generalization accuracy and cal-
ibration, their predictive distributions differ from
HMC. Deep ensembles are similarly close to the
HMC predictive distribution as SGLD, and closer
than standard variational inference.

We consider two primary metrics: agreement and total vari-
ation. We define the agreement between the predictive
distributions p̂ of HMC and p of another method as the frac-
tion of the test data points for which the top-1 predictions of
p̂ and p are the same: 1

n

∑n
i=1 I[argmaxj p̂(y = j|xi) =

argmaxj p(y = j|xi)], where I[·] is the indicator function
and n is the number of test data points xi. We define the total
variation metric between p̂ and p as the total variation dis-
tance between the predictive distributions averaged over the
test data points: 1

n

∑n
i=1

1
2

∑
j

∣∣p̂(y = j|xi)−p(y = j|xi)
∣∣.

The agreement (higher is better) captures how well a method
is able to capture the top-1 predictions of HMC, while the
total variation (lower is better) compares the predictive prob-
abilities for each of the classes. To provide an additional
comparison of the predictive distributions between HMC
and other methods, in Appendix L we study the distribution
of predictive entropies and the calibration curves.
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In Table 2 we report the agreement and total variation met-
rics as well as the predictive accuracy on the CIFAR-10
and CIFAR-10-C test sets for a deep ensemble of 10 mod-
els and several SGLD variations: standard SGLD (Welling
& Teh, 2011), SGLD with momentum (SGHMC) (Chen
et al., 2014), SGLD with momentum and a cyclical learning
rate schedule (SGHMC-CLR) (Zhang et al., 2020b) and
SGLD with momentum, cyclical learning rate schedule and
a preconditioner (SGHMC-CLR-Prec) (Wenzel et al., 2020).
All methods were trained on CIFAR-10. For more details,
please see Appendix A.

Overall, the absolute value of agreement achieved by all
methods is fairly low on CIFAR-10 and especially on
CIFAR-10-C. More advanced SGHMC-CLR and SGHMC-
CLR-Prec methods provide a better fit of the HMC predic-
tive distribution while not necessarily improving the accu-
racy. Notably, these methods are also less robust to the data
corruptions in CIFAR-10-C, again suggesting that higher fi-
delity representations of the predictive distribution can lead
to decreased robustness, as we found in section 6.2.

Deep ensembles provide a reasonable approximation to the
HMC predictive distribution, outperforming both SGLD
and SGHMC in terms of total variation on CIFAR-10 and in
terms of agreement on CIFAR-10-C. These results support
the argument that deep ensembles, while not typically char-
acterized as a Bayesian method, provide a higher fidelity
approximation to a Bayesian model average than methods
that are conventionally accepted as Bayesian inference pro-
cedures in modern deep learning (Wilson & Izmailov, 2020).

In Appendix H we explore the performance of HMC, SGD,
deep ensembles, and SGMCMC variations under differ-
ent corruptions individually. Interestingly, the behavior of
SGLD and SGHMC-CLR-Prec appears more similar to that
of deep ensembles than that of HMC. So, while both SGM-
CMC and deep ensembles are very compelling practically,
they provide relatively distinct predictive distributions from
HMC. Mean-field VI methods are particularly far from the
HMC predictive distribution. Thus, we should be very care-
ful when making judgements about true Bayesian neural
networks based on the SGMCMC or MFVI performance.

10. Discussion
Despite the rapidly increasing popularity of approximate
Bayesian inference in modern deep learning, little is known
about the behaviour of truly Bayesian neural networks. To
the best of our knowledge, our work provides the first realis-
tic evaluation of BNNs with precise and exhaustive posterior
sampling. We establish several properties of Bayesian neu-
ral networks, including good generalization performance,
lack of a cold posterior effect, and a lack of robustness
to covariate shift. We hope that our observations and the

tools that we develop will facilitate fundamental progress in
understanding the behaviour of Bayesian neural networks.

Should we use Bayesian neural networks? On most of
the problems considered in this work, the best results both
in terms of uncertainty calibration and predictive accuracy
were achieved by Bayesian neural networks. We believe that
our results provide motivation to use BNNs with accurate
posterior approximation in practical applications and hope
that our work will inspire the community to produce new
accurate and scalable approximate inference methods for
Bayesian deep learning.

Challenging conventional wisdom. A conventional wis-
dom has emerged that deep ensembles are a non-Bayesian
alternative to variational methods, that standard priors for
neural networks are poor, and that cold posteriors are a
problematic result for Bayesian deep learning. Our results
highlight that one should take care in uncritically repeat-
ing such claims. In fact, deep ensembles appear to provide
a higher fidelity representation of the Bayesian predictive
distribution than widely accepted approaches to approxi-
mate Bayesian inference. If anything, the takeaway from
the relatively good performance of deep ensembles is that
we would benefit from approximate inference being closer
to the Bayesian ideal! Moreover, the details over the pri-
ors in weight space can have a relatively minor effect on
performance, and there is no strong evidence that standard
Gaussian priors are particularly bad. In fact, there are many
reasons to believe these priors have useful properties (Wil-
son & Izmailov, 2020). Similarly, on close inspection, we
found no evidence for a general cold posterior effect, which
we identify as largely an artifact of data augmentation. Al-
though we see here that tempering does not in fact seem to
be required, as argued in Wilson & Izmailov (2020) temper-
ing is also not necessarily unreasonable or even divergent
from Bayesian principles. Even the results we found that
are less favourable to Bayesian deep learning are contrary to
the current orthodoxy. Indeed, higher fidelity Bayesian in-
ference surprisingly appears to suffer more greatly from co-
variate shift, despite the popularity of approximate Bayesian
inference procedures in this setting.
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