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Abstract

Expectation maximization (EM) is the default
algorithm for fitting probabilistic models with
missing or latent variables, yet we lack a full
understanding of its non-asymptotic conver-
gence properties. Previous works show results
along the lines of “EM converges at least as
fast as gradient descent” by assuming the con-
ditions for the convergence of gradient descent
apply to EM. This approach is not only loose,
in that it does not capture that EM can make
more progress than a gradient step, but the as-
sumptions fail to hold for textbook examples
of EM like Gaussian mixtures. In this work
we first show that for the common setting
of exponential family distributions, viewing
EM as a mirror descent algorithm leads to
convergence rates in Kullback-Leibler (KL)
divergence. Then, we show how the KL di-
vergence is related to first-order stationarity
via Bregman divergences. In contrast to pre-
vious works, the analysis is invariant to the
choice of parametrization and holds with min-
imal assumptions. We also show applications
of these ideas to local linear (and superlin-
ear) convergence rates, generalized EM, and
non-exponential family distributions.

1 INTRODUCTION

Expectation maximization (EM) is the most common
approach to fitting probabilistic models with missing
data or latent variables. EM was formalized by Demp-
ster et al. (1977), who discussed a wide variety of earlier
works that independently discovered the algorithm and
domains where EM is used. They already listed multi-
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Figure 1: The surrogate optimized by EM is a tighter
bound on the objective L than the the quadratic bound
implied by smoothness, optimized by gradient descent.

variate sampling, normal linear models, finite mixtures,
variance components, hyperparameter estimation, iter-
atively reweighted least squares, and factor analysis. To
this day, EM continues to be used for these applications
and others, like semi-supervised learning (Ghahramani
and Jordan, 1994), hidden Markov models (Rabiner,
1989), continuous mixtures (Caron and Doucet, 2008),
mixture of experts (Jordan and Xu, 1995), image recon-
struction (Figueiredo and Nowak, 2003), and graphical
models (Lauritzen, 1995). The many applications of
EM have made the work of Dempster et al. one of the
most influential in the field.

Since the development of EM and subsequent clarifi-
cations on the necessary conditions for convergence
(Boyles, 1983; Wu, 1983), a large number of works
have shown convergence results for EM and its many
extensions, leading to a variety of insights about the
algorithm, such as the effect of the ratio of missing in-
formation (Xu and Jordan, 1996; Ma et al., 2000) and
the sample size (Wang et al., 2015; Yi and Caramanis,
2015; Daskalakis et al., 2017; Balakrishnan et al., 2017).
However, existing results on the global, non-asymptotic
convergence of EM rely on proof techniques developed
for gradient descent on smooth functions, which rely on
quadratic upper-bounds on the objective.1 Informally,
this approach argues that the maximization step of
the surrogate constructed by EM does at least as well
as gradient descent on a quadratic surrogate with a
constant step-size, as illustrated in Figure 1.

1As EM is a maximization algorithm, we should say
“gradient ascent” and “lower-bound”. But we use the lan-
guage of minimization to make connections to ideas from
the optimization literature more explicit.



Homeomorphic-Invariant Analysis of EM

0 50 150 200Iteration
10−10

10−5

100

O
pt

im
al

it
y

ga
p

EM

GD

Figure 2: Performance of EM and gradient descent (GD)
with constant step-size, selected by grid-search, for a
Gaussian mixture model on the Old Faithful dataset.
The large gap between the two methods suggests that
existing theory for gradient descent is insufficient to
explain the performance of EM.

The use of smoothness as a starting assumption leads
to results that imply that EM behaves as a gradient
method with a constant step-size. If true, there would
be no difference between EM and its gradient-based vari-
ants (e.g. Lange et al., 2000). This does not hold, how-
ever, and the resulting convergence rates are inevitably
loose; EM makes more progress than this worst-case
bound even on simple problems, as shown in Figure 2.

Another issue is that, similarly to how Newton’s method
is invariant to affine reparametrizations, EM is invariant
to any homeomorphism (Varadhan and Roland, 2004);
the steps taken by EM are the same for any continuous,
invertible reparametrization. This is not reflected by
current analyses because the parametrization of the
problem influences the smoothness of the function and
the resulting convergence rate. For these reasons, the
general frameworks proposed in the optimization lit-
erature (Xu and Yin, 2013; Mairal, 2013; Razaviyayn,
2014; Paquette et al., 2018) where EM is a special case,
do not reflect that EM is faster than typical members
of these frameworks and yield loose analyses.

Most importantly, the assumption that the objective
function is bounded by a quadratic does not hold in
general. Results relying on smoothness do not apply, for
example, to the standard textbook illustration of EM:
Gaussian mixtures with learned covariance matrices
(Bishop, 2007; Murphy, 2012). This is shown in Figure 3.
The smoothness assumption might be a reasonable
simplification for local analyses, as it only needs to hold
over a small subspace of the parameter space. In this
setting, it does not detract from the main contribution
of works investigating statistical properties or large-
sample behavior. It does not hold, however, for global
convergence analyses with arbitrary initializations. Our
focus in this work is analyzing the classic EM algorithm
when run for a finite number of iterations on a finite
dataset, the setting in which people have been using
EM for over 40 years and continue to use today.

We focus on the application of EM to exponential fam-
ily models, of which Gaussian mixtures are a special

-2 2µ
0

3

σ
2

Contour

-2 2µ

2

6

L(
µ
,σ

2
)

Mean slice

0 3σ2

2

6

L(
µ
,σ

2
)

Variance slice

Figure 3: An exponential family distribution that can-
not be smooth; fitting a Gaussian N

(
µ, σ2

)
, including

its variance. As the loss diverges to ∞, the objective
cannot be upper-bounded by a quadratic function.

case. Exponential families are by far the most common
setting and an important special case as the M-step has
a closed form solution. Modern stochastic and online
extension of EM also rely on the form of exponential
families to efficiently summarize information about past
data (Neal and Hinton, 1998; Sato, 1999; Delyon et al.,
1999; Cappé and Moulines, 2009).

The main tool we use for the analysis is the Kullback-
Leibler (KL) divergence to describe distances between
parameters. This approach was initially used to derive
asymptotic convergence results (Csiszár and Tusnády,
1984; Chrétien and Hero, 2000; Tseng, 2004) but has, to
the best of our knowledge, not yet been applied to non-
asymptotic analyses. By characterizing distances in KL

divergence between the distributions induced by the
parameters, rather than their Euclidean distance, the
results do not rely on invalid smoothness assumptions
and are invariant to the choice of parametrization.

Focusing on convergence to a stationary point, as the
EM objective L is non-convex, an informal summary
of the main difference between previous analyses using
smoothness and our results is that, after T iterations,

Smoothness: mint≤T ‖∇L(θt)‖2 ≤LL(θ1)−L∗
T

KL divergence: mint≤T KL[θt+1‖θt ]≤ L(θ1)−L∗
T

where L∗ is the optimal value of the objective, L(θ1)−
L∗ is the initial optimality gap and L is the smoothness
constant. For non-smooth models, such as Gaussians
with learned covariances (Fig. 3), L =∞ and the bound
is vacuous, whereas bounds in KL divergence do not
depend on problem-specific constants. We show how
the KL divergence relates to stationarity conditions for
non-degenerate problems in Section 5.

The key observation for exponential families is that
M-step iterations match the moments of the model to
the sufficient statistics of the data. We show that in this
setting, EM can be interpreted as a mirror descent up-
date, where each iteration minimizes the linearization
of the objective and a KL divergence penalization term
(rather than the gradient descent update which uses the
Euclidean distance between parameters instead). While
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the connection between EM and exponential families
is far from new, as it predates the codification of EM

by Dempster et al. (1977) (Blight, 1970), the further
connection to mirror descent to describe its behavior
is, to the best of our knowledge, not acknowledged
in the literature. More closely related to general opti-
mization, our work can be seen as an application of the
recent perspective of mirror descent as defining smooth-
ness relative to a reference function, as presented by
Bauschke et al. (2017) and Lu et al. (2018).

Our main results are that we:

• Show that EM for the exponential family is a mirror
descent algorithm, and that the EM objective is
relatively smooth in KL divergence.

• Show the first homeomorphic-invariant non-
asymptotic EM convergence rate, and how the KL

divergence between iterates is related to stationary
points and the natural gradient.

• Show how the ratio of missing information affects
the non-asymptotic linear (or superlinear) conver-
gence rate of EM around minimizers.

• Extend the results to generalized EM, where the
M-step is only solved approximately.

• Discuss how to handle cases where the M-step is
not in the exponential family (and might be non-
differentiable) by analyzing the E-step.

2 EXPECTATION-MAXIMIZATION
AND EXPONENTIAL FAMILIES

Before stating our results, we introduce the EM algo-
rithm and necessary background on exponential fami-
lies. For completeness, we provide additional details in
Appendix A and refer the reader to Wainwright and
Jordan (2008) for a full treatment of the subject.

EM applies when we want to maximize the likelihood
p(x | θ) of data x given parameters θ, where the likeli-
hood depends on unobserved variables z. By marginaliz-
ing over z, we obtain the negative log-likelihood (NLL),
that we want to minimize (to maximize the likelihood),

L(θ) = − log p(x | θ) = − log
∫
p(x, z | θ) dz, (1)

where p(x, z | θ) is the complete-data likelihood. The
integral here is multi-dimensional if z is, and a sum-
mation for discrete values, but we write all cases as a
single integral for simplicity. EM is most useful when the
complete-data NLL, − log p(x, z | θ), is a convex func-
tion of θ and solvable in closed form if z were known.
EM defines the surrogate Qθ(φ), which estimates L(φ)
using the expected values for the latent variables at θ,

Qθ(φ) = −
∫

log p(x, z |φ) p(z |x, θ) dz,

θ
µ

∇A∗(µ)

∇A(θ)

Mean parameters Natural parameters

Figure 4: The gradient of the log-partition function
and its dual, (∇A,∇A∗), form a bijection between the
natural and mean parameters θ, µ.

and iteratively updates θt+1 ∈ arg minφQθt(φ). The
computation of the surrogate Qθ(·) and its minimiza-
tion are typically referred to as the E-step and M-step.

A useful decomposition of the surrogate, shown by
Dempster et al. (1977), is the equality

Qθ(φ) = L(φ) +Hθ(φ),

where Hθ(φ) = −
∫

log p(z |x, φ) p(z |x, θ) dz
(2)

is an entropy-like term minimized at φ = θ. That is,

0 ≤ Hθ(θ) ≤ Hθ(φ) and ∇Hθ(θ) = 0.

This gives two fundamental results about EM. As
Hθ(·) ≥ 0, the surrogate is an upper-bound on the
objective and improvement on Qθ translates to improve-
ment on L, and the gradients of the loss and the surro-
gate match at the point it is formed, ∇Qθ(θ) = ∇L(θ).

2.1 Exponential families

Many canonical applications of EM, including mixture
of Gaussians, are special cases where the complete-data
distribution, given a value for the latent variable z, is
an exponential family distribution;

p(x, z | θ) ∝ exp(〈S(x, z), θ〉 −A(θ)), (3)

where S, θ, andA are the sufficient statistics, natural
parameters, and log-partition function of the distri-
bution. Exponential family models are an important
special case as the M-step has a closed form solution,
and the update depends on the data only through the
sufficient statistics. The solution for the maximum like-
lihood estimate (MLE) given x and z can be found from
the stationary point of the complete log-likelihood,

∇ log p(x, z | θ) = S(x, z)−∇A(θ) = 0. (4)

The gradient ∇A yields the expected sufficient statis-
tics, ∇A(θ) = E p(x,z | θ)[S(x, z)], also called mean pa-
rameters and denoted by µ. The log-partition function
defines a bijection between the natural and mean pa-
rameters. Its inverse is given by∇A∗, the gradient of the
convex conjugate of A, A∗(µ) = supθ{〈θ, µ〉 −A(θ)},
such that µ = ∇A(θ) and θ = ∇A∗(µ), as illustrated in
Figure 4. The solution to Equation (4), given by

∇A(θ) = S(x, z) =⇒ θ = ∇A∗(S(x, z)),
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is called moment matching as its finds the parameter
that, in expectation, generates the observed statistics.

To connect EM and mirror descent, we use the Breg-
man divergence induced by a convex function h; the
difference between the function and its linearization,

Dh(φ, θ) = h(φ)− h(θ)− 〈∇h(θ), φ− θ〉. (5)

For exponential families, the Bregman divergence in-
duced by the log-partitionA is the KL divergence

DA(φ, θ) = KL[p(x, z | θ)‖p(x, z |φ)].

The Bregman divergences induced byA and its conju-
gateA∗ have the following relation (note the ordering)

DA(φ, θ) = DA∗(∇A(θ),∇A(φ)). (6)

Both expressions are the same KL divergence, but differ
in the parametrization used to express the distributions.

3 EM AND MIRROR DESCENT

Although EM iterations strictly decrease in the ob-
jective function if such decrease is possible locally,
this does not directly imply convergence to stationary
points, even asymptotically (Boyles, 1983; Wu, 1983).
The progress at each step could decrease faster than
the objective. Characterizing the progress to ensure
convergence requires additional assumptions.

Local analyses typically assume that the EM update
contracts the distance to a local minima θ∗,

‖θt+1 − θ∗‖ ≤ c‖θt − θ∗‖,
for some c < 1. On the other hand, global analyses
typically assume the surrogate is smooth, meaning that

‖∇Q·(θ)−∇Q·(φ)‖ ≤ L‖θ − φ‖.
for all θ and φ, and some fixed constant L. This is equiv-
alent to assuming the following upper bound holds,

L(φ) ≤ L(θ) + 〈∇L(θ), φ− θ〉+
L

2
‖θ − φ‖2.

While the local analyses assumptions are reasonable,
the worst-case value of L for global results can be infi-
nite, as in the simple example of Figure 3. Instead, we
show that the following upper-bound in KL divergence
holds without additional assumptions.

Proposition 1. For exponential family distributions,
the M-step update in Expectation-Maximization is equiv-
alent to the minimization of the following upper-bound;

L(φ) ≤ L(θ) + 〈∇L(θ), φ− θ〉+DA(φ, θ), (7)

where A is the log-partition of the complete-data distri-
bution, and DA(φ, θ) = KL[p(x, z | θ)‖p(x, z |φ)].

While the upper bound is still expressed in a specific
parametrization to describe the distributions, the KL

divergence is a property of the distributions, indepen-
dent of their representation. As this upper-bound is the
one minimized by the M-step, it is a direct description
of the algorithm rather than an additional surrogate
used for convenience, as was illustrated in Figure 1.

This gives an interpretation of EM in terms of the mir-
ror descent algorithm (Nemirovski and Yudin, 1983;
Beck and Teboulle, 2003), the minimization of a first-
order Taylor expansion and Bregman divergence as
in Equation (7), with step-size α = 1. In the recent
perspective of mirror descent framed as relative smooth-
ness (Bauschke et al., 2017; Lu et al., 2018), the objec-
tive function is 1-smooth relative toA. Existing results
(e.g. Lu et al., 2018, Theorem 3.1) then directly im-
ply the following local result, up to non-degeneracy
assumptions A1–A3 discussed in the next section.

Corollary 1. For exponential families, if EM is ini-
tialized in a locally-convex region with minimum θ∗,

L(θT )− L(θ∗) ≤ 1

T
KL[p(x, z | θ1)‖p(x, z | θ∗)]. (8)

To the best of our knowledge, this is the first non-
asymptotic convergence rate for EM that does not de-
pend on problem-specific constants.

Proof of Proposition 1. Recall the decomposition of
the surrogate in terms of the objective and entropy
term, Qθ(φ) = L(φ) +Hθ(φ) in Equation (2). It gives

L(φ)− L(θ) = Qθ(φ)−Qθ(θ) +Hθ(θ)−Hθ(φ),

where Hθ(θ) − Hθ(φ) ≤ 0 as Hθ(φ) is minimized at
φ = θ. We will show that for exponential families,

Qθ(φ)−Qθ(θ) = 〈∇L(θ), φ− θ〉+DA(φ, θ),

which implies the upper-bound in Equation (7) and
that its minima matches that of Qθ(φ).

If the complete-data distribution is in the exponential
family, the surrogate in natural parameters is

Qθ(φ) = −
∫

log p(x, z |φ) p(z |x, θ) dz,

= −
∫

[〈S(x, z), φ〉 −A(φ)] p(z |x, θ) dz,

= −
〈
Ep(z | x,θ)[S(x, z)], φ

〉
+A(φ).

(9)

Using s(θ) = Ep(z | x,θ)[S(x, z)] for the expected suffi-
cient statistics2 and expanding Qθ(φ)−Qθ(θ) yields

Qθ(φ)−Qθ(θ) = −〈s(θ), φ− θ〉+A(φ)−A(θ),

(1)
= −〈s(θ)−∇A(θ), φ− θ〉+DA(φ, θ),

(2)
= 〈∇L(θ), φ− θ〉+DA(φ, θ),

where (1) adds and subtracts 〈∇A(θ), φ− θ〉 to com-

2The sufficient statistics s(θ) also depend on x. We do
not write s(θ, x) as x is fixed and the same at each iteration.
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plete the Bregman divergence and (2) uses that the
gradient of the surrogate and the objective match at θ,

∇L(θ) = ∇Qθ(θ) = ∇A(θ)− s(θ).

This perspective extends to stochastic approximation
(Robbins and Monro, 1951) variants of EM, which are
becoming increasingly relevant as they scale to large
datasets. Algorithms such as incremental, stochastic
and online EM (Neal and Hinton, 1998; Sato, 1999; De-
lyon et al., 1999; Cappé and Moulines, 2009) average
the observed sufficient statistics to update the param-
eters. This can be cast as stochastic mirror descent
(Nemirovski et al., 2009) with step-sizes decreasing as
1/t. For brevity, we leave the derivation to Appendix B.

4 ASSUMPTIONS AND OPEN
CONSTRAINTS

Before diving into convergence results, we discuss the
assumptions needed for the method to be well defined.

A1 The complete-data distribution p(x, z | θ) is a min-
imal exponential family distribution; no two pa-
rameters lead to the same distribution.

A1 implies the continuity and differentiability of L,
the convexity of the surrogate and that natural and
mean parameters are well defined. The minimality as-
sumption ensures the log-partition functionA is strictly
convex, which is the common assumption in the mir-
ror descent literature that the mirror map is strictly
convex. It implies the mappings ∇A,∇A∗ are unique
and that the surrogate has a unique solution. A1 is not
strictly necessary, as similar results can be derived with
regularization, but greatly simplifies the presentation.

The next assumptions deal with a further subtle issue
that arises when we attempt to apply results from the
optimization literature to EM, like the generic frame-
works of Xu and Yin (2013), Mairal (2013) or Raza-
viyayn (2014). The parameters of the distributions
optimized by EM are typically constrained to a sub-
set θ ∈ Ω, like that probabilities sum to one and that
covariance matrices are positive-definite. To handle con-
straints, those analyses assume access to a projection
onto the constraint set Ω. However, this does not hold
for common settings of EM like mixtures of Gaussians.
When the boundaries of the constraint set are open,
the projection operator does not exist (there is no “clos-
est positive-definite matrix” to a matrix that is not
positive-definite). An additional complication is related
to the existence of a lower-bound on the objective. For
example, in Gaussian mixtures, we can drive the objec-
tive to −∞ by centering a Gaussian on a single data
point and shrinking the variance towards zero. The
existence of such degenerate solutions is challenging
for non-asymptotic convergence rates, as results typi-

(

→∞→
∞

Ω

f(θ)

Figure 5: Example of a barrier function with compact
sub-level sets on an open set Ω, satisfying A2 and A3.
Even if Ω is open, as f goes to ∞ at the boundary and
is convex, the minimum is guaranteed to be in Ω.

cally depend on the optimality gap L(θ)− L∗ and are
vacuous if it is unbounded. To avoid those degenerate
cases, we make the following assumptions.

A2 The objective function is lower-bounded by some
L∗ > −∞ on the constraint set Ω.

A3 The sub-level sets Ωθ = {φ ∈ Ω : Qθ(φ) ≤ Qθ(θ)}
are compact (closed and bounded).

One approach to ensure the EM updates are well-
defined is to add regularization, in the form of a proper
conjugate prior. If the parameters approach the bound-
ary (or diverge in an unbounded direction), the prior
acts as a barrier and diverges to ∞ rather than −∞.
The minimum of the surrogate is then finite and in Ω at
every iteration, without the need for projections. This
is illustrated in Figure 5. For simplicity of presentation,
we assume A2 and A3 hold and discuss maximum a
posteriori (MAP) estimation in Appendix C.

5 CONVERGENCE OF EM FOR
EXPONENTIAL FAMILIES

We now give the main results for the convergence of EM

to stationary points for exponential families. This anal-
ysis takes advantage of existing tools for the analysis
of mirror descent, but in the less-common non-convex
setting. Detailed proofs are deferred to Appendix D.

Proposition 2. Under assumptions A1–A3, EM for
exponential family distributions converges at the rate

min
t≤T

KL[p(x, z | θt+1)‖p(x, z | θt)] ≤ L(θ1)− L∗
T

.

While this result implies the distribution fit by EM stops
changing, it does not—in itself—guarantee progress
toward a stationary point as it is also satisfied by
an algorithm that does not move, θt+1 = θt. In the
standard setting of gradient descent with constant step-
size, Proposition 2 is the equivalent of the statement
that the distance between iterates ‖θt+1−θt‖ converges.
As ‖θt+1 − θt‖ ∝ ‖∇L(θt)‖, it also implies that the
gradient norm converges. A similar result holds for EM,
where measuring distances between iterates with DA
leads to stationarity in the dual divergence DA∗.
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Recall that the M-step finds a stationary point of the
upper-bound in Equation (7). Setting its derivative to
0, using ∇φDA(φ, θt) = ∇A(φ)−∇A(θt) yields

∇L(θt)−∇A(θt) +∇A(θt+1) = 0.

Using the expansion of the gradient in terms of the
observed statistics s(θt) and the mean parametrization
µt = ∇A(θt), we obtain the moment matching update;
finding the mean parameters µt+1 that generate the
observed sufficient statistics s(θt) in expectation;

µt+1 = s(θt) = µt −∇L(θt).

Expressing the KL divergence as the dual Bregman
divergence DA∗(µt+1, µt) (Equation 6) then gives

KL[θt+1‖θt ] = DA∗(µt+1, µt) = DA∗(s(θt), µt).

This adds a measure of stationarity to Proposition 2;

Corollary 2. Under assumptions A1–A3,

min
t≤T

DA∗(s(θt), µt) ≤
L(θ1)− L∗

T
.

The observed sufficient statistics s(θt) and mean pa-
rameters µt are the two parts of the gradient, ∇L(θt) =
µt − s(θt), and DA∗(s(θt), µt) = 0 implies ∇L(θt) = 0.

Corollary 2 is the Bregman divergence analog of the
standard result for steepest descent in an arbitrary
norm ‖·‖, giving convergence in the dual norm ‖∇L‖∗.
If the smoothness assumption is satisfied with constant
L, we recover existing results in Euclidean norm,

min
t≤T
‖∇L(θt)‖2 ≤

L

T
(L(θ1)− L∗),

as the L-smoothness of A implies the 1/L-strong con-
vexity ofA∗ and DA∗(µt+1, µt) ≥ 1/L ‖∇L(θt)‖2.

The convergence in KL divergence, however, does not
depend on additional smoothness assumptions and is
a stronger guarantee as it implies the probabilistic
models being optimized stop changing. This can not
be directly guaranteed by small gradient norms, as
differences in distributions do not only depend on the
difference between parameters. For example, how much
a Gaussian distribution changes when changing the
mean depends on its variance; if the variance is small,
the change will be big, but if the variance is large, the
change will be comparatively smaller. This is illustrated
in Figure 6, and is not captured by gradient norms.

5.1 Connection to the Natural Gradient

A useful simplification to interpret the divergence is
to consider the norm it is locally equivalent to. By a
second-order Taylor expansion, we have that

DA∗(µ+ δ, µ) ≈ ‖δ‖2∇2A∗(µ),

where ‖δ‖2∇2A∗(µ) = 〈δ,∇2A∗(µ)δ〉. For exponential fam-

−2 −1 0 1 2

p(
x)

‖µ− µ′‖2 = 1

σ2 = 0.1

KL = 10

−2 −1 0 1 2

‖µ− µ′‖2 = 1

σ2 = 1

KL = 1

Figure 6: The similarity between two Gaussians de-
pends on their variance, even if it is fixed. The Eu-
clidean distance between parameters, and by extension
gradient norms, is a poor measure of stationarity as it
ignores unchanged parameters.

ilies, ∇2A∗ is the inverse of the Fisher information
matrix of the complete-data distribution p(x, z | θ),
∇2A∗(µ) = Ix,z(θ)

−1 = Ex,z∼p(x,z | θ)
[
∇2 log p(x, z | θ)

]
.

The left side of Corollary 2 is then, locally,

DA∗(µt −∇L(θt), µt) ≈ ‖∇L(θt)‖2Ix,z(θt)−1 . (10)

This quantity is the analog of the Newton decrement,

‖∇L(θt)‖2∇2L(θt)−1 ,

used in the affine-invariant analysis of Newton’s method
(Nesterov and Nemirovski, 1994). But Equation (10)
is for the natural gradient in information geome-
try, Ix,z(θt)

−1∇L(θt) (Amari and Nagaoka, 2000).
While the Newton decrement is invariant to affine
reparametrizations, this “natural decrement” is also
invariant to any homeomorphism.

5.2 Invariant Local Linear Rates

It was already established by Dempster et al. (1977)
that, asymptotically, the EM algorithm converges r-
linearly, meaning that if it is in a convex region,3

L(θt+1)− L∗ ≤ r(L(θt)− L∗) for r < 1, (11)

near a strict minima θ∗, where the rate r is determined
by the amount of “missing information”. In this section,
we strengthen Corollary 1 to show this result extends
to local but non-asymptotic rates.

The improvement ratio r is determined by the eigenval-
ues of the missing information matrix M at θ∗, defined
as (Orchard and Woodbury, 1972)

M(θ∗) = Ix,z(θ
∗)−1Iz | x(θ∗), (12)

where Ix,z(θ) and Iz | x(θ) are the Fisher information
matrices of the complete-data distribution p(x, z | θ)
and conditional missing-data distribution p(z |x, θ). In-
tuitively this matrix measures how much information is
missing and how much easier the problem would be if
we had access to the true values of the latent variables.

3The result of Dempster et al. (1977) concerned the
convergence of the distance to the optimum, ‖θt − θ∗‖, but
we use function values for simplicity, as it also applies.
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If Iz | x(θ) is small, there is little information to be
gained from observing the latent variables as most of
this information is already contained in x. But Iz | x(θ)
is high if the known values of x do not constrain the
possible values of z and the problem is more difficult.

The matrix M(θ) is not a fixed quantity and evolves
with the parameters θ. In regions where we have a
good model of the data, for example if we found well-
separated clusters fit with Gaussian mixtures, there is
little uncertainty about the latent variables (the cluster
membership) and M(θ) will be small. However, M(θ)
is often large at the start of the optimization procedure.
The linear rate r in Equation (11) is then determined
by the maximum eigenvalue of the missing informa-
tion, r = λmax(M(θ∗)). Linear convergence occurs if
the missing information at θ∗ is small, M(θ∗) ≺ 1,
otherwise r can be larger than 1.

This result, however, is only asymptotic and existing
non-asymptotic linear rates rely on strong-convexity
assumptions instead (e.g. Balakrishnan et al., 2017). A
twice-differentiable function f is α-strongly convex if

∇2f(θ) � αI for α > 0,

which means the eigenvalues of ∇2f(θ) are bounded be-
low by α. If f is also L-smooth, as defined in Section 3,
a gradient-EM type of analysis gives that

f(θt+1)− f∗ ≤
(

1− α

L

)
(f(θt)− f∗).

This implies EM converges linearly if it enters a smooth
and strongly-convex region. However, in these works,
the connection to the ratio of missing information is
lost and the rate is not invariant to reparametrization.

We showed in Section 3 that, instead of measuring
smoothness in Euclidean norms, the EM objective is
1-smooth relative to its log-partition functionA. Like-
wise, we can characterize strong convexity relative to a
reference function h (Lu et al., 2018), requiring that

∇2L(θ) � α∇2h(θ) for α > 0. (13)

For EM, where we care about strong convexity relative
to the log-partitionA, the relative strong-convexity pa-
rameter α is directly related to the missing information;

Proposition 3. For exponential families, the EM ob-
jective is α-strongly convex relative to A on a region Θ
iff the missing information M (Equation 12) satisfies

λmax(M(θ)) ≤ (1− α) for all θ ∈ Θ.

We provide a detailed proof in Appendix D and give
here the main intuition. For exponential families, the
Hessian of the surrogate Qθ(θ) coincides with the Hes-
sian ofA(θ) (Equation 9), which is the Fisher informa-
tion matrix of the complete-data distribution, Ix,z(θ).

Using the decomposition of Equation (2), the Hessian
of the objective can be shown to be equal to

∇2L(θ) = Ix,z(θ)− Iz | x(θ).

The definition of α-strong convexity relative toA (Equa-
tion 13) for EM is then equivalent to

Ix,z(θ)− Iz | x(θ) � αIx,z(θ).
Multiplying by Ix,z(θ)

−1 and rearranging terms yields

M(θ) = Ix,z(θ)
−1Iz | x(θ) � (1− α)I.

Convergence results for mirror descent on relatively
1-smooth and α-strongly convex functions (Lu et al.,
2018) then directly give the following local linear rate.

Corollary 3. Under A1–A3, if EM is initialized in a
locally convex region Θ with minimum L∗ and the ratio
of missing information is bounded, λmax(M(θ)) ≤ r,

L(θt+1)− L∗ ≤ r(L(θt)− L∗).
If the ratio of missing information goes to zero, as in the
case of well-separated clusters for Gaussian mixtures
with suitable initialization, then EM converges superlin-
early in the neighborhood of a solution (Salakhutdinov
et al., 2003; Xu and Jordan, 1996; Ma et al., 2000).

5.3 Generalized EM

We now consider generalized EM schemes, which do
not optimize the surrogate exactly in the M-step but
output an approximate (possibly randomized) update.
Given θt, we assume we can solve the surrogate problem
with some expected guarantee on the optimality gap,
E
[
Qθt(θt+1)−Q∗θt

]
, where Q∗θt is the minimum value

of the surrogate. The M-step achieve Qθt(θt+1) = Q∗θt,
but it might be more efficient to solve the problem
only partially, or the M-step might be intractable. We
consider two types of guarantees for those two cases,
multiplicative and additive errors.

A4 Multiplicative error: The approximate solution
θt+1 satisfies the guarantee that, for some c ∈ (0, 1],

E
[
Qθt(θt+1)−Q∗θt

]
≤ (1− c)

(
Qθt(θt)−Q∗θt

)
.

If c = 1, the algorithm is exact and θt+1 minimizes
the surrogate, while for c = 0 there is no guarantee
of progress. An example of an algorithm satisfying
this condition for mixture models would be the exact
optimization of only one of the mixture components,
chosen at random, like the ECM algorithm of Meng and
Rubin (1993). As the surrogate problem is separable
among components, the guarantee is satisfied with
c = 1/k, where k is the number of clusters.

Theorem 1. Under assumptions A1–A3, if the M-
steps are solved up to c-multiplicative error (A4),

min
t≤T

E[DA∗(s(θt), µt)] ≤
1

c

L(θ1)− L∗
T

.



Homeomorphic-Invariant Analysis of EM

This can give speedup in overall time if some iterations
can be made more than than c times faster by leveraging
the structure of the problem.

Multiplicative error, however, is a strong assumption if
the closed-form solution is intractable. Instead, additive
error is almost always satisfied. For example, although
suboptimal for the reasons mentioned earlier, running
GD with a line-search on the surrogate guarantees
additive error if the objective is (locally) smooth.

A5 Additive error: The algorithm returns a solution
θt+1 with the guarantee that, in expectation,

E
[
Qθt(θt+1)−Q∗θt

]
≤ εt.

If εt = 0, the optimization is exact. Otherwise, the algo-
rithm might not guarantee progress and the sequence
εt needs to converge to 0 for the iterations to converge.

Theorem 2. Under assumptions A1–A3, if the M-
step at step t is solved up to εt-additive error (A5),

min
t≤T

E[DA∗(s(θt), µt)] ≤
L(θ1)− L∗

T
+

1

T

T∑
t=1

εt.

For example, for εt = O(1/t), the rate reduces to

O(log(T )/T ), but we recover a O(1/T ) rate if the er-
rors decrease faster, εt = O(1/t2). As in Section 5.2,
the results can be extended to give convergence in func-
tion values in a locally convex region. The proofs of
Theorems 1 and 2 are deferred to Appendix D.

5.4 EM for General Models

While the exponential family covers many applications
of EM, some are not smooth, in Euclidean distance or
otherwise. For example, in a mixture of Laplace distri-
butions the gradient of the surrogate is discontinuous
(the Laplace distribution is not an exponential family).
In this case, the progress of the M-step need not be re-
lated to the gradient and results similar to Corollary 2
do not hold. To the best of our knowledge, there are
no general non-asymptotic convergence results for the
general non-differentiable, non-convex setting and all
we can guarantee is asymptotic convergence, as in the
works of Chrétien and Hero (2000) and Tseng (2004).

The tools presented here can still obtain partial answers
for the Laplace mixture and similar examples. The
analyses in previous sections considered the progress
of the M-step, as is common in non-asymptotic litera-
ture. We can instead view the E-step as the primary
driver of progress, as is more common in the asymp-
totic literature. Assuming relative smoothness on the
conditional distribution p(z |x, θ) only, we derive in
Appendix E an analog of Corollary 2 for stationarity
on the latent variables, rather than the complete-data
distribution. This guarantee is weaker, but the assump-
tion holds more generally. For example, it is satisfied

by any finite mixture, even if the mixture components
are non-differentiable, as for the Laplace mixture.

6 DISCUSSION

Instead of assuming that the objective is smooth in
Euclidean norm and applying the methodology for
the convergence of gradient descent, which does not
hold even for the standard Gaussian mixture examples
found in textbooks, we showed that EM for exponential
families always satisfies a notion of smoothness relative
to a Bregman divergence. In this setting, EM and its
stochastic variants are equivalent to mirror descent
updates. This perspective leads to convergence rates
that hold without additional assumptions and that are
invariant to reparametrization. We also showed how the
ratio of missing information can be integrated in non-
asymptotic convergence rates, and analyzed the use
of approximate M-steps. Although we focused on the
MLE, Appendix C discusses MAP estimation. We show
that results similar to Proposition 2 on the convergence
to stationary points in KL divergence still hold, with
minor changes to incorporate the prior. Viewing EM

as a mirror descent procedure also highlights that it is
a first-order method. It is thus susceptible to similar
issues as classical first-order methods, such as slow
progress in “flat” regions. However, flatness is measured
in a different geometry (KL divergence) rather than
the Euclidean geometry of gradient descent.

Beyond non-asymptotic convergence, smoothness rel-
ative to a KL divergence could be applied to extend
statistical results, such as that of Daskalakis et al.
(2017) to settings other than well-separated mixtures
of Gaussians. In addition to the EM algorithm, our
results could be extended to variational methods, such
as the works of Hoffman et al. (2013) and Khan et al.
(2016), due to the similarity between the EM surrogate
and the evidence lower-bound.

Stochastic variants of EM are becoming increasingly
relevant as they allow the algorithm to scale to large
datasets, and recent recent work by Chen et al. (2018)
and Karimi et al. (2019) combined stochastic EM

updates with variance reduction methods like SAG,
SVRG, and MISO (Le Roux et al., 2012; Johnson and
Zhang, 2013; Mairal, 2015). Those works have taken
the perspective that EM can be expressed as a pre-
conditioned gradient step, and the resulting worst-case
analysis not only depends on the smoothness constant,
but the prescribed step-size is proportional to 1/L. For
Gaussian mixtures with arbitrary initialization, this
implies using a step-size of 0. Our results highlights the
gap between EM and gradient-EM methods, using a
combination of classic and modern tools from a variety
of fields, and we hope that the tools developed here
may help to fix this and similar practical issues.
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tion geometry and alternating minimization proce-
dures”. In: Statistics & Decisions, Supplemental Is-
sue 1, pp. 205–237.

Daskalakis, Constantinos, Christos Tzamos, and Mano-
lis Zampetakis (2017). “Ten steps of EM suffice for
mixtures of two Gaussians”. In: vol. 65. Proceedings
of Machine Learning Research, pp. 704–710.

Delyon, Bernard, Marc Lavielle, and Eric Moulines
(1999). “Convergence of a Stochastic Approximation
Version of the EM Algorithm”. In: Annals of Statis-
tics 27.1, pp. 94–128.

Dempster, Arthur P., Nan M. Laird, and Donald B.
Rubin (1977). “Maximum likelihood from incomplete
data via the EM algorithm”. In: Journal of the Royal
Statistical Society: Series B (Statistical Methodology)
39.1, pp. 1–38.

Diaconis, Persi and Donald Ylvisaker (1979). “Conju-
gate Priors for Exponential Families”. In: The Annals
of Statistics 7.2, pp. 269–281.

Figueiredo, Mário A. T. and Robert D. Nowak (2003).
“An EM algorithm for wavelet-based image restora-
tion”. In: IEEE Transactions on Image Processing
12.8, pp. 906–916.

Ghahramani, Zoubin and Michael I. Jordan (1994).
“Supervised learning from incomplete data via an
EM approach”. In: Advances in Neural Information
Processing Systems, pp. 120–127.

Hoffman, Matthew D., David M. Blei, Chong Wang,
and John W. Paisley (2013). “Stochastic variational
inference”. In: J. Mach. Learn. Res. 14.1, pp. 1303–
1347.



Homeomorphic-Invariant Analysis of EM

Johnson, Rie and Tong Zhang (2013). “Accelerating
stochastic gradient descent using predictive variance
reduction”. In: Advances in Neural Information Pro-
cessing Systems, pp. 315–323.

Jordan, Michael I. and Lei Xu (1995). “Convergence
results for the EM approach to mixtures of experts
architectures”. In: Neural Networks 8.9, pp. 1409–
1431.

Karimi, Belhal, Hoi-To Wai, Eric Moulines, and Marc
Lavielle (2019). “On the global convergence of (fast)
incremental expectation maximization methods”. In:
Advances in Neural Information Processing Systems,
pp. 2837–2847.

Khan, Mohammad Emtiyaz, Reza Babanezhad, Wu
Lin, Mark Schmidt, and Masashi Sugiyama (2016).
“Faster Stochastic Variational Inference using
Proximal-Gradient Methods with General Diver-
gence Functions”. In: Proceedings of the Thirty-
Second Conference on Uncertainty in Artificial In-
telligence. Ed. by Alexander T. Ihler and Dominik
Janzing. AUAI Press.

Lange, Kenneth, David R. Hunter, and Ilsoon Yang
(2000). “Optimization transfer using surrogate ob-
jective functions”. In: Journal of Computational and
Graphical Statistics 9.1, pp. 1–20.

Lauritzen, Steffen L. (1995). “The EM algorithm for
graphical association models with missing data”.
In: Computational Statistics & Data Analysis 19.2,
pp. 191–201.

Le Roux, Nicolas, Mark Schmidt, and Francis Bach
(2012). “A stochastic gradient method with an expo-
nential convergence rate for finite training sets”. In:
Advances in Neural Information Processing Systems,
pp. 2672–2680.

Lu, Haihao, Robert M. Freund, and Yurii Nesterov
(2018). “Relatively smooth convex optimization by
first-order methods, and applications”. In: SIAM
Journal on Optimization 28.1, pp. 333–354.

Ma, Jinwen, Lei Xu, and Michael I. Jordan (2000).
“Asymptotic convergence rate of the EM algorithm for
Gaussian mixtures”. In: Neural Computation 12.12,
pp. 2881–2907.

Mairal, Julien (2013). “Optimization with first-order
surrogate functions”. In: Proceedings of the Inter-
national Conference on Machine Learning, pp. 783–
791.

Mairal, Julien (2015). “Incremental majorization-
minimization optimization with application to large-
scale machine learning”. In: SIAM Journal on Opti-
mization 25.2, pp. 829–855.

McLachlan, Geoffrey and Thriyambakam Krishnan
(2007). The EM algorithm and extensions. 2nd.
Vol. 382. Wiley.

Meng, Xiao-Li and Donald B. Rubin (1993). “Maxi-
mum likelihood estimation via the ECM algorithm:
A general framework”. In: Biometrika 80.2, pp. 267–
278.

Murphy, Kevin P. (2012). Machine learning: A proba-
bilistic perspective. Adaptive computation and ma-
chine learning series. MIT Press.

Neal, Radford M. and Geoffrey E. Hinton (1998). “A
view of the EM algorithm that justifies incremental,
sparse, and other variants”. In: Learning in graphical
models. Springer, pp. 355–368.

Nemirovski, Arkadi, Anatoli Juditsky, Guanghui Lan,
and Alexander Shapiro (2009). “Robust Stochastic
Approximation Approach to Stochastic Program-
ming”. In: SIAM Journal on Optimization 19.4,
pp. 1574–1609.

Nemirovski, Arkadi Semenovich and David Borisovich
Yudin (1983). Problem complexity and method ef-
ficiency in optimization. translated by E.R. Daw-
son. Original title: Slozhnost’ zadach i ėffektivnost’
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