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Table 1: Summary of notation and acronyms

Context Symbol

Data x, z Observed (x) and missing (z), or latent, variables.

Parameters θ, φ ∈ Ω (Natural) Parameters of the model and set of valid parameters.

µ Equivalent mean parameters.

EM L(θ) Objective function, the negative log-likelihood −log p(x | θ).
Qθ(φ) Surrogate objective optimized by the M-step.

Exponential
families

S(x, z) Sufficient statistics.

A(θ),A∗(θ) Log-partition function and its convex conjugate.

DA(φ, θ) Bregman divergence induced by the function A.

Fisher
information

Ix,z(θ) Fisher information matrix of the distribution p(x, z | θ).
Iz | x(θ) Fisher information matrix of the distribution p(z |x, θ).

Optimization t = 1, . . . , T Iteration counter and total iterations.

Acronyms:

MLE maximum likelihood estimate
MAP maximum a posteriori estimate
NLL negative log-likelihood
EM expectation-maximization

GD gradient descent
FIM Fisher information matrix
KL Kullback-Leibler
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A.1 Expectation-Maximization

This section gives additional details on the derivation of the EM surrogate and some of the perspective taken on
the algorithm in the literature. Lange et al. (2000) and Mairal (2013) view EM as a majorization-minimization
algorithm to develop a general analysis and extend it to other problems. Chrétien and Hero (2000) and Tseng (2004)
view it instead as a proximal point method in Kullback-Leibler divergence to study its asymptotic convergence
properties. Finally, Csiszár and Tusnády (1984) and Neal and Hinton (1998) take an alternating minimization
procedure view of the algorithm. Csiszár and Tusnády use it to analyze its convergence properties while Neal and
Hinton develop an incremental variant. This last perspective is the one presented by Wainwright and Jordan
(2008), viewed as a variational method.

The form of the algorithm presented in the main text is the one used by Dempster et al. (1977). The negative
log-likelihood (NLL) L(φ), surrogate Qθ(φ) and entropy term Hθ(φ) are defined as

L(θ) = − log p(x | θ), Qθ(φ) = −
∫

log p(x, z |φ) p(z |x, θ) dz, Hθ(φ) = −
∫

log p(z |x, φ) p(z |x, θ) dz.

They obey the decomposition Qθ(φ) = L(φ) +Hθ(φ). To show this, we use the fact that
∫
p(z |x, θ) dz = 1, and

L(φ) = − log p(x |φ) = − log p(x |φ) ·
∫
p(z |x, θ) dz = −

∫
log p(x |φ) p(z |x, θ) dz.

Along with the chain rule, p(x, z |φ) = p(z |x, φ) p(x |φ), we get

L(φ) = −
∫

log p(x |φ) p(z |x, θ) dz

= −
∫

log

(
p(x, z |φ)

p(z |x, φ)

)
p(z |x, θ) dz =

Qθ(φ)︷ ︸︸ ︷
−
∫

log p(x, z |φ) p(z |x, θ) dz+

−Hθ(φ)︷ ︸︸ ︷∫
log p(z |x, φ) p(z |x, θ) dz

From a Majorization-Minimization perspective

A majorization-minimization procedure in the sense of Lange et al. (2000) is an iterative procedure to optimize
the objective L. Given the current estimate of the parameters θt, we first find a majorant, an upper bound ft
that it is tight at θt, L(φ) ≤ ft(φ) and L(θt) = ft(θt). We then minimize ft to obtain the new estimate θt+1. As
ft is an upper bound on the objective, θt+1 is guaranteed to be an improvement if it is an improvement on ft.

The typical derivation of EM in this setting involves expressing the NLL as the marginal of the complete-data

likelihood, multipliying the integrand by p(z | x,θ)
p(z | x,θ) and using Jensen’s inequality, −log(E[x]) ≤ −E[log(x)],

L(φ) = − log
∫
p(x, z |φ) dz

= − log
∫
p(z |x, θ)p(x, z |φ)

p(z |x, θ) dz

≤ −
∫

log

(
p(x, z |φ)

p(z |x, θ)

)
p(z |x, θ) dz =

Qθ(φ)︷ ︸︸ ︷
−
∫

log p(x, z |φ) p(z |x, θ) dz+

−Hθ(θ)︷ ︸︸ ︷∫
log p(z |x, θ) p(z |x, θ) dz .

It gives that the surrogate Qθ(·) is an upper bound on the objective, up to a constant, L(φ) ≤ Qθ(φ) + const.
The surrogate Qθ(·) itself is not a majorant, as Qθ(θ) = L(θ) +Hθ(θ). The difference, however, is not relevant for
optimization as it does not depend on φ. If we define instead the surrogate as Q′θ(φ) = Qθ(φ)−Hθ(θ), we get

Q′θ(φ) = L(φ) +Hθ(φ)−Hθ(θ). and L(θ) = Q′θ(θ)
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The two formulations of the surrogate share the same minimizers as they differ by an additive constant.

From a proximal point perspective

The definition of Q′θ(·) also gives the proximal point perspective used by Chrétien and Hero (2000) and Tseng
(2004) to discuss the asymptotic convergence properties of EM. The differences of entropy terms is a KL divergence;

Hθ(φ)−Hθ(θ) = −
∫

log p(z |x, φ) p(z |x, θ) dz +
∫

log p(z |x, θ) p(z |x, θ) dz,

= −
∫

log

(
p(z |x, φ)

p(z |x, θ)

)
p(z |x, θ) dz = KL[p(z |x, θ)‖p(z |x, φ)].

The EM iterations can then be expressed as minimizing L and a KL proximity term,

θt+1 = arg minθ{L(θ) + KL[p(z |x, θ)‖p(z |x, φ)]},

From an alternating minimization perspective

The expression in terms of a KL divergence also gives the alternating minimization approach used by Csiszár
and Tusnády (1984) to show asymptotic convergence, and by Neal and Hinton (1998) to justify partial updates.
This is the variational approach presented by Wainwright and Jordan (2008). For a distribution q on the latent
variables, parametrized by φ, the objective function is equivalent to

L(θ) = − log p(x | θ) = − log p(x | θ) + min
φ

KL[p(z |x, θ)‖q(z |φ)]

if q is sufficiently expressive and we can minimize the KL divergence exactly. The parameters φ and θ need not be
defined on the same space, as φ only controls the conditional distribution over the latent variables and θ controls
the complete-data distribution. We can write the EM algorithm as alternating optimization on the augmented
objective function

L+(θ, φ) = − log p(x | θ) + KL[p(z |x, θ)‖p(z |x, φ)] such that L(θ) = minφ L+(θ, φ).

The E and M steps then correspond to

E-step: φt+1 = arg minφ L+(θt, φ), M-step: θt+1 = arg minθ L+(θ, φt+1).

We will return to this perspective in Appendix E to analyse the progress of the E-step.

Gradients and Hessians

From the equivalence between Qθ(φ) and Q′θ(φ) up to constants, they share the same gradient as the NLL at θ, as

∇Qθ(θ) = ∇Q′θ(θ) = ∇L(θ) +∇φKL[p(z |x, θ)‖p(z |x, φ)] | φ=θ︸ ︷︷ ︸
=0

,

if they are differentiable. Similarly, their Hessian is

∇2Qθ(θ) = ∇2Q′θ(θ) = ∇2L(θ) +∇2
φKL[p(z |x, θ)‖p(z |x, φ)] | φ=θ.

Invariance to homeomorphisms

The invariance of the EM update to homeomorphisms is a direct result of the exactness of the M-step. A
homeomorphism between two parametrizations (θ, µ) is a continuous bijection f with continous inverse f−1, such
that θ = f(µ) and µ = f−1(θ). Although we use the same notation as the mean and natural parameters, θ and µ
can be any parametrization. Letting (θt, µt) be the current iterates, the EM update in parameters θ or µ yields

θt+1 ∈ arg minθ Qθt(θ) µt+1 ∈ arg minµQf(µt)(f(µ)).

If Qθ(·) is strictly convex, it has a unique minimum and θt+1 = f(µt+1), µt+1 = f−1(θt+1). Otherwise, (f, f−1)
defines a bijection between the possible updates. While the update in some parametrizations might be easier to
implement, the update to the probabilistic model is the same regardless of the parametrization.
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A.2 Exponential families

For a detailed introduction on exponential families, we recommend the work of Wainwright and Jordan (2008).

An distribution p(x | θ) is in the exponential family with natural parameters θ if it has the form

p(x | θ) = h(x) exp(〈S(x), θ〉 −A(θ)) −log p(x | θ) =A(θ)− 〈S(x), θ〉 − log h(x),

where h is the base measure, S are the sufficient statistics, and A is the log-parition function. We did not
discuss the base measure h in the main text; it is necessary to define the distribution but does not influence the
optimization as it does not depend on θ. This can be seen from the gradient and Hessian of the NLL;

∇−log p(x | θ) = ∇A(θ)− S(x) and ∇2−log p(x | θ) = ∇2A(θ).

Examples: Bernoulli and univariate Gaussian

For a binary x ∈ {0, 1}, the Bernoulli distribution p(x |π) = πx(1− π)x is an exponential family distribution with

h(x) = 1 S(x) = x θ = log

(
π

1− π

)
A(θ) = log(1 + eθ) = − log(1− π).

For x ∈ R, the Gaussian p(x |µ, σ2) = 1√
2πσ2

exp(−(x− µ)2/2σ2) is an exponential family distribution with

h(x) =
1√
2π

S(x) =
[
x, x2

]
θ =

[
µ

σ2
,− 1

2σ2

]
A(θ) = − θ2

1

4θ2
− 1

2
log

∣∣∣∣− 1

2θ2

∣∣∣∣ =
µ2

2σ2
+ log σ.

The log-partition function and mean parameters

Given the base measure h and sufficient statistics function S, the log-partition functionA is defined such that the
probability distribution is valid and integrates to 1,

1 =
∫
p(x | θ) dx =

∫
h(x) exp(〈S(x), θ〉 −A(θ)) dx,

= exp(−A(θ))
∫
h(x) exp(〈S(x), θ〉) dx

=⇒ A(θ) = log
∫
h(x) exp(〈S(x), θ〉) dx

This formulation gives that the log-partition function is convex and its gradient yields the expected sufficient
statistics produced by the model, ∇A(θ) = Ep(x | θ)[S(x)]

∇A(θ) = ∇ log
∫
h(x) exp(〈S(x), θ〉) dx =

1∫
h(x) exp(〈S(x), θ〉) dx

∇
∫
h(x) exp(〈S(x), θ〉) dx,

= exp(−A(θ))∇
∫
h(x) exp(〈S(x), θ〉) dx = exp(−A(θ))

∫
h(x) expS(x)(〈S(x), θ〉) dx =

∫
S(x) p(x | θ) dx.

If the log-partition function A is strictly convex, the exponential family is said to be minimal and there is a
bijection between θ and the expected sufficient statistics. The expected sufficient statistics give an equivalent way
to parametrize the model, called the mean parameters, which are denoted µ. The gradient ∇A maps the natural
to the mean parameters, µ = ∇A(θ). The inverse mapping is the gradient of the convex conjugate ofA,

A∗(µ) = supθ{〈θ, µ〉 −A(θ)}.
We then get the bijection µ = ∇A(θ) and θ = ∇A∗(µ). The Hessians ofA andA∗ are also inverses of each other.
This can be seen from the fact that the composition θ = ∇A∗(∇A(θ)) is the identity, and

∇[∇A∗(∇A(θ))] = ∇2A∗(µ)∇2A(θ) = I.

The minimality of the exponential family, or the strict convexity ofA, ensures both ∇2A and ∇2A∗ are invertible.

For Expectation-Maximization

When the complete-data distribution p(x, z | θ) is in the exponential family, the M-step has a simple expression as
the surrogate Qθ(·) depends on the data only through the expected sufficient statistics at θ,

Qθ(φ) = −
∫

log p(x, z |φ) p(z |x, θ) dz = −
〈
Ep(z | x,θ)[S(x, z)], φ

〉
+A(φ).

Writing the expected sufficient statistics as s(θ) = Ep(z | x,θ)[S(x, z)], the gradients of the surrogate and NLL are

∇Qθ(φ) = −〈s(θ), φ〉+A(φ) and ∇L(θ) = ∇Qθ(θ) = −〈s(θ), φ〉+A(θ).
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A.3 Bregman divergences

For an overview of Bregman divergences in clustering algorithms and their relation with exponential families, we
recommend the work of Banerjee et al. (2005).

Bregman divergence are a generalization of squared
Euclidean distance based on convex functions. For a
function h, Dh(θ, φ) is the difference between the func-
tion at θ and its linearization constructed at φ,

Dh(θ, φ) = h(θ)− h(φ)− 〈∇h(φ), θ − φ〉.
This is illustrated in Figure 7. The simplest example of
a Bregman divergence is the Euclidean distance, which
is generated by setting h(θ) = 1

2‖θ‖
2
, such that

•
h(φ)

h(θ) •

•h(φ) + 〈∇h(φ), θ − φ〉

Dh(θ, φ)

Figure 7: Illustration of the Bregman divergence of a
convex function h as the difference between the lin-
earization of the function and its value.

Dh(θ, φ) = h(θ) − h(φ) − 〈∇h(φ), θ − φ〉,

=
1

2
‖θ‖2 − 1

2
‖φ‖2 − 〈φ, θ − φ〉 =

1

2
‖θ‖2 − 〈φ, θ〉+

1

2
‖φ‖2 =

1

2
‖θ − φ‖2.

Other examples of Bregman divergences include

Weighted Euclidean/Mahalanobis distance: x ∈ Rd h(x) = 1
2 〈x,Ax〉 Dh(x, y) = 1

2‖x− y‖
2
A

Kullback-Leibler divergence on the simplex: π ∈ ∆d h(π) =
∑d
i=1 πi log πi Dh(τ, π) =

∑d
i=1 πi log

(
πi
τi

)
General properties

The Euclidean example is not representative of general Bregman divergences, as they lack some properties of
metrics. They are not necessarily symmetric (in general, Dh(θ, φ) 6= Dh(φ, θ)) and do not satisfy the triangle
inequality. The Bregman divergence is convex in its first argument, as it reduces to h(θ) and a linear term, but
needs not be convex in its second argument. The gradients and Hessian with respect to the first argument are

∇θDh(θ, φ) = ∇θ[h(θ)− h(φ)− 〈∇h(φ), θ − φ〉] = ∇h(θ)−∇h(φ) and ∇2
θ Dh(θ, φ) = ∇2h(θ).

Bregman divergences statisfy a generalization of the Euclidean decomposition, called the three point-property;

Euclidean: ‖a− c‖2 = ‖a− b+ b− c‖2 = ‖a− b‖2 + 2〈a− b, b− c〉+ ‖b− c‖2,
Bregman divergence: Dh(a, c) = Dh(a, b) + 〈a− b,∇h(b)−∇h(c)〉+Dh(b, c).

This property can be directly verified by expanding Dh(a, b) = h(a)− h(b)− 〈∇h(b), a− b〉,
Dh(a, b) + 〈a− b,∇h(b)−∇h(c)〉 + Dh(b, c)

= h(a)− h(b)− 〈∇h(b), a− b〉 + 〈∇h(b), a− b〉 − 〈∇h(c), a− b〉 + h(b)− h(c)− 〈∇h(c), b− c〉
= h(a) − h(c)− 〈∇h(c), a− c〉 = Dh(a, c)

The Bregman divergence induced by h and its convex conjugate h∗ satisfy the following relation,

Dh(x, y) = Dh∗(∇h(y),∇h(x)).

The convex conjugate of a function h is h∗(µ) = supθ{〈θ, µ〉 − h(θ)}, and if h is strictly convex and differentiable,
the supremum is attained at µ = ∇h(θ), creating a mapping from the domain of h to the range of its gradient.
The inverse mapping can be found by taking the bi-conjugate (the conjugate of the conjugate), which recovers
h = (h∗)∗; h(θ) = supµ{〈µ, θ〉 − h∗(µ)}, and the supremum is attained at θ = ∇h∗(µ).

For exponential families

For an exponential family p(x | θ), the Bregman divergence induced by the log-partition function A is the
Kullback-Leibler divergence between the distributions given by the parameters

KL[p(x |φ)‖p(x | θ)] =
∫

log

(
p(x |φ)

p(x | θ)

)
p(x |φ) dz =

∫
(〈S(x), φ〉 −A(φ)− 〈S(x), θ〉+A(θ))p(x |φ) dz,

=A(θ)−A(φ) +
〈
Ep(x |φ)[S(x)], φ− θ

〉
,

=A(θ)−A(φ) + 〈∇A(φ), φ− θ〉 = DA(θ, φ).
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A.4 Fisher information matrices

For an introduction to Fisher information in the context of the EM algorithm and its connection to the ratio of
missing information, we recommend the work of McLachlan and Krishnan (2007, §3.8–3.9).

For a probability distribution parametrized by θ, p(x | θ), the Fisher information is a measure of the information
that observing some data x would provide about the parameter θ. The Fisher information matrix (FIM) is

I(θ) = ∇2
φKL[p(x | θ)‖p(x |φ)] | φ=θ = Ep(x | θ)

[
∇2−log p(x | θ)

]
= Ep(x | θ)

[
∇ log p(x | θ)∇ log p(x | θ)>

]
,

where all expressions are equivalent. As we will have to distinguish between the information of different distributions,
we define the following notation for the distributions p(x | θ), p(x, z | θ), and p(z |x, θ);

Ix(θ) = E
p(x | θ)

[
∇2−log p(x | θ)

]
, Ix,z(θ) = E

p(x,z | θ)

[
∇2−log p(x, z | θ)

]
, Iz | x(θ) = E

p(z | x,θ)

[
∇2−log p(z |x, θ)

]
.

The first two do not depend on data as x and z are sampled from the probabilistic model. The conditional FIM

Iz | x(θ) depends on the observed data x as the expectation is with respect to p(z |x, θ).
The Fisher information depends on the parametrization of the distribution. Let us write Ix | θ and Ix |µ for the
Fisher information of two equivalent parametrizations, (θ, µ), and (f, f−1) be the homeomorphism such that
θ = f(µ) and µ = f−1(θ). The information matrices obey

Ix |µ(µ) = Jf(µ)> Ix | θ(θ) Jf(µ),

where Jf is the Jacobian of f . Although we use θ and µ, those parametrizations need not be the natural and
mean parametrization for this property to hold. This is shown most easily by using the outer-product form;

Ix |µ(µ) = Ep(x | f(µ))

[
∇µ log p(x | f(µ))∇µ log p(x | f(µ))>

]
,

= Ep(x | f(µ))

[
Jf(µ)>∇θ log p(x | θ)∇θ log p(x | θ)> Jf(µ)

]
,

= Jf(µ)> Ep(x | θ)
[
∇ log p(x | θ)∇ log p(x | θ)>

]
Jf(µ) = Jf(µ)> Ix | θ(θ) Jf(µ).

For an exponential family distribution p(x | θ), the FIM is also equal to the Hessian of the NLL, as

I(θ) = Ep(x | θ)
[
∇2−log p(x | θ)

]
= Ep(x | θ)

[
∇2A(θ)

]
= ∇2A(θ).

For the natural and mean parameters (θ, µ), applying the reparametrization property to (∇A,∇A∗) along with
the fact that I(θ) = ∇2A(θ) and ∇A(θ) = [∇A∗(µ)]−1 gives that Ix |µ(µ) = Ix | θ(θ)

−1, as

Ix |µ(µ) = ∇2A∗(µ)Ix | θ(θ)∇2A∗(µ) = ∇2A∗(µ)∇2A(θ)∇2A∗(µ) = ∇2A∗(µ).

For Expectation-Maximization, if the complete-data distribution p(x, z | θ) is in the exponential family, the
Hessian of the surrogate and objective are

∇2Qθ(θ) = ∇2A(θ) = Ix,z(θ),
∇2L(θ) = ∇2Qθ(θ)−∇2

φKL[p(z |x, θ)‖p(z |x, φ)] | φ=θ

= Ix,z(θ)− Iz | x(θ).

This follows from the definition of Qθ(·) (Appendix A.1) and the properties of exponential families (Appendix A.2).

Natural gradients

The gradient is a measure of the direction of steepest increase, where steepest is defined with respect to
the Euclidean distance between the parameters. When the parameters of a function also define a probability
distribution, the natural gradient (Amari and Nagaoka, 2000) is the direction of steepest increase, where steepest
is instead measured by the KL divergence between the induced distributions. The natural gradient is obtained by
preconditioning the gradient with the inverse of the FIM of the relevant distribution, I(θ)−1∇L(θ).

For exponential families, the gradient with respect to the natural parameters θ is the natural gradient with respect
to the mean parameters µ. Letting Ld(µ) = L(∇A∗(µ)) be the objective express in mean parameters, we have

∇Ld(µ) = ∇2A∗(µ)∇L(θ) = [∇2A(θ)]−1∇L(θ) ∇L(θ) = ∇2A(θ)∇Ld(µ) = [∇2A∗(µ)]−1∇Ld(µ)

This implies the mirror descent update µt+1 = µt −∇L(θt) is a natural gradient descent step in mean parameters
when the mirror mapA is the log-partition function of an exponential family (Raskutti and Mukherjee, 2015).
The view of EM as a natural gradient update was already used by Sato (1999) to justify a stochastic variant.
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A.5 Mirror descent, convexity, smoothness and their relative equivalent

For a more thorough coverage of mirror descent, we recommend the works of Nemirovski and Yudin (1983) and
Beck and Teboulle (2003). For an introduction on convexity, smoothness and strong convexity, we recommend the
work of Nesterov (2013). For their relative equivalent, see Bauschke et al. (2017) and Lu et al. (2018).

The traditional gradient descent algorithm to optimize a function f can be expressed as the minimization of the
linearization of f at the current iterates θt and a Euclidean distance proximity term depending on the step-size γ,

θt+1 = arg minθ

{
f(θt) + 〈∇f(θt), θ − θt〉+ 1

2γ ‖θ − θt+1‖2
}
.

As the surrogate objective is convex, the update is found by taking the derivative and setting it to zero;

∇f(θt) + 1
γ (θt+1 − θt) = 0 =⇒ θt+1 = θt − γ∇f(θt).

The mirror descent algorithm is an extension where the Euclidean distance is replaced by a Bregman divergence,

θ′ = arg minφ

{
f(θ) + 〈∇f(θ), φ− θ〉+ 1

γDh(φ, θ)
}
.

Setting h(θ) = 1
2‖θ‖

2
recovers the gradient descent surrogate. The stationarity condition gives the update

∇f(θt) + 1
γ (∇h(θt+1)−∇h(θt)) = 0 =⇒ ∇h(θt+1) = ∇h(θt)− γ∇f(θt).

Or, equivalently, the update can be written in the dual parametrization µ = ∇h(θ),

µt+1 = µt − γ∇f(θt).

The mirror descent update applies the gradient step to the dual parameters instead of the primal parameters θ.
In the mirror descent literature, the reference function h is called the mirror function or mirror map.

Smoothness and strong convexity

The gradient descent update with an arbitrary constant step-size γ is not guaranteed to make progress on the
original function f , at least not without additional assumptions. A common assumption is that the function f is
smooth, meaning that its gradient is Lipschitz with constant L,

‖∇f(θ)−∇f(φ)‖ ≤ L‖θ − φ‖, for any θ, φ.

The L-smoothness of f implies the following upper bound holds,

f(φ) ≤ f(θ) + 〈∇f(θ), φ− θ)〉+
L

2
‖θ − φ‖2 for any θ, φ.

Setting γ ≤ 1
L ensures the surrogate optimized by gradient descent is an upper bound on f and leads to progress.

If the objective function is also α-strongly convex, meaning the following lower bound holds,

f(θ) + 〈∇f(θ), φ− θ〉 − α

2
‖θ − φ‖2 ≤ f(φ) for α > 0 and any θ, φ,

gradient descent converges at a faster, linear rate. This definition recovers convexity in the case α = 0 and is
otherwise stronger. If f is twice differentiable, α-strong convexity and L-smoothness are equivalent to

αI � ∇2f(θ) � LI for all θ.

Here, � is the Loewner ordering on matrices, where A � B if B − A is positive semi-definite, meaning the
minimum eigenvalue of B −A is larger than or equal to zero.

Relative smoothness and strong convexity

Relative L-smoothness and α-strong convexity provide an analog of smoothness and strong-convexity for mirror
descent. They are defined relative to a reference function h, such that the following lower and upper bound hold

f(θ) + 〈∇f(θ), φ− θ)〉 − αDh(φ, θ) ≤ f(φ) ≤ f(θ) + 〈∇f(θ), φ− θ)〉+ LDh(φ, θ) for 0 < α ≤ L and any θ, φ.

Alternatively, if f and h are twice differentiable, those conditions are equivalent to

α∇2h(θ) � ∇2f(θ) � L∇2h(θ) for all θ.

In the case h(θ) = 1
2‖θ‖

2
, we recover the standard definition of Euclidean smoothness and strong-convexity.
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B Supplementary material for Section 3:
EM and Mirror Descent

This section gives additional details on the relationship between EM and mirror descent and the 1-relative
smoothness of EM. We restate in longer form the proof of Proposition 1;

Proposition 1. For exponential family distributions, the M-step update in Expectation-Maximization is
equivalent to the minimization of the following upper-bound;

L(φ) ≤ L(θ) + 〈∇L(θ), φ− θ〉+DA(φ, θ), (7)

where A is the log-partition of the complete-data distribution, and DA(φ, θ) = KL[p(x, z | θ)‖p(x, z |φ)].

Proof of Proposition 1. Recall the decomposition of the surrogate in terms of the objective and entropy term,
Qθ(φ) = L(φ) +Hθ(φ) in Equation (2). It gives

L(φ)− L(θ) = Qθ(φ)−Qθ(θ) +Hθ(θ)−Hθ(φ),

where Hθ(θ)−Hθ(φ) ≤ 0 as Hθ(φ) is minimized at φ = θ. We will show that for exponential families,

Qθ(φ)−Qθ(θ) = 〈∇L(θ), φ− θ〉+DA(φ, θ),

which implies the upper-bound in Equation (7) and that its minimum matches that of Qθ(φ).

If the complete-data distribution is in the exponential family, the surrogate in natural parameters is

Qθ(φ) = −
∫

log p(x, z |φ) p(z |x, θ) dz,

= −
∫

[〈S(x, z), φ〉 −A(φ)] p(z |x, θ) dz = −
〈
Ep(z | x,θ)[S(x, z)], φ

〉
+A(φ).

For simplicity of notation, we write s(θ) for the expected sufficient statistics Ep(z | x,θ)[S(x, z)] (while the s(θ)
depends on x and we could write s(θ, x), we ignore it as the same x is always given to s). We will use the definition
of the Bregman divergence and the fact that the gradient of the surrogate matches the gradient of the objective,

DA(φ, θ) =A(φ)−A(θ)− 〈∇A(θ), φ− θ〉, and ∇L(θ) = ∇Qθ(θ) = ∇A(θ)− s(θ).
Expanding Qθ(φ)−Qθ(θ), we have

Qθ(φ)−Qθ(θ) = −〈s(θ), φ− θ〉+A(φ)−A(θ),

= −〈s(θ), φ− θ〉+ 〈∇A(θ), φ− θ〉+A(φ)−A(θ)− 〈∇A(θ), φ− θ〉, (±〈∇A(θ), φ− θ〉)
= −〈s(θ)−∇A(θ), φ− θ〉+DA(φ, θ), (DA(φ, θ) =A(φ)−A(θ)− 〈∇A(θ), φ− θ〉)
= 〈∇L(θ), φ− θ〉+DA(φ, θ).

For completeness, we present an alternative derivation that relies on additional material in Appendices A.1–A.5.
That the M-step is a mirror descent step can be seen from the stationary point of Qθ(φ) and Equation (7),

A(φ) = s(θ) and A(φ) =A(θ)−∇L(θ) = s(θ).

To show the upper bound holds, we can use the expansion of the objective as L(φ) = Qθ(φ)−Hθ(φ) to get

∇2L(θ) = ∇2Qθ(φ)∇2KL[p(z | θ)‖p(z |φ)] = ∇2A(φ)− Iz | x(φ),

where Iz | x(φ) is the FIM of p(z |x, φ). As Fisher information matrices are positive semi-definite, we get that
∇2L(θ) � ∇2A(θ), establishing the 1-smoothness of EM relative toA and the upper bound in Equation (7).
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Equivalence between stochastic EM and stochastic mirror descent

We now look at variants of EM based on stochastic approximation and show they can be cast as stochastic mirror
descent. We focus on the online EM of Cappé and Moulines (2009), but it also applies to the incremental and
stochastic versions of Neal and Hinton (1998), Sato (1999), and Delyon et al. (1999).

The stochastic version of the EM update uses only a subset of samples per iteration to compute the E-step and
applies the M-step to the average of the sufficient statistics observed so far. We assume we have n independent
samples for the observed variables, x1, . . . , xn, such that the objective factorizes as

L(θ) =

n∑
i=1

Li(θ) =

n∑
i=1

log p(xi | θ)

Defining the individual expected sufficient statistics as si(θt) = Ep(z | xi,θt)[S(xi, z)], the online EM algorithm
updates a running average of sufficient statistics using a step-size γt

µt+1 = (1− γt)µt + γtsit(θt), where it ∼ U [n]. (14)

With step-sizes γt = 1/t, the mean parameters at step t are the average of the observed sufficient statistics,

µT = (1− γT )µT−1 + γT siT (θT ) =
T − 1

T
µT−1 +

1

T
siT (θT ) =

1

T

T∑
t=1

sit(θt).

The natural parameters are then updated with θt = ∇A∗(µt).
Proposition 4. The online EM algorithm (Eq. 14) is equivalent to the stochastic mirror descent update

θt+1 = arg min
φ

{
〈∇Lit(θt), φ− θt〉+

1

γt
DA(φ, θt)

}
, with it ∼ U [n]. (15)

Proof of Proposition 4. We show the equivalence of one step, assuming they select the same index it. The online
EM update (Eq. 14) guarantees the natural and mean parameters match, θt = ∇A∗(µt), and the update to θt+1 is

θt+1 = ∇A∗
(
(1− γt)µt + γtsit(θt)

)
.

where si(θ) = Ep(z | xi,θ)[S(xi, z)]. The stationary point of Equation (15), on the other hand, ensures

0 = ∇Lit(θt) +
1

γt
(∇A(θt+1)−∇A(θt)) =⇒ θt+1 = ∇A∗(∇A(θt)− γt∇Lit(θt)).

As in the proof of Proposition 1 (Appendix B), using that the gradient of the loss and the surrogate match,

∇Lit(θt) = −sit(θt) +∇A(θt),

we get that both update match,

∇A(θt)− γt∇Lit(θt)(1− γt)∇A(θt) + γtsit(θt) =⇒ µt+1 = (1− γt)µt + γtsit(θt).
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C Supplementary material for Section 4:
Assumptions and Open Constraints

This section gives additional details on the assumptions discussed in Section 4 and shows the derivation for
maximum a posteriori (MAP) estimation with EM under a conjugate prior. We first mention how A3 implies that
the EM iterates are well-defined and introduce notation to discuss proper conjugate priors for exponential families.
We then show that a proper prior implies that the surrogate optimized by EM leads to well-defined solutions and
satisfies A3, and end with showing how an equivalent of Proposition 2 holds for MAP.

A3 makes the update are well defined. Consider fitting the variance σ2 > 0 of a Gaussian. The possible
pitfalls for the update is to be on the boundary (σ2 = 0), or diverge (σ2→∞). Here is how A3 avoids those cases.

The exponential family assumptions imply that the surrogate Qθt(·) optimized during the M-step is convex. Its
domain, Ω, is an open set. A3 constrains the sub-level sets Ωθt = {φ ∈ Ω : Qθt(φ) ≤ Qθt(θ)} to be compact
(closed and bounded). As the minimum of the surrogate is contained in any sub-level set, it must be finite (as the
sub-level sets are bounded) and contained strictly in Ω (as the sub-level sets are closed).

Proper conjugate priors. We first discuss exponential families, without the added complexity of EM. In the
main text, we used x to denote the entire dataset. To discuss priors, it is useful to consider the dataset as n i.i.d.
observations x1, . . . , xn from a (minimal, regular) exponential family, with negative log-likelihood (NLL)

p(xi | θ) ∝ exp(〈T (xi), θ〉 −A(θ)), NLL(θ) = −
n∑
i=1

log p(xi | θ) =

n∑
i=1

A(θ)− 〈T (xi), θ〉.

For exponential families, parametrizing the prior by a strength n0 > 0 and the sufficient statistics m0 we expect
to observe a priori, the conjugate prior that leads to the same form for the posterior is

p(θ |m0, n0) ∝ exp(〈m0, θ〉 − n0A(θ)).

The regularized objective of adding the NLL and the prior is then, up to a multiplicative constant of n+ n0,

L(θ) =
1

n+ n0

(
−

n∑
i=1

log p(xi | θ)− log p(θ |m0, n0)

)
= A(θ)− 〈m̄, θ〉, with m̄ =

m0 +
∑n
i=1 T (xi)

n+ n0
. (16)

To discuss proper priors, we need to discuss the constraint set Ω in more details. For a d-dimensional, regular,
minimal exponential family, the set of valid natural parameters is defined from the log-partition function as
Ω = {θ ∈ Rd |A(θ) <∞}. The equivalent set of mean parameters, through the bijection (∇A,∇A∗), is

M = {µ ∈ Rd | ∃θ ∈ Ω : Ep(x | θ)[T (x)] = µ} (or M = ∇A(Ω)),

the image of Ω through ∇A (Wainwright and Jordan, 2008, Theorem 3.3). For the prior to be proper, the expected
sufficient statistics under the prior m0 need to be in the interior ofM (Diaconis and Ylvisaker, 1979, Theorem 1).

MAP solutions are well defined. The sufficient statistics T (xi) could lie on the boundary ofM, which is why
the MLE is sometimes ill-defined. For example, estimating the covariance of a Gaussian from one sample leads to
σ2 = 0. However, if the prior is proper, m0 ∈M then the average m̄ = 1

n+n0
(
∑n
i=1 T (xi) +m0) will also be in

M. By convexity, the MAP is at the stationary point of Equation (16), ∇A(θ̄) = m̄ and θ̄ = ∇A∗(m̄) will be in Ω.

For completeness, let us show that this also implies A3. As Ω is convex, it is sufficient to show that L(θ)→∞
from any direction v ∈ Rd starting from θ̄, leading to the sequence θ(t) = θ̄ + tv for t > 0.

• If θ(t) crosses the boundary of Ω, L(θ(t))→∞ due to the log-partition function.

Let tb be the finite crossing point. The parameters θ(tb) and the inner product 〈m̄, θ(tb)〉 are also finite. But
since the boundary of Ω is defined by A(θ) <∞, by (lower-semi-)continuity of A, limt→t−b

A(θ(t)) =∞.

• If θ(t) does not cross a boundary, L(θ(t))→∞ by strict convexity.

Consider the restriction of L to the line spanned by v, f(t) = L(θ(t)) for t > 0. By the properties of L, f(t)
is strictly convex and minimized at t = 0. Let t0 > 0 be an arbitrary point. By strict convexity,

f(t) > f(t0) + f ′(t0)(t− t0) and f ′(t0) > 0

for some finite f(t0) and f ′(t0). Taking the limit of the lower bound as t→∞ gives that limt→∞ L(θ(t)) =∞.
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For background on the constraint sets of parameters exponential families, we recommend Wainwright and Jordan
(2008, §3.4). For a geometric view on priors in Bregman divergences, see Agarwal and Daumé III (2010).

EM with a prior. We now consider the analysis of EM with a proper conjugate prior if the full-data distribution
p(x, z | θ) is in the exponential family. Assuming that the observed and latent variables can be partitioned into
i.i.d. pairs (xi, zi), as is the case for example with Gaussian mixture models, the likelihood for a full observation is

p(xi, zi | θ) ∝ exp(〈T (xi, zi), θ〉 −A(θ)).

A conjugate prior on θ will have the same form as above,

p(θ |m0, n0) ∝ exp(〈m0, θ〉 − n0A(θ)),

and the MAP–EM objective will have the form (up to the normalization constant n+ n0)

LMAP(θ) = − 1

n+ n0

(
n∑
i=1

log p(x | θ)− log p(θ |m0, n0)

)
.

Applying the same upper bounds as in the MLE case, we can define the MAP–EM surrogate as

Q̃θ(φ) =
1

n+ n0

(
n∑
i=1

∫
log p(xi | zi, φ)p(zi |xi, θ) dz + n0A(θ)− 〈m0, θ〉

)
,

=
1

n+ n0

(∑n
i=1A(φ)−

〈
Ep(zi | xi,θ)[T (xi, zi)], θ

〉
+ n0A(φ)− 〈m0, φ〉

)
.

Writing s̄(θ) =
∑n
i=1 Ep(zi | xi,θ)[T (xi, zi)] for the sum of sufficient statistics, the surrogate is

= A(φ)− 〈m̄(θ), φ〉, where m̄(θ) =
s̄(θ) +m0

n+ n0
.

Ignoring the rescaling by n+ n0, this only changes the original surrogate by adding a linear term. The rescaled
objective is still 1-smooth4 relative to A, and the results derived for MLE still hold for MAP, up to minor variations.
Writing L and LMAP for the non-regularized MLE and regularized MAP objectives, the equivalent of Proposition 2
includes the prior in the optimality gap;

Proposition 5. Under assumptions A1–A3, EM for exponential family distributions with a proper conjugate
prior p(θ |m0, n0) ∝ exp(〈m0, θ〉 − n0A(θ)) converges at the rate

min
t≤T

KL[p(x, z | θt+1)‖p(x, z | θt)] ≤ LMAP(θ1)− LMAP(θ∗)

T
(where θ∗ is a minimum of LMAP)

=
L(θ1)− L(θ∗)

T
+

log p(θ∗ |m0, n0)− log p(θ1 |m0, n0)

T
.

The proof follows the same steps as Proposition 2, and similar variants hold for the locally convex (Corollary 1)
and strongly-convex (Corollary 3) cases. To relate the convergence of the successive iterates of Proposition 5 to
stationarity, a similar development as for Corollary 2 with the notation introduced above gives

Corollary 4. Under assumptions A1–A3, with a proper conjugate prior p(θ |m0, n0) ∝ exp(〈m0, θ〉 − n0A(θ)),

min
t≤T

DA∗

(
s̄(θt) +m0

n+ n0
, µt

)
≤ LMAP(θ1)− LMAP(θ∗)

T
.

The average of the prior and observed sufficient statistics s̄(θt)+m0

n+n0
and the mean parameters µt are the two parts

of the regularized gradient, ∇LMAP(θt) = ∇A(θt)− s̄(θt)+m0

n+n0
, and DA∗

(
s̄(θt)+m0

n+n0
, µt

)
= 0 implies ∇LMAP(θt) = 0.

4Without rescaling, the MLE and MAP objectives would be n-smooth and (n + n0)-smooth relative to A. While
rescaling changes the constants, the resulting algorithm is the same; running GD with step-size γ on a function f is
equivalent to a step-size γ/C on f ′ = Cf .
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D Supplementary material for Section 5:
Convergence of EM for Exponential Families

This section presents additional details and proofs for the results in Section 5;

Appendix D.1 Convergence of EM to stationary points (Proposition 2 and Corollary 2)

Appendix D.2 Natural decrement (Section 5.1)

Appendix D.3 Generalized EM schemes (Theorems 1 and 2)

Appendix D.4 Relative strong-convexity and the ratio of missing information

Appendix D.5 Local convergence of EM (Corollaries 1 and 3)

D.1 Convergence of EM to stationary points (Proposition 2 and Corollary 2)

Proposition 2. Under assumptions A1–A3, EM for exponential family distributions converges at the rate

min
t≤T

KL[p(x, z | θt+1)‖p(x, z | θt)] ≤ L(θ1)− L∗
T

.

Proof of Proposition 2. Assumptions A1–A3 ensure that the updates are well defined. A1 ensures the mapping
(∇A,∇A∗) is well defined and the update θt → θt+1 is unique. A2 ensures the objective is lower-bounded by some
value L∗ and A3 ensures that, if the parameters are restricted to an open set Ω, the updates remain in Ω as long
as θ1 ∈ Ω. Proposition 1 then gives that a step from θt to θt+1 satisfies

L(θt+1) ≤ L(θt) + 〈∇L(θt), θt+1 − θt〉+DA(θt+1, θt).

As θt+1 is selected to minimize the upper bound, it is at a stationary point. Using that∇DA(θ, θt) = ∇A(θ)−∇A(θt),

∇θt+1
{〈∇L(θt), θt+1 − θt〉+DA(θt+1, θt)} = 0 =⇒ ∇L(θt) +∇A(θt+1)−∇A(θt) = 0.

Substituting ∇L(θt) for ∇A(θt)−∇A(θt+1) in the upper bound and using the definition of Bregman divergences

DA(θt+1, θt) =A(θt+1)−A(θt)− 〈∇A(θt), θt+1 − θt〉,
gives the simplification

L(θt+1) ≤ L(θt) + 〈∇L(θt), θt+1 − θt〉+DA(θt+1, θt)

= L(θt) + 〈∇A(θt)−∇A(θt+1), θt+1 − θt〉+DA(θt+1, θt),

= L(θt)− 〈∇A(θt+1), θt+1 − θt〉+A(θt+1)−A(θt) = L(θt)−DA(θt, θt+1).

Reorganizing the inequality, we have that

DA(θt, θt+1) ≤ L(θt)− L(θt+1).

Summing over all iterations t = 1, . . . , T and dividing by T gives the result,

min
t≤T

DA(θt, θt+1) ≤ 1

T

T∑
t=1

DA(θt, θt+1) ≤ 1

T

T∑
t=1

L(θt)− L(θt+1) =
L(θ1)− L(θT )

T
.

Using the lower-bound on the objective function, L(θT ) ≥ L∗, finishes the proof.

Corollary 2. Under assumptions A1–A3,

min
t≤T

DA∗(s(θt), µt) ≤
L(θ1)− L∗

T
.

The observed sufficient statistics s(θt) and mean parameters µt are the two parts of the gradient, ∇L(θt) =
µt − s(θt), and DA∗(s(θt), µt) = 0 implies ∇L(θt) = 0.
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Proof of Corollary 2. The proof follows from Proposition 2 and the form of the update. We have that

the update ensures ∇L(θt) = ∇A(θt)−∇A(θt+1),

the gradient is ∇L(θt) = ∇A(θt)− s(θt),
the Bregman divergence satisfies DA(θt, θt+1) = DA∗(∇A(θt+1),∇A(θt)).

Using the mapping between natural and mean parameters, we get

DA(θt, θt+1) = DA∗(µt+1, µt) = DA∗(µt −∇L(θt), µt) = DA∗(s(θt), µt).

D.2 Natural decrement (Section 5.1)

For a small perturbation δ, the Bregman divergence is well approximated by its second-order Taylor expansion

DA∗(µ+ δ, µ) = DA∗(µ, µ)︸ ︷︷ ︸
=0

+ 〈∇µ′DA∗(µ′, µ) | µ′=µ︸ ︷︷ ︸
=0

, δ〉+
1

2
〈δ,∇2

µ′DA∗(µ
′, µ) | µ′=µ︸ ︷︷ ︸

∇2A∗(µ)

δ〉+ o(‖δ‖3) ≈ 1

2
‖δ‖2∇2A∗(µ).

Using that ∇2A∗(µ) = [∇2A(θ)]−1 = Ix,z(θ)
−1 (see Appendix A.4) and δ = ∇L(θ), we get an Euclidean

approximation of what the divergence measures, which we call the “natural decrement” as a reference to the
Newton decrement used in the affine-invariant analysis of Newton’s method (Nesterov and Nemirovski, 1994)

natural decrement:
1

2
‖∇L(θ)‖2Ix,z(θ)−1 Newton decrement:

1

2
‖∇L(θ)‖2∇2L(θ)−1

The invariance to homeomorphisms can be shown as follow. Consider an alternative parametrization of the
objective, Lalt(ψ) = L(f(ψ)) where (f, f−1) is the mapping between the parametrizations, θ = f(ψ) and
ψ = f−1(θ). We use Ix,z | θ and Ix,z |ψ to differentiate between the FIM of the two parametrizations. We have

∇Lalt(ψ) = ∇L(f(ψ)) = Jf(ψ)∇L(θ) and Ix,z |ψ(ψ) = Jf(ψ)> Ix,z | θ(θ) Jf(ψ),

where the second equality is a property of the Fisher information, shown in Appendix A.4. The two parametrizations
then give the same natural decrement,

‖∇Lalt(ψ)‖2Ix,z |ψ(ψ)−1 =
〈
∇Lalt(ψ), Ix,z |ψ(ψ)−1∇Lalt(ψ)

〉
=
〈
Jf(ψ)∇L(θ), Jf(ψ)−1 Ix,z | θ(θ)

−1 Jf(ψ)−> Jf(ψ)∇L(θ)
〉

=
〈
∇L(θ), Ix,z | θ(θ)

−1∇L(θ)
〉

= ‖∇L(θ)‖2Ix,z | θ(θ)−1 .

D.3 Generalized EM schemes (Theorems 1 and 2)

Theorem 1. Under assumptions A1–A3, if the M-steps are solved up to c-multiplicative error (A4),

min
t≤T

E[DA∗(s(θt), µt)] ≤
1

c

L(θ1)− L∗
T

.

Proof of Theorem 1. Recall the definition of the multiplicative error in A4,

E[Qθt(θt+1)−Qθt(θ∗t ) | θt] ≤ (1− c)(Qθt(θt)−Qθt(θ∗t )).

By adding Qθt(θ
∗
t )−Qθt(θt) to both sides, we get the following guarantee,

E[Qθt(θt+1)−Qθt(θt) | θt] ≤ −c(Qθt(θt)−Qθt(θ∗t )).

Plugging this inequality in the decomposition of the objective function (Equation 2),

E[L(θt+1)− L(θt) | θt] = E[Qθt(θt+1)−Qθt(θt) +Hθt(θt)−Hθt(θt+1)︸ ︷︷ ︸
≤0

| θt] ≤ −c (Qθt(θt)−Qθt(θ∗t )).

Using the same development as in Proposition 2, Qθt(θt)−Qθt(θ∗t ) = DA∗(s(θt), µt), and reorganizing gives

DA∗(s(θt), µt) ≤
1

c
E[L(θt)− L(θt+1) | θt].

Taking full expectation, averaging over all iterations and bounding E[L(θT )] > L∗ finishes the proof.
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Theorem 2. Under assumptions A1–A3, if the M-step at step t is solved up to εt-additive error (A5),

min
t≤T

E[DA∗(s(θt), µt)] ≤
L(θ1)− L∗

T
+

1

T

T∑
t=1

εt.

Proof of Theorem 2. Recall the definition of the additive error in A5,

E[Qθt(θt+1)−Qθt(θ∗t ) | θt] ≤ εt.

Plugging this inequality in the decomposition of the objective function (Equation 2),

E[L(θt+1)− L(θt) | θt] = E[Qθt(θt+1)−Qθt(θt) +Hθt(θt)−Hθt(θt+1)︸ ︷︷ ︸
≤0

| θt],

≤ E[Qθt(θt+1)−Qθt(θt) | θt],

= E[Qθt(θt+1)−Qθt(θ∗t ) | θt] +Qθt(θ
∗
t )−Qθt(θt) ≤ εt +Qθt(θ

∗
t )−Qθt(θt).

Using the same developments as Proposition 2 and Corollary 2, we have Qθt(θt)−Qθt(θ∗t ) = DA∗(s(θt), µt), and

DA∗(s(θt), µt) ≤ E[L(θt)− L(θt+1) | θt] + εt.

Taking full expectations and averaging over all iterations and bounding E[L(θT )] > L∗ finishes the proof.

D.4 Relative strong-convexity and the ratio of missing information

Proposition 3. For exponential families, the EM objective is α-strongly convex relative to A on a region Θ iff
the missing information M (Equation 12) satisfies

λmax(M(θ)) ≤ (1− α) for all θ ∈ Θ.

Proof of Proposition 3. That the objective is α-strong convexity relative toA is equivalent to

∇2L(θ) � α∇2A(θ).

By the decomposition of the objective (Equation 2),

∇2L(θ) = ∇2Qθ(θ)−∇2Hθ(θ).

If the complete-data distribution is in the exponential family, the Hessian of the surrogate is

∇2Qθ(θ) =
∫
−∇2 log p(x, z | θ) p(z |x, θ) dz

=
∫
∇2[A(θ)− 〈S(x, z), θ〉] p(z |x, θ) dz = ∇2A(θ),

where ∇2A(θ) is the FIM of the complete-data distribution, Ix,z(θ). The Hessian of the entropy term is the Fisher
of the conditional distribution, Iz | x(θ),

∇2Hθ(θ) =
∫
−∇2p(z |x, θ) p(z |x, θ) dz = Iz | x(θ).

This gives that the relative α-strong convexity of L is equivalent to

Ix,z(θ)− Iz | x(θ) � αIx,z(θ).
Multiplying by the inverse of Ix,z(θ), which always exist if the exponential family is minimal (A1),

I − Ix,z(θ)−1Iz | x(θ) � αI ⇐⇒ (1− α)I � Ix,z(θ)−1Iz | x(θ) = M(θ),

where I is the identity matrix. This gives that L is α-strongly convex relative toA on a subset Θ if and only if
the largest eigenvalue of the missing information is bounded by 1− α.
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D.5 Local convergence of EM (Corollaries 1 and 3)

We now present proofs for the locally convex and relatively strongly-convex settings in Corollaries 1 and 3,
restated below for convenience.

Corollary 1. For exponential families, if EM is initialized in a locally-convex region with minimum θ∗,

L(θT )− L(θ∗) ≤ 1

T
KL[p(x, z | θ1)‖p(x, z | θ∗)]. (8)

Corollary 3. Under A1–A3, if EM is initialized in a locally convex region Θ with minimum L∗ and the
ratio of missing information is bounded, λmax(M(θ)) ≤ r,

L(θt+1)− L∗ ≤ r(L(θt)− L∗).

Both corollaries are direct consequences of Theorem 3.1 in Lu et al. (2018) with L = 1 if initialized in a convex or
relatively (1− r)-strongly convex region. We present here an alternative proof.

Theorem 3 (Simplified version of Theorem 3.1 (Lu et al., 2018)). Let A1–A3 hold and L be a convex and
1-smooth function relative to A, with minimum at θ∗. Mirror descent with step-size γ = 1, leading to the update
satisfying ∇A(θt+1) = ∇A(θt)−∇L(θt), converges at the rate

L(θT )− L(θ∗) ≤ 1

T
DA(θ∗, θ1).

If, in addition, L is α-strongly convex relative to A, then

L(θT )− L(θ∗) ≤ (1− α)TDA(θ∗, θ1).

Proof. Recall that by definition of the update, ∇A(θt+1) = ∇A(θt)−∇L(θt). By relative smoothness, we have

L(θt+1) ≤ L(θt) + 〈∇L(θt), θt+1 − θt〉+DA(θt+1, θt).

We first show that the algorithm makes progress at each step, L(θt+1) ≤ L(θt), by showing that

L(θt+1)− L(θt) ≤ 〈∇L(θt), θt+1 − θt〉+DA(θt+1, θt) ≤ −DA(θt, θt+1).

Substituting the gradient by ∇A(θt)−∇A(θt+1) we have that

〈∇L(θt), θt+1 − θt〉+DA(θt+1, θt) = 〈∇A(θt)−∇A(θt+1), θt+1 − θt〉+DA(θt+1, θt).

Expanding the Bregman divergence as DA(θt+1, θt) =A(θt+1)−A(θt)−〈∇A(θt), θt+1 − θt〉, we get the simplification

= 〈∇A(θt)−∇A(θt+1), θt+1 − θt〉+A(θt+1)−A(θt)− 〈∇A(θt), θt+1 − θt〉,
= −〈∇A(θt+1), θt+1 − θt〉+A(θt+1)−A(θt)

= −DA(θt, θt+1) ≤ 0.

We now relate the progress to the Bregman divergence to the minimum. We will show that

L(θt+1)− L(θ∗) ≤ DA(θ∗, θt)−DA(θ∗, θt+1).

Starting from relative smoothness,

L(θt+1) ≤ L(θt) + 〈∇L(θt), θt+1 − θt〉+DA(θt+1, θt),

= L(θt) + 〈∇L(θt), θt+1 − θ∗ + θ∗ − θt〉+DA(θt+1, θt), (±〈∇L(θt), θ
∗〉)

= L(θt) + 〈∇L(θt), θ
∗ − θt〉+ 〈∇L(θt), θt+1 − θ∗〉+DA(θt+1, θt).

By convexity, we have that L(θ∗) ≥ L(θt) + 〈∇L(θt), θ
∗ − θt〉 and

≤ L(θ∗) + 〈∇L(θt), θt+1 − θ∗〉+DA(θt+1, θt).

Using that the update satisfies ∇A(θt+1) = ∇A(θt)−∇L(θt), we can rewrite the gradient as

= L(θ∗) + 〈∇A(θt)−∇A(θt+1), θt+1 − θ∗〉+DA(θt+1, θt),

= L(θ∗) + 〈θ∗ − θt+1,∇A(θt+1)−∇A(θt)〉+DA(θt+1, θt).
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Using the three point property, DA(θ∗, θt) = DA(θ∗, θt+1) + 〈θ∗ − θt+1,∇A(θt+1)−∇A(θt)〉+DA(θt+1, θt) and

= L(θ∗) +DA(θ∗, θt)−DA(θ∗, θt+1).

Reorganizing the terms yields the inequality L(θt+1)− L(θ∗) ≤ DA(θ∗, θt)−DA(θ∗, θt+1).

Using that the algorithm makes progress and summing all iterations yields

T (L(θT )− L(θ∗)) ≤
T∑
t=1

L(θt+1)− L(θ∗) ≤
T∑
t=1

DA(θ∗, θt)−DA(θ∗, θt+1) ≤ DA(θ∗, θ1).

Dividing by T finishes the proof for the convex case.

For the relatively strongly-convex case, we will show that the Bregman divergence also converges linearly,

DA(θ∗, θt+1) ≤ (1− α)tDA(θ∗, θ1).

Combining this contraction with earlier result that L(θt+1)− L(θ∗) ≤ DA(θ∗, θt)−DA(θ∗, θt+1) implies

L(θt+1)− L(θ∗) ≤ DA(θ∗, θt)−DA(θ∗, θt+1) ≤ DA(θ∗, θt) ≤ (1− α)tDA(θ∗, θ1).

In addition to the three point property, we will use the following two results to show the linear rate of convergence.
By the relative α-strong convexity of L,

L(θ∗) ≥ L(θt) + 〈∇L(θt), θ
∗ − θt〉+ αDA(θ∗, θt) =⇒ 〈∇L(θt), θ

∗ − θt〉 ≤ L(θ∗)− L(θt)− αDA(θ∗, θt), (A)

And by the first result we showed, the algorithm makes progress proportional to DA(θt, θt+1),

L(θt+1)− L(θt) ≤ −DA(θt, θt+1) =⇒ DA(θt, θt+1) ≤ L(θt)− L(θt+1) (B)

Using the three point property, we can expand the divergence as

DA(θ∗, θt+1) = DA(θ∗, θt) + 〈θ∗ − θt,∇A(θt)−∇A(θt+1)〉+DA(θt, θt+1).

Replacing ∇A(θt)−∇A(θt+1) by the gradient at θt, we have

= DA(θ∗, θt) + 〈∇L(θt), θ
∗ − θt〉+DA(θt, θt+1).

Using the relative α-strong convexity of L (A),

≤ (1− α)DA(θ∗, θt) + (L(θ∗)− L(θt)) +DA(θt, θt+1).

Using the progress bound (B),

≤ (1− α)DA(θ∗, θt) + (L(θ∗)− L(θt)) + (L(θt)− L(θt+1)),

= (1− α)DA(θ∗, θt) + (L(θ∗)− L(θt+1)).

As L(θ∗) ≤ L(θt+1), we get that DA(θ∗, θt+1) ≤ (1− α)DA(θ∗, θt). Recursing finishes the proof,

DA(θ∗, θt+1) ≤ (1− α)tDA(θ∗, θ1).
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E Supplementary material for Section 5.4:
EM for General Models

This sections extends the results on stationarity in Section 5 to handle cases where the objective and the surrogate
can be non-differentiable. A simple example of this setting is a mixture of Laplace distributions. It is still possible
to optimize the M-step, but the theory does not apply as the Laplace is not in the exponential family. The
main problem for the analysis of non-differentiable, non-convex objectives is that the progress at each step need
not be related to the gradient (if it is even defined at the current point). Asymptotic convergence can still be
shown (Chrétien and Hero, 2000; Tseng, 2004), but non-asymptotic results are not available without stronger
assumptions, such as the Kurdyka- Lojasiewicz inequality or weak convexity.

Instead of focusing on the progress of the M-step, we look here at the progress of the E-step under the assumption
that the conditional distribution over the latent variables p(z |x, θ) is in the exponential family. This is a strictly
weaker assumption, as it is implied if the complete-data distribution p(x, z | θ) is an exponential family distribution,
but holds more generally. For example, it is satisfied by any finite mixture, even if the mixture components are
non-differentiable, as for the mixture of Laplace distributions. As a tradeoff, however, the resulting convergence
results only describe the stationarity of the parameters controlling the latent variables.

To analyse the E-step, we use the formulation of EM as a block-coordinate optimization problem. Let q(z |φ)
be an exponential family distribution in the same family as p(z |x, θ), such that minφ KL[q(z |φ)‖p(z |x, θ)] = 0.
We can write the E-step and M-step as an alternating optimization procedure on the augmented objective L+,

L+(θ, φ) = −
∫

log

(
p(x, z | θ)
q(z |φ)

)
q(z |φ) dz such that L(θ) = min

φ
L+(θ, φ),

The parameters φ and θ need not be defined on the same space, as φ only controls the conditional distribution
over the latent variables and θ controls the complete-data distribution. The E and M steps then correspond to

E-step: φt+1 = arg minφ L+(θt, φ), M-step: θt+1 = arg minθ L+(θ, φt+1).

Two gradients now describe stationarity; the gradient of the M-step, ∇θL+(θt, φt+1), which we studied before,
and the gradient of the E-step, ∇φL+(θt, φt). Let S andA be the sufficient statistics and log-partition function of
q(z |φ), and the natural and equivalent mean parameters be denoted by (φt, µt). We show the following, which is
the analog of Corollary 2 for the conditional distribution over the latent variables q(z |φ).

Theorem 4. Let Assumption A2 and A3 hold, and let θ be the parameters of the complete-data distribution
p(x, z | θ). If the conditional distribution over the latent variables q(z |φ) is a minimal exponential family distribution
with natural and mean parameters (φ, µ),

min
t≤T

DA(φt+1, φt) ≤
L(θ1)− L∗

T
.

This implies convergence of the gradient in KL divergence as the (natural) gradient is ∇µL+(θt, φt) = φt − φt+1.

Proof of Theorem 4. Let us start by bounding the progress on the overall objective by the progress of the E-step;

L(θt)− L(θt−1) =

Progress of the joint EM step︷ ︸︸ ︷
L+(θt, φt+1)− L+(θt−1, φt),

= L+(θt, φt+1)− L+(θt, φt)︸ ︷︷ ︸
Progress of the E-step

+L+(θt, φt)− L+(θt−1, φt)︸ ︷︷ ︸
Progress of the M-step

≤ L+(θt, φt+1)− L+(θt, φt).

The last inequality holds as the M-step is guarantee to make progress. To show that the progress of the E-step is
the KL divergence between q(z |φ) and p(z |x, θt) we use the following substitution,

L+(θ, φ) = −
∫

log
p(x, z | θ)
q(z |φ)

q(z |φ) dz = −
∫

log
p(z |x, θ)
q(z |φ)

q(z |φ) dz −
∫

log p(x | θ)q(z |φ) dz

= KL[q(z |φ)‖p(z |x, θ)]− log p(x | θ).
Plugging the substitution in L+(θt, φt+1)− L+(θt, φt) yields

L+(θt, φt+1)− L+(θt, φt) = KL[q(z |φt+1)‖p(z |x, θt)]︸ ︷︷ ︸
=0

−KL[q(z |φt)‖p(z |x, θt)],
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where the first term is 0 if p(z |x, θ) and q(z |φ) are in the same exponential family and φt+1 is the exact solution

s(θt) = Ep(z | x,θt)[S(z)], φt+1 = ∇A∗(s(θt)).
Combining the bounds so far, we have that

L(θt)− L(θt−1) ≤ L+(θt, φt+1)− L+(θt, φt) ≤ −KL[q(z |φt)‖p(z |x, θt)].

To relate the progress to the gradient, we express the KL divergence as a Bregman divergence in mean parameters,

KL[q(z |φt)‖p(z |x, θt)] = DA∗(µt, s(θt)).

The gradient with respect to the mean parameters at (φt, µt) is then

∇µL+(θt,∇A∗(µ)) | µ=µt = ∇µKL[q(z | ∇A∗(µ))‖p(z |x, θt)] | µ=µt ,

= ∇µDA∗(µ, s(θt)) | µ=µt ,

= ∇µ[A∗(µ)−A∗(s(θt))− 〈∇A∗(s(θt)), µ− s(θt)〉 ] | µ=µt ,

= ∇A∗(µt)−∇A∗(s(θt)) = φt − φt+1.

We can then express the update of the E-step from φt to φt+1 as a mirror descent step, updating the natural
parameters using the gradient with respect to the natural parameters,

φt+1 = φt −∇µL+(θt,∇A∗(µt)).
To express this update in natural parameters only, recall from Appendices A.2 and A.4 that∇2A∗(µt) = [∇2A(φt)]

−1

and that ∇2A(φt) is the Fisher information matrix of the distribution q(z |φ), Iz |φ(φt). The update is then
equivalent to a natural gradient update in natural parameters, as

∇µL+(θt,∇A∗(µt)) = ∇2A∗(µt)∇φL+(θt, φt) = [Iz |φ(φt)]
−1∇φL+(θt, φt).

Using those expression for the KL divergence and parameter updates yields the bound

L(θt)− L(θt−1) ≤ −KL[q(z |φt)‖p(z |x, θt)] = −DA(φt −∇µL+(θt+1,∇A∗(µt)), φt).
Reorganizing terms gives

DA(φt −∇µL+(θt,∇A∗(µt)), φt) ≤ L(θt−1)− L(θt).

And averaging over all iterations and bounding L(θT ) > L∗ finishes the proof.


