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Abstract

Most existing examples of full conformal predictive systems, split conformal predictive sys-
tems, and cross-conformal predictive systems impose severe restrictions on the adaptation
of predictive distributions to the test object at hand. In this paper we develop split confor-
mal predictive systems that are fully adaptive. Our method consists in calibrating existing
predictive systems; the input predictive system is not supposed to satisfy any properties of
validity, whereas the output predictive system is guaranteed to be calibrated in probability.

Keywords: Conformal prediction, cross-conformal prediction, inductive conformal predic-
tion, predictive distributions, split conformal prediction, regression.

1. Introduction

Conformal predictive distributions were inspired by the work on predictive distributions
in parametric statistics (see, e.g., Schweder and Hjort, 2016, Chapter 12, and Shen et al.,
2018) and first suggested in Vovk et al. (2019). As usual, we will refer to algorithms
producing conformal predictive distributions as conformal predictive systems (CPS, used in
both singular and plural senses).

Conformal predictive systems are built on top of traditional prediction algorithms to
ensure a property of validity usually referred to as calibration in probability (Gneiting and
Katzfuss, 2014). Several versions of the Least Squares Prediction Machine, CPS based on
the method of Least Squares, are constructed in Vovk et al. (2019). This construction is
slightly extended to cover ridge regression and then further extended to nonlinear settings
by applying the kernel trick in Vovk et al. (2018a). However, even after this extension the
method is not fully adaptive, even for a universal kernel. As explained in Vovk et al. (2018a,
Section 7), the universality of the kernel shows in the ability of the predictive distribution
function to take any shape; however, the CPS is still inflexible in that the shape does not
depend, or depends weakly, on the test object.

© 2020 V. Vovk, I. Petej, P. Toccaceli, A. Gammerman, E. Ahlberg & L. Carlsson.



Conformal calibration

For many base algorithms full CPS (like full conformal predictors in general) are com-
putationally inefficient, and Vovk et al. (2018b) define and study computationally efficient
versions of CPS, namely split conformal predictive systems (SCPS) and cross-conformal
predictive systems (CCPS). However, specific SCPS and CCPS proposed in Vovk et al.
(2018b) are based on the split conformity measure

A(z1, . . . , zm, (x, y)) :=
y − ŷ
σ̂

, (1)

where ŷ is a prediction for y computed from x as test object and z1, . . . , zm as training
sequence, and σ̂ > 0 is an estimate of the quality of ŷ computed from the same data.
The predictive distributions corresponding to (1) are slightly more adaptive: not only their
location but also their scale depends on the test object x. (The conformity measures used
in Vovk et al. 2019 and Vovk et al. 2018a correspond to (1) with σ̂ := 1 and so implicitly
assume homoscedasticity.) Ideally, however, we would like to allow a stronger dependence
on the test object. This paper follows Vovk (2019, Section 10) in using a method that is fully
flexible and, for a suitable base algorithm, adapts fully to the test object (cf. Proposition 4
below). Whereas the emphasis in Vovk (2019) is on asymptotic optimality only, one of the
purposes of this paper is to propose practically useful solutions.

We start by defining, in Section 2, algorithms outputting predictive distributions, which
we call predictive systems (when randomization is not allowed) or randomized predictive
systems (when it is allowed). In the next section we define split conformal predictive
systems. Section 4 is devoted to validity. In particular, we explain that split conformal
predictive systems are always valid, in the sense of being calibrated in probability, under
the IID assumption. The IID assumption, standard in conformal prediction, is that the ob-
servations are generated in the IID fashion (sometimes this assumption is slightly weakened
to assuming an online compression model, as in Vovk et al. 2005, Chapter 8). In Section 5
we discuss conformalizing ideal predictive systems under the IID assumption, although in
this context this assumption becomes less essential. Section 6 contains some experimental
results. Section 7 states directions of further research.

This paper and Vovk (2019) establish very different versions of the generic notion of
efficiency. Whereas Vovk (2019) studies an asymptotic version of efficiency, this paper
concentrate on a rather narrow but small-sample version. It is a less conservative form
of the medical principle “first, do no harm”: if a predictive system is already perfect,
conformalizing it should not make it much worse.

2. Predictive systems and randomized predictive systems

Let us fix (until Section 6) a nonempty measurable space X that will serve as our object
space, and let Z := X×R stand for our observation space. Each observation z = (x, y) ∈ Z
consists of an object x ∈ X and its label y ∈ R.

Definition 1 A measurable function Q : ∪∞n=1Z
n+1 → [0, 1] is called a predictive system

(PS) if:

1. For each n ∈ {1, 2, . . . }, each training sequence (z1, . . . , zn) ∈ Zn, and each test ob-
ject x ∈ X, the function Q(z1, . . . , zn, (x, y)) is monotonically increasing in y (where
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“monotonically increasing” is understood in the wide sense allowing intervals of con-
stancy).

2. For each n ∈ {1, 2, . . . }, each training sequence (z1, . . . , zn) ∈ Zn, and each test object
x ∈ X,

lim
y→−∞

Q(z1, . . . , zn, (x, y)) = 0

and
lim
y→∞

Q(z1, . . . , zn, (x, y)) = 1.

The output y ∈ R 7→ Q(z1, . . . , zn, (x, y)) of a PS on a given training sequence z1, . . . , zn and
test object x will be referred to as a predictive distribution (function) and will sometimes
be denoted Qz1,...,zn,x. It is a distribution function in the sense of probability theory except
that we do not require that it be right-continuous.

We also need the notion of a randomized predictive system.

Definition 2 A measurable function Q : ∪∞n=1Z
n+1× [0, 1]→ [0, 1] is called a randomized

predictive system (RPS) if:

1. For each n ∈ {1, 2, . . . }, each training sequence (z1, . . . , zn) ∈ Zn, and each test
object x ∈ X, the function Q(z1, . . . , zn, (x, y), τ) is monotonically increasing in y and
monotonically increasing in τ .

2. For each n ∈ {1, 2, . . . }, each training sequence (z1, . . . , zn) ∈ Zn, and each test object
x ∈ X,

lim
y→−∞

Q(z1, . . . , zn, (x, y), 0) = 0

and
lim
y→∞

Q(z1, . . . , zn, (x, y), 1) = 1.

The output y ∈ R 7→ Q(z1, . . . , zn, (x, y), τ) of an RPS on a given training sequence
z1, . . . , zn, test object x, and (random) number τ will be referred to as a predictive dis-
tribution (function) and will sometimes be denoted Qz1,...,zn,x,τ .

Notice that Definition 2 does not include any requirement of validity, unlike the corre-
sponding definitions in Vovk et al. (2019, 2018a,b) and Vovk (2019): in this paper we follow
the terminology of Schweder and Hjort (2016, Chapter 12) rather than Shen et al. (2018).
Validity will be discussed in Section 4.

3. Split conformal calibration

If A is a predictive system, the split conformal predictive system (SCPS) corresponding to
A (or the split-conformalized version of A) is defined as follows. The training sequence
z1, . . . , zn is split into two parts: the training sequence proper z1, . . . , zm and the calibration
sequence zm+1, . . . , zn, where we assume 1 ≤ m < n. Given a test object x, the output of
CA is defined as

CAz1,...,zn,x,τ (y) :=
1

n−m+ 1
|{i = m+ 1, . . . , n | αi < αy}|
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Algorithm 1: Split Conformal Calibration

Data: training sequence (xi, yi) ∈ Z, i = 1, . . . , n, positive integer m < n, test object
x ∈ X, and random number τ ∈ [0, 1].

for i ∈ {1, . . . , n−m} do
pi := A(z1, . . . , zm, zm+i)

end
sort p1, . . . , pn−m in the increasing order obtaining p(1) < · · · < p(k);

for j ∈ {1, . . . , k} do
nj :=

∣∣{i = 1, . . . , n−m | pi = p(j)
}∣∣;

mj := sup{y | A(z1, . . . , zm, (x, y)) < p(j)};
Mj := inf{y | A(z1, . . . , zm, (x, y)) > p(j)}

end
return the predictive distribution CA given by (3) for the label y of x.

+
τ

n−m+ 1
|{i = m+ 1, . . . , n | αi = αy}|+ τ

n−m+ 1
, (2)

where the conformity scores αi, i = m+ 1, . . . , n, and αy, y ∈ R, are defined by

αi := A(z1, . . . , zm, (xi, yi)), i = m+ 1, . . . , n,

αy := A(z1, . . . , zm, (x, y)).

This follows the definition of a split conformal transducer in Vovk et al. (2018b).
For simplicity, let us assume that A never takes values 0 and 1. When considered as

a split conformity measure, as defined in Vovk et al. (2018b, Section 3), such a predictive
system is balanced and isotonic, which makes it possible to apply Proposition 3.1 in Vovk
et al. (2018b) and conclude that the SCPS CA is an RPS (and satisfies the property of
validity introduced in Section 4 below). We refer to this method, namely transforming pre-
dictive systems to the corresponding split conformal predictive systems, as split conformal
calibration.

The SCPS CA can be implemented by directly coding the definition (2) using a grid
of values of y (as we do for the experiments in Section 6). Algorithm 1 describes another
implementation of CA. It defines the predictive distribution apart from a finite number
of points y (and so the values at those points do not affect, e.g., CRPS as defined by
(10) in Section 6); we can set the probability interval conv({CAz1,...,zn,x,τ (y) | τ ∈ [0, 1]})
at those points y to the union of the prediction intervals at the adjacent points without a
substantial change to the predictive system. Some of the pi, i = 1, . . . , n−m, in Algorithm 1
may coincide, so we can only say that k ∈ {1, . . . , n −m} rather than k = n −m (notice
that the sequence p(j), j = 1, . . . , k, is strictly increasing). The predictive distribution that
it outputs is

CAz1,...,zn,x,τ (y) =

4



Conformal calibration


τ

n−m+1 if y < m1
n1+···+nj−1+τnj+τ

n−m+1 if y ∈ (mj ,Mj), j ∈ {1, . . . , k}
n1+···+nj+τ
n−m+1 if y ∈ (Mj ,mj+1), j ∈ {1, . . . , k − 1}

n1+···+nk+τ
n−m+1 = n−m+τ

n−m+1 if y > Mk.

(3)

Algorithm 1 is a slight generalization of Algorithm 1 in Vovk et al. (2018b). The
latter makes an assumption (the base distribution functions Az1,...,zn,x being continuous
and strictly increasing) implying that mj = Mj for all j ∈ {1, . . . , k}; in our current general
context we can only say that

m1 ≤M1 ≤ m2 ≤M2 ≤ · · · ≤ mk ≤Mk.

Location-scale models

The split conformity measure (1), which is used in Vovk et al. (2018b), is not covered
directly by our definition since it does not have to take values in [0, 1]. But this can be easily
arranged: e.g., we can apply a fixed strictly increasing distribution function F : R → [0, 1]
to (1) to make sure the split conformity measure takes values in [0, 1]. This makes the
approach based on (1) a special case of this paper’s approach corresponding to the location-
scale families

Fµ,σ(y) := F

(
y − µ
σ

)
. (4)

Notice that the conformalized predictive distributions will not depend on the choice of F
as long as F is strictly increasing; e.g., we can fix it to the standard Gaussian distribution
function (and this will not mean that we are relying on the Gaussian assumption).

Specializing (4) by setting σ := 1, we obtain a class containing the predictive systems
considered in Vovk et al. (2019, 2018a). This class will be used in our experiments in
Section 6.

4. Validity of conformal calibration

An RPS Q is calibrated in probability if, for any probability measure P on Z, as function of
random training observations Z1 ∼ P ,. . . , Zn ∼ P , a random test observation Z ∼ P , and
a random number τ ∼ U (U being the uniform probability measure on [0, 1]), all assumed
independent, the distribution of Q is uniform:

∀α ∈ [0, 1] : P (Q(Z1, . . . , Zn, Z, τ) ≤ α) = α. (5)

(This was included as Requirement R2 in the definition of an RPS in Vovk et al. 2019,
2018a,b and Vovk 2019.)

Split conformal predictive systems are automatically calibrated in probability, in the
sense of satisfying (5), under the IID assumption. If F is the distribution function produced
for a test object X∗, F := CAZ1,...,Zn,X∗,τ , then F (Y ∗) will be distributed uniformly on [0, 1],
where Y ∗ is the true label of X∗. Notice, however, that for a test sequence Z∗i = (X∗i , Y

∗
i ),

i = 1, . . . , l, Fi(Y
∗
i ) will not be independent, even though distributed uniformly on [0, 1],

where Fi := CAZ1,...,Zn,X∗
i ,τi

is the distribution function produced for X∗i . To make Fi(Y
∗
i )
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not only distributed uniformly on [0, 1] but also independent, we can use the semi-online
protocol, predicting the labels Y ∗i of X∗i , i = 1, . . . , k, sequentially and adding Z∗i to the
calibration sequence as soon as it is processed. This is asserted in the following proposi-
tion and might be useful for debugging implementations of split-conformalized predictive
systems.

Proposition 3 Suppose Z1, . . . , Zn, Z
∗
1 , Z

∗
2 , . . . is an IID sequence of observations and

(τ1, τ2, . . . ) ∈ [0, 1]∞ is independent and uniformly distributed. Then the random variables

CAZ1,...,Zn,Z∗
1 ,...,Z

∗
i−1,X

∗
i ,τi

(Y ∗i )

are independent and uniformly distributed on [0, 1], where X∗i and Y ∗i are the components
of Z∗i = (X∗i , Y

∗
i ).

This proposition gives a stronger property of validity, online calibration in probability, for
split conformal prediction.

Cross-conformal calibration

We can easily combine several split conformal predictive systems as defined in the previous
section into a cross-conformal predictive system, exactly in the same way as in Vovk et al.
(2018b, Section 4). The resulting RPS will lose automatic calibration in probability (5) but
will use the available data more efficiently.

Full conformal calibration

Let us say that a predictive system A is invariant if, for any n ∈ {1, 2, . . . } and any
z1, . . . , zn, z ∈ Z, the value A(z1, . . . , zn, z) does not depend on the order of z1, . . . , zn. The
full conformal predictive system (or simply conformal predictive system) corresponding to
an invariant predictive system A is defined in Vovk et al. (2019, Section 2). This defi-
nition, however, is applicable to a narrower class of predictive systems than that in the
definition of the split conformal predictive systems. For example, it will be applicable if
we assume, additionally, that, for any n ∈ {1, 2, . . . }, any x1 ∈ X, and any z2, . . . , zn+1,
A((x1, y1), z2, . . . , zn+1) is monotonically decreasing in y1 ∈ R (Vovk et al., 2019, Section
2.2).

Full conformal predictive systems are automatically calibrated in probability (Vovk
et al., 2019, Section 2).

5. Efficiency of conformalizing ideal predictive systems

In this section we will explore the efficiency of conformal calibration in the situation where
the base predictive system A is the ideal one. In this case we cannot improve A, and we
are interested in how much worse CA can become as compared with A. (Similar questions
were asked by Wasserman and by Burnaev and Vovk (2014).) If, for any A, CA is almost
as good as A, we can say that the calibration method is fully adaptive.

Let P be the true probability measure on Z generating the observations z1, z2, . . . in
the IID manner. A conditional distribution function for P is a function A : Z→ [0, 1] such
that:

6



Conformal calibration

� for each x ∈ X, as function of y ∈ R, A(x, y) is a distribution function (i.e., is
increasing, is right-continuous, and satisfies A(x,−y)→ 0 and A(x, y)→ 1 as y →∞);

� for each y ∈ R,
A(X, y) = P(Y ≤ y | X) a.s. (6)

when (X,Y ) ∼ P .

The existence and a.s. uniqueness of a conditional distribution function follows from stan-
dard results about the existence of regular probability distributions (e.g., Dudley 2002,
Theorem 10.2.2).

Consider a sequence ξ1, ξ2, . . . of independent and uniformly distributed random vari-
ables ξi ∼ U . Let Gn be the empirical distribution function of ξ1, . . . , ξn; we are using the
notation of Shorack and Wellner (1986), who refer to Gn as the uniform empirical distri-
bution function. For large n and with high probability, Gn is close to the main diagonal of
the unit square [0, 1]2.

Let us use the true conditional distribution function A, satisfying (6), as base predictive
system (roughly, this corresponds to an infinitely long training sequence proper). The
corresponding ideal conformalized predictive system (ICPS) is defined as

CAz1,...,zn,x,τ (y) :=
1

n+ 1
|{i = 1, . . . , n | A(xi, yi) < A(x, y)}|

+
τ

n+ 1
|{i = 1, . . . , n | A(xi, yi) = A(x, y)}|+ τ

n+ 1
,

where x is the test object. Intuitively, the whole training sequence is used as the calibration
sequence (we do not need a training sequence proper as A is already perfect). An ICPS is
an idealization of both SCPS and cross-conformal predictive systems.

The following proposition says that CA will be close to A and that the distance between
them will be of order n−1/2. We will state it in a semi-online protocol and further discuss
the intuition behind it after its proof.

Proposition 4 Suppose the conditional distribution function Ax := A(x, ·) (for the true
probability measure P ) is continuous and strictly increasing for almost all x ∈ X, and
Z1, Z2, · · · ∼ P and τ1, τ2, · · · ∼ U are all independent. Then the ICPS CA satisfies(

CAZ1,...,Zn,Xn+1,τn+1
◦A−1Xn+1

)∞
n=1

d
= (Gn + ηn)∞n=1 , (7)

where Xn+1 is the first component of Zn+1,
d
= means the equality of distributions, and ηn

are random functions in the Skorokhod space D[0, 1] satisfying ‖ηn‖∞ ≤ 1/(n+ 1) a.s.

Proof For given t ∈ [0, 1] and n,

CAZ1,...,Zn,X,τ

(
A−1X (t)

)
=

1

n+ 1
|{i ∈ {1, . . . , n} | AXi(Yi) < t}|

+
τ

n+ 1
|{i ∈ {1, . . . , n} | AXi(Yi) = t}|+ τ

n+ 1
=

k

n+ 1
+

τ

n+ 1
,
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where the second equality holds almost surely and

k := |{i ∈ {1, . . . , n} | AXi(Yi) ≤ t}| .

It remains to notice that the probability integral transforms AXi(Yi) ∼ U are IID and that

sup
τ,k

∣∣∣∣ k

n+ 1
+

τ

n+ 1
− k

n

∣∣∣∣ = sup
τ,k

∣∣∣∣τ − k/nn+ 1

∣∣∣∣ =
1

n+ 1
,

where τ ranges over [0, 1] and k over {0, . . . , n}.

As mentioned earlier, Proposition 4 can be interpreted as saying that conformal cali-
bration is a fully adaptive system. Nothing like it holds for the earlier methods, such as
Least Squares Prediction Machine (Vovk et al., 2019) or its kernelized versions (Vovk et al.,
2018a). Equation (7) implies that

CAZ1,...,Zn,Xn+1,τn+1
≈ AXn+1 . (8)

The difference between the two sides of (8) is of the order n−1/2; this follows from the
standard result n1/2(Gn − I)⇒ U, where I : [0, 1]→ [0, 1] is the identity function I(t) = t,
t ∈ [0, 1], and U is a Brownian bridge (see, e.g., Billingsley 1968, Theorem 16.4) and the
invariance of weak convergence under small perturbations such as ηn (e.g., Billingsley 1968,
Theorem 4.1).

6. Experimental results

In this section we explore whether our conformalization procedure improves the performance
of standard predictive systems for artificial and real datasets and how it compares to earlier
methods. Following the standard usage, we will often say “training set” and “test set” when
the order of elements in a training sequence or test sequence is not important. We begin
by considering a standard predictive system and a toy artificial dataset.

The predictive system that we consider is the Nadaraya–Watson predictive system (first
introduced in the density form in Rosenblatt 1969)

F (y | x) =

∑n
i=1H

(y−yi
h

)
G
(
x−xi
g

)
∑n

i=1G
(
x−xi
g

) , (9)

where we will take H to be the sigmoid distribution function

H(u) :=
1

1 + e−u

and G the Gaussian kernel

G(u) :=
1√
2π
e−u

2/2.

There are two positive parameters in (9), g and h.
The labels yi are generated as

yi := 2xi + εi,
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Figure 1: The toy training set.
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Figure 2: Performance (in the sense of CRPS) of the Nadaraya–Watson predictive system
(left) and its split-conformalized version (right) for a range of g and h.

where the objects xi are drawn from the uniform distribution on [−1, 1], εi is Gaussian noise
with mean 0 and standard deviation |xi| /2, and xi and εi, i = 1, 2, . . . , are all independent.
A training set proper of size 2000 is shown in Figure 1.

The quality of predictions will be measured by a popular loss function known as CRPS
(continuous ranked probability score). The CRPS loss suffered by a distribution function
F (as prediction) on a real number y (as label) is

CRPS(F, y) :=

∫ ∞
−∞

(
F (u)− 1{u≥y}

)2
du, (10)
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where 1 stands for the indicator function. It takes its minimal value 0 when F = 1[y,∞),
and it is ∞ when F has a fat tail. The loss of a sequence of distribution functions Fi on a
test sequence (xi, yi), i = 1, . . . , l, is measured by the average

1

l

l∑
i=1

CRPS(Fi, yi),

where Fi is the predictive distribution function output for the label of the ith test observation
(found from the training set and the test object) and yi is the true label of the ith test
observation.

Our definition (2) gives a function typically ranging between τ
n−m+1 ≈ 0 and n−m+τ

n−m+1 ≈ 1,
and for the purpose of computing CRPS we turn it into a function ranging between 0 and
1 by applying the appropriate (unique) linear transformation to its values.

The left panel of Figure 2 shows the loss, averaged over 1000 test observations, of the
Nadaraya–Watson predictive system (9) for various values of parameters g and h. The right
panel shows the loss of the Nadaraya–Watson predictive system calibrated using a separate
calibration sequence of size 1000. We can see that calibration improves the performance of
the base predictive system for a wide range of parameter values.

Next, we extend our analysis using different versions of the same toy dataset shown
in Figure 1 and applying four different base predictive systems: random forest regression
(RF), Gaussian process with a radial basis function kernel (GRBF), Gaussian process with
a Matérn kernel (GM), and TensorFlow probability module (TF). We apply each of the four
predictive systems to the artificially generated toy dataset across four different scenarios,
designed to test whether our procedure improves the performance of standard predictive
systems:

Normal (Norm): the labels yi are generated as yi := 2xi + εi, where εi is Gaussian noise
with mean 0 and standard deviation 0.5 for the training and test sets, and the training
and test objects are drawn from the uniform distribution on [−1, 1].

Heteroscedasticity (Het): the labels yi are generated as yi := 2xi+ εi, where εi is Gaus-
sian noise with mean 0 and standard deviation |xi| /2, and the training and test objects
xi are drawn from the uniform distribution on [−1, 1]; xi and εi, i = 1, 2, . . . , are all
independent. See Figure 1.

Heteroscedasticity and covariate shift (HetCov1): the labels yi are generated as
yi := 2xi + εi, where εi is Gaussian noise with mean 0 and standard deviation 0.5 for
the training set and mean 0 and standard deviation 2 for the test set, the training
objects are drawn from the uniform distribution on [−1, 0], and the test objects are
drawn from the uniform distribution on [0, 1].

Heteroscedasticity and covariate shift (HetCov2): the labels yi are generated as
yi := 2xi + εi, where εi is Gaussian noise with mean 0 and standard deviation |xi| /2,
the training objects are drawn from the uniform distribution on [−1, 0], and the test
objects are drawn from the uniform distribution on [0, 1].

For each of these four scenarios we generate a total of n+ l = 500 observations with n = 400
for the training set and l = 100 for the test set. For split conformal prediction we further
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divide the training set into a training set proper of size m and a calibration set of size n−m
with a ratio of m/n ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. We train the RF predictive system by using
3-fold cross-validation on the full training set with a range of hyperparameters and using in-
dividual tree predictions to construct probabilistic predictions by allocating an equal weight
to each individual tree. Alongside the Matérn and radial basis function kernels, each Gaus-
sian process predictive system also contains constant and white noise kernels with default
parameters with the hyperparameter for lengthscale for the former two set to the number
of input features (which is the recommended practice). The RF, GRBF, and GM algorithms
have been programmed using the Python scikit-learn library, and TensorFlow probability
TF has been sourced from a recently released TensorFlow 2.0 module (Dillon et al., 2017).
For TF, we assume a 4-layer sequential network with the first two layers containing the num-
ber of densely connected neurons equal to the number of features and the third layer contain-
ing a densely connected neuron with two outputs to the probabilistic layer, one for mean and
the second for variance. The source code for the experiments, programmed in Python 3.7,
can be found on GitHub (https://github.com/ip200/conformal-calibrators.git).

In the rest of this section we discuss three groups of prediction algorithms:

� the four base predictive systems, as described in the previous paragraph;

� the SCPS corresponding to the conformity scores (1), where σ̂ := 1 and ŷ is the
mean of the predictive distribution output by one of the four base predictive systems
(for all four base predictive systems ŷ is defined unambiguously; e.g., it is the mean
prediction of the component decision trees in the case of the RF predictive system);
we will refer to them as nSCPS, where “n” is a reminder that these RPS produce
predictive distribution whose shape is not (sufficiently) adaptive;

� the SCPS corresponding to the four base predictive systems, as described in Section 3;
we will refer to them as aSCPS (where “a” stands for “adaptive”).

The results in Table 1 show the comparison of median CRPS values with m/n = 0.5
for the three groups of prediction algorithms. It is interesting that, whereas calibration
typically improves the performance of predictive algorithms, the more adaptive method is
not obviously better. In addition, Figure 3 shows scatter plots of CRPS values across all
splits for the nSCPS and aSCPS methods. In the three cases where heteroscedasticity is
present the more adaptive method tends to work better for difficult observations, i.e., those
with higher losses (represented by points towards the North-East in each of the four plots).

For our real-life prediction problem we apply our method to the prediction of total
number of ferry passengers using a dataset from Stena Line. Each year the company operates
a large number of sailing routes, and one of their goals is to predict the final number of
passengers at departure some time ahead of sailing. The dataset contains transformed and
standardised input features for the route: the number of days ahead of departure, the total
number of bookings and the corresponding passengers booked to date, the month, week,
and day of the week of the departure, whether the departure is occurring during a weekend
or a special event, and the ferry identifier. The dataset covers a total of four years of sailing
for a representative route (namely, Gothenburg, Sweden – Kiel, Germany) with three years’
worth of data (randomly chosen) as the training set (n = 94,691) and one year as the test
set (l = 31,795). We apply the methods of nSCPS and aSCPS to each of the four base
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base nSCPS aSCPS

Norm RF 0.1209 0.1066 0.1193
GM 0.0964 0.0947 0.0932
GRBF 0.1127 0.1160 0.1158
TF 0.1138 0.0942 0.0931

Het RF 0.1323 0.1289 0.1370
GM 0.0940 0.0914 0.0891
GRBF 0.0917 0.0813 0.0818
TF 0.1339 0.1046 0.1035

HetCov1 RF 1.2750 1.1417 1.2074
GM 0.9135 1.0355 0.9055
GRBF 0.9657 1.0179 0.9816
TF 1.1857 0.9425 0.7746

HetCov2 RF 0.8738 0.7325 0.8001
GM 0.2551 0.2561 0.2503
GRBF 0.1288 0.1155 0.1225
TF 0.1084 0.0961 0.1210

Table 1: Median CRPS values for the base predictive systems, nSCPS, and aSCPS for the
artificial datasets with m/n = 0.5. In each row the best result is set in boldface

predictive systems described above using a range of splits for the training set proper of
size m and calibration set of size n −m with a ratio of m/n ∈ {0.1, 0.25, 0.5, 0.75, 0.9} to
a randomly sampled set of 1000 training and 100 test observations, with the experiment
repeated 10 times.

Table 2 shows the comparison of the CRPS values between the nSCPS and aSCPS
methods and the base predictive systems (applied to the full training set of size n). It
is interesting that the less adaptive method of calibration works better for this particular
dataset (this was also our experience for many benchmark datasets). This is true for a range
of fractions m/n used for the training set proper (the optimal value of m/n will depend on
the size of the dataset).

Figure 4 shows the calibration curves for m/n = 0.5. Each calibration curve plots the
percentage of values Fi(yi) that are less than or equal to p (on the vertical axis) against
p ∈ [0, 1] (on the horizontal axis), where Fi is the predictive distribution output for the
label of the ith test observation and yi is the true label of the ith test observation. The
improvement in calibration is particularly noticeable for TF; this is the base predictive
method that can be seen to benefit from calibration greatly in Table 2.

7. Conclusion

This paper proposes fully adaptive versions of split conformal predictive systems and dis-
cusses their validity and efficiency. The provable property of efficiency (established in Sec-
tion 5) is that, if the underlying predictive system is already ideal, conformalizing it with
our new method will not make it worse (or at least significantly worse). When the un-
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HetCov_1 HetCov_2

HetNorm

Figure 3: CRPS comparison between nSCPS and aSCPS methods applied to the RF base
predictive system across the four different datasets for all splits, where the hori-
zontal axis represents the nSCPS and the vertical axis the aSCPS

derlying predictive system is not ideal, as in Section 6, our proposed fully flexible method
does not always outperform the older less flexible methods. Asymptotically, as the size of
the training set tends to infinity, fully flexible methods achieve optimal performance (Vovk,
2019), but for moderate sized datasets it appears that restricting flexibility can provide
useful regularization. This is an interesting phenomenon that needs to be understood and
explored further.

There are many other directions of further research, including:

� applying conformal calibration to a wider range of artificial and benchmark datasets;

� analyzing the predictive performance of conformal calibration conditional on the test
object x; optimizing conditional performance might require using Mondrian (namely,
object-conditional) conformal predictive systems and their modifications;
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m/n
0.1 0.25 0.5 0.75 0.9

RF 14.285 14.560 16.098 18.397 20.667
GM 12.759 13.274 14.229 16.358 16.373
GRBF 13.776 14.486 20.711 17.091 23.251
TF 41.218 41.591 41.287 41.191 41.285

RF 13.130 12.636 13.817 15.343 17.478
GM 12.165 12.473 13.409 15.588 15.323
GRBF 13.107 13.543 20.440 16.955 22.002
TF 17.561 17.340 17.038 17.657 16.819

RF 15.756 16.267 17.364 19.537 22.005
GM 12.326 12.705 13.844 15.845 15.824
GRBF 13.439 13.620 20.478 16.971 21.870
TF 17.669 17.465 17.358 17.819 17.180

Table 2: CRPS values for the base predictive systems (first four rows), nSCPS (next four
rows), and aSCPS (last four rows) for the Stena Line passenger dataset. In each
column the best result is set in boldface

� analyzing the predictive performance of conformal calibration when applied to bench-
mark time series and in other non-IID situations.
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