Supplementary Material: A general recurrent state space framework for
modeling neural dynamics during decision-making

David M. Zoltowski', Jonathan W. Pillow'?, and Scott W. Linderman3#*

'Princeton Neuroscience Institute, Princeton University, Princeton, NJ
2Department of Psychology, Princeton University, Princeton, NJ
3Department of Statistics, Stanford University, Palo Alto, CA
*Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA

A Additional Simulated Experiments

Here we demonstrate fitting models with collapsing boundaries and trial-history effects to simulated data. We also com-
pare the variational Laplace EM inference algorithm with black box variational inference and particle EM approaches.

A.1 Nonlinear collapsing boundaries

A C

example trials

ELBO

sy 0 100 0 time 100 0 100
50

iteration

Figure A1. Simulated experiment with nonlinear collapsing boundaries. A. Simulated latent trajectories from a one-
dimensional accumulation model with collapsing upper and lower boundaries. B. ELBO as a function of iteration. C.
The simulated data and the true and inferred discrete and continuous states for three example trials.

We simulated spike counts from 10 Poisson neurons from a one-dimensional accumulation model with nonlinear col-
lapsing boundaries (Figure A1A). The bin size was A; = 0.01, the trial length was 7" = 100, and the number of trials was
200. The inputs were the difference of two dimensional pulses. The accumulation state parameters were V,.. = 0.005
and o2.. = 0.002.

acc
The boundary parameterization was
by =by — (1 — e_(t/’\)k)(bo — bo) (1)

where by = 1.0 is the initial height of the boundary and b, = 0.25 is the final height of the boundary. The upper and
lower boundaries were symmetric across zero. We implemented this model by modifying the transition probabilities to
depend on the time-varying boundary.

We fit the nonlinear collapsing boundaries model to the simulated data using 50 iterations of the vLEM algorithm
(Figure A1B). The inferred continuous and discrete states from the algorithm were similar to the true latent states
(Figure A1C).

A.2 Linear collapsing boundaries

A collapsing boundaries C example trials
1
xr 04
-1 1i; . . .
0 time 100
B x10°8
-136
@]
m
-
w
y | "
144 - T T T T T T T T T
; 0 100 0 time 100 0 100
. . 50
iteration

Figure A2. Simulated experiment with linear collapsing boundaries. A. Simulated latent trajectories B. ELBO as a
function of iteration. C. The simulated data and the true and inferred discrete and continuous states for three example
trials.

We replicated the nonlinear collapsing boundary simulation with a linear collapsing bound, with 10 Poisson neurons,
A = 0.01, T = 100, and 200 trials (Figure A2A-C). The inputs were the difference of two dimensional pulses. Here,
the accumulation state parameters were V. = 0.01 and 2., = 0.001.

acc
The boundaries started at +1 and collapsed towards zero at a rate of 0.008 per time bin, which means that the final
boundary values at T' = 100 were £0.2. We implemented this model with the following steps. First, we augmented the
input vector with the current time of the trial such that u; = [s;,] where s; is the current stimulus input. Importantly,
we set the second dimension of the input weight parameter 1@‘32 to zero so the time is not input to the continuous

dynamics x. We modified the transitions to depend on the input with the following parameterization

p(2t | 2t—1, Tt—1) X exp {’Y(th,l +rxi_1 + Wut)} , W= B 2)

where 3 is a scalar parameter that controls the slope of the boundary. We set the left column of W to zeros so
the sensory input does not directly affect the transitions. We set 5 = 0.008, which corresponds to the rate of the
collapsing boundaries as described above. We note that asymmetric collapsing boundaries can be implemented by
having separate (5 parameters for each dimension. While we fix the slope parameter 3, its value could be learned. The
parameters R, , and r have the same form as in the original 1D accumulator model.

A.3 Trial-history

A Choice history bias B ¢ 2
x108 5
1 z
-200
o 1
X d E l
[T} xr
-- inferred
0 T T T T T] T -2306 ! ! 1'5 -1
0 time 00 iteration

Figure A3. Simulated experiment with trial-history effects. A. True and inferred averaged drift rates for positive going
trials with and without the choice history bias. The previous choice biases the drift rate upwards (previous choice
corresponds to upper boundary) and downwards (previous choice corresponds to lower boundary). B. The ELBO as
a function of optimization iteration. C. True and inferred states for positive going trials with positive (/eft) and negative
(right) biases.

The modeling framework allows for trial-history effects based on the previous choice, reward, or stimulus. Here we
simulated data from a model where the previous trial choice affects the drift rate (Figure A3). We implemented this by
including the previous trial choice cprev = {—1,1} as an additional input covariate. The input at each time point on a
given trial was uy = [s¢, cprev). IN this case, we learn each dimension of the input weights V.. € R2. The element in the
second dimension corresponds to the bias in the drift rate. This parameterization enforces a symmetric drift bias, but it
is again possible to relax the symmetry.

We simulated spike counts of 5 Poisson neurons from this model with a bin size A = 0.1. Each trial had length 7' = 100
and we simulated N = 200 trials. In this simulation, the input on each trial was a constant drift of s; = 0.015 for positive
going trials and s; = —0.015 for negative going trials. The drift bias was 0.005 and the variance was o2.. = 0.001. The
average drift rate on positive going trials is shown in Figure A3. The bias increased the average drift when the previous
choice was +1 (blue line) and decreased the average drift when the previous choice was —1.

We fit this model using 15 iterations of the vLEM algorithm (Figure A3B). The inferred drift rates in the fit model were
similar to the true drift rates (Figure A3A). Next, the inferred latent states correctly followed the bias shown in the true
latent states (Figure A3C).

A . .
VLEM achieves higher ELBO B vLEM learns more accurate model parameters

3
x10 Data Sim VLEM Sim BBV
175 4 — VLEM _
i — BBVI c 50 _M N — +high
] =] |, | 7R | o -low
8 % 3 25 \W — -high
= _ L T T T T T T
L
3
] T & 50- . -
300 - S P : —M
. . , R A A W LA vl gt s
0 iteration 750 I I (I) 1 (I)O | |
time
C D

Inferred states using BBVI are less accurate

Inferred state switch times
from vLEM are more accurate

1004 Reyesg
’ 1 Gieifag M0 -
;; | ety
g . ge-ﬁ';l .
- -2 41
£ FET T WLEM
d * BBVI
0 L T T T T T
100

time bin 100

Figure A4. Comparison of vLEM and BBVI for fitting a 2D accumulator model with Poisson neurons. A. The ELBO
as a function of algorithm iteration (these are the same values as presented in Figure 3). B. The true average neural
responses across different evidence strengths (line colors) and simulated responses from the fit model using vLEM
or BBVI. Here, “+high” is strong stimulus motion towards the“+” direction while “-high” is strong stimulus motion to the
opposite “-” direction. C. The inferred (dashed lines, Z, and) and true (solid lines, z, and z) continuous and discrete
states using BBVI for three typical example trials. D. The true ¢ and inferred ¢ transition times from the accumulation
state to the boundary state for vLEM and BBVI for all trials.

A.4 Comparison of vLEM and BBVI

Here we present additional results of the comparison between vLEM and BBVI from the simulated 2D accumulator
experiment in Section 5.1. As stated previously, we simulated a 2D race accumulator model and the model using vLEM
and BBVI. For BBVI, we used a jointly Gaussian posterior over the continuous latent variables with block-tridiagonal
structure in the precision of the covariance matrix and we marginalized the discrete states (Archer et al., 2015; Gao
et al., 2016; Linderman et al., 2019). We initialized the models with the same parameters and with the same posterior
over the continuous latent variables.

Results of fitting the model with BBVI are shown in Figure A4. First, we found that vLEM achieved substantially higher
ELBO values (Figure A4A). Next, the learned model parameters from vLEM generated data that are more similar to the
true simulated data than BBVI (Figure A4B). This is shown by the similarity in the PSTHs in the first two columns.

Crucially, vLEM provided more accurate inferences about the latent states (Figure A4C). BBVI had difficulty learning
transitions from accumulation to boundary and had qualitatively poorer uncertainty estimates (Figure A4C-D). On many
trials BBVI did not infer a switch from accumulation to boundary.

A.5 Comparison of vLEM and particle EM

vLEM
z I
-70e3 3 —— |
(@)
9 —x1 1
L - X3
%
-80e3 X1
- X 0
iteration
particle EM
-38e3
e _—
2 c
O O
o/
o D
X O
3R
. /-/\/\/\/k/\
0 . . 25 T T
iteration 0 50

time bin

Figure A5. (top) ELBO as a function of iteration (/eft) and true and inferred latents on example trials (right) when using
vLEM to fit the model. (boffom) Same as above, except for using particle EM to fit the model and with the expected log
joint probability instead of the ELBO.

To test the accuracy of vLEM, we compared vLEM with a particle EM algorithm that used a Rao-Blackwellized particle
filter to sample from the marginal posterior over the continuous latent states (see Appendix C). We simulated 100
trials from a 2D accumulator model with 10 neurons and used both vLEM and particle EM to fit the simulated data.
(Figure A5). We used S = 50 particles in particle EM. This balanced variety in the particles with computational cost,
as running the particle EM for 25 iterations took about four hours with our implementation (as opposed to =~ 10 minutes
for 50 iterations of vLEM). The mean squared error between the true and inferred (posterior mean) latent continuous
trajectories was smaller for vLEM (0.047 £ 0.0008 for vLEM, 0.064 4 0.0010 for particle EM). The relatively strong
performance of vLEM in this limited data comparison is encouraging. We note that we could improve the particle EM
method by optimizing the speed of our implementation, which would allow us to increase the number of particles without
incurring a large computational cost. Nonetheless, we consider our current implementation to be a reasonable baseline
and are encouraged that vLEM achieves comparable accuracy with lower computational cost.

B Variational Laplace-EM Inference

Here we describe in more detail the variational Laplace-EM inference method. As noted in the main text, we introduce
a factorized approximate posterior ¢(z)q(z) ~ p(z,z | y,0) over the discrete and continuous latent variables. With
those distributions we lower-bound the marginal likelihood with

Ly(0) = Eq2)q(x) log p(z, 2,y | 0) — log q(2)q(x)]
= Ey(2)q(a) logp(7, 2,y | 0)] — Eq(2)[log q(2)] — Ey(z)[log q()].

To optimize this objective, we alternate between updating 1) ¢(z), 2) ¢(x) and 3) 6. The updates to ¢(z) and 6 follow
from optimizing the lower bound £,(6). The update to ¢(x) is an approximate update and is therefore not guaranteed
to increase the value of the lower bound.

B.1 Update discrete state posterior
We update ¢(z) via the optimal coordinate ascent variational inference update

q*(2) o exp(Eqp [log p(z, 2,y | 0)]). (3)

To compute this, we expand the expected log joint probability

T
Eq@)llogp(z, 2,y | 0)] = Eq(a) {logp(zl, 21 [0) + > logp(ay | 21,2, 0)
=2
T-1 T
+ > logp(zisn | 2e,0,0) + > logp(ys | Iu%ﬁ)}
t=1 t=1
T T—1 T
= ¢(z1,21) + > bz, xem-1) + Y Sz 201, 0) + Yz, y1)
t=2 t=1 t=1
where we have introduced the potentials
P(z1,21) = Eg(y)[log p(z1, 21 | 0)]

¢(Ztv Tty Tt—1
&(2t, 241, Tt

¢>(Zt, Tty Yt

~— — ~— —

We used samples from ¢(z) to estimate the expectations in these potentials. We used a default of a single sample in
our simulations and applications to data. We note that if the observations are independent of the discrete states when
conditioned on the continuous states (i.e. log p(y; | =, z¢,0) = log p(y: | =+, #)) then the emission potential ¢(z¢, z¢, y¢)
can be disregarded for updating ¢(z).

We introduce the normalizing constant Z(6) of the distribution such that

T T-1 T
q(z) = Zzﬁ) exp <¢(21,$1) + Y bz ma) + Y Oz, 2,) + > bz, i, Z/t)>~ (4)

t=2 t=1 t=1

Conditioned on the estimates of the potentials, we have a factor graph equivalent to the factor graph of an HMM. There-
fore we compute the unary and pairwise marginals over z and the normalizing constant using the forward-backwards

algorithm. We evaluate the entropy term in the ELBO using the potentials, the unary and pairwise marginals, and the
normalizing constant as

T T—1 T
Eq()llog q(2)] = Eq(2 {— log Z(0) + ¢(z1,71) + Z Oz, w, x4-1) + Z b2, 2641, 1) + Z o yt)]
—2 — -
= —log Z(H) + IE‘:q(Z) [¢(21, wl)] + ZE‘Z(Z) [(Z)(Zt, T, xt—l)] 4 Z]Eq(z) [¢(zt7 et xt)]

—2 —~

T t t

+ Z IE’Q(z) [¢(Zta T, yt)]
t=1

B.2 Update continuous state posterior

We update ¢(z) with a Laplace approximation around the mode of E,)[log p(z, 2,y | #)] such that

¢*(z) =N(@*,—H™)
r* = argmax By, [log p(z, 2,y | 0)]

x

H = VﬁEq(z) log p(z, 2,y | 0)]

r=x*
To compute the Hessian we expand the terms in the objective
E(IE) = IEq(z) [logp($, 2, yw)]
T
Eq(z) {logp(a | 0) +logp(x: | 21,0) + > logp(xy | wi1,2,0)
t=2

T-1
+ Zlogp Zt4+1 ‘ ztaxta + Zlogp Yt ‘ xtaztae):|

=1 =1
T -1 T
= ¢(z1,21) + Z P(@e, Te—1,2t) + Z P(@t, 2t 2141) + Z¢(ﬂft7yt, zt) + const
=2 =1 t=1
where
¢(x1,21) = Eq()[log p(z1 | 21,0 Zq k)logp(z1 | 21 =k, 0)
S(ae, w11, 20) = By llogp(ar | w1, 21,0)) = > qlzi = k) logply | w1, 2 = k, 6)
k:
S, 21, 2041) = Egryllogp(zera | 26, 26,0)] =Y > qlz =k, 2001 =) logplze1 = j | 2t = k, a4, 0)
kg

St yr, 2t) = By llog p(ye | 20, 20,0)] = q(z = k) logp(ye | w1, 24 = K, 6).
k
The above derivation was written in full generality. If the emission potential does not depend on the discrete state then
the emission potential simplifies to ¢(x¢, y¢, z¢:) = log p(y: | 2+, 0). Also, if there are no recurrent dependencies (as in a
standard SLDS) then the transition term log p(z¢+1 | 2t, 2+, 0) is equal to log p(z¢+1 | 2+, 0) and therefore the transition
potential ¢ (¢, z¢, z¢+1) no longer depends on ;.

We require the Hessian matrix for the Laplace approximation. This matrix is given by

V2L(z) = V2E,) [logp(z, 2,y |)]

T -1 T
= Vip(z1,21) + Z Vio(we, w1, 2) + Z Vio(we, 2, 2e41) + Z Vab(xe, v, 2t)
t=2 t=1 t=1

where

Va1, z1) = Y qlz1 = k)Vilogp(a | 21 = k,0)
P

Vig(z, i1, 2) = ZC](Zt = k)Vilogp(x; | 11,2 = k,0)
k

Vab(w, 2, 2e41) = ZZQ(Z:& =k, 241 = J)Vilogp(zis1 = j | 2 = k, 21,6)
kg

V20(ze,yn,) = Y q(zr = k)V2logp(yr | 24,2 = k. 0).
k

Therefore, we can compute the Hessian by computing the contributions to the Hessian of the dynamics, emission, and
transition potentials.

The Hessian has size T'D x T'D for a time series of length T" with latent dimensionality D but has a sparse, block
tridiagonal structure with blocks of size D x D. The terms in the Hessian from the initial state, transition, and emission
potentials only contribute terms to the primary block diagonal. The dynamics potentials contribute terms to both the
primary and first off-diagonal blocks. Throughout, we only represent and store the main and lower diagonal blocks of
the Hessian. This reduces storage from the full (T'D)? to (27 — 1) D? such that it is linear in T'. For linear solves and
matrix inversions of the Hessian, we also use algorithms that exploit the block tridiagonal structure.

To find the most likely latent path =*, we use Newton’s method with a backtracking line search. However, we can
also use optimization routines that require only gradient information (IBFGS) or require only gradient information and
Hessian-vector products (Newton-CG or trust-region Newton-CG).

B.3 Update parameters
We update the model parameters by approximately optimizing the ELBO with respect to the parameters

0 = arg max Eq(2)q()[logp(z, 2,y |) — log q(2)q(x)]. (5)

Instead of optimizing the expectation under the full distribution of ¢(z) we optimize

0 = arg max Eq(z)[logp(2, 2,y | 0)] (6)
where z is a sample from ¢(z) and we have dropped terms that do not depend on #. Conditioned on z, the update
consists of M-steps on the transition, dynamics, and emission parameters. We use either exact updates (where appli-

cable) or IFBGS to implement the M-steps. Finally, we set the parameters at iteration 4 via a convex combination of the
new parameters 6* and the parameters at the previous iteration

0;=(1—a)0*+ ab;_. (7)

We note that we can also update the parameters using stochastic gradient ascent with samples from ¢(x).

B.4 Initialization

We can exploit the known structure of the 1D and 2D accumulation-to-bound models to initialize some of the param-
eters. For the 1D and 2D accumulation-to-bound models we set the emission parameter d to the mean spike counts
across trials in the first three time bins. In the 1D model, we set the emission parameter C' using the firing rate at the
end of trials with strong input to the upper (Ayg) and lower (A g) boundaries. Given those values for each neuron and
the fact that the boundaries are at +1 for this model, we set C = %(/\UB — ALg). In the 2D model, for each neuron
we initialized the elements of C as the difference between the firing rate at the end of trials with strong net input and
the mean rate d. We did this for each dimension of the input and corresponding element in C. For the models and
data in this paper, we did not identify procedures to reliably estimate the initial underlying latent dynamics parame-
ters. Therefore we randomly initialized the input weights and dynamics variance and set the initial dynamics matrix to
Aacc =1

C Particle EM

We compared vLEM with a particle EM inference method. The first step of this method is to use a Rao-Blackwellized
particle filter to obtain .S Monte Carlo samples from the marginal posterior over the latent continuous states

zi.p ~ p(zrr | yir,0) (8)

for s = 1,..., S and for each time series. The second step is to use the samples from the posterior to estimate the
expected log joint probability

S
1 s s
Ep(m,z\yﬂ) [logp(a; 2% | 9)} ~ g ZEp(z|m5,y,9) [Ing(‘T y %2 Y | Q)L xr o~ p(xlzT | Y., 0) (9)
s=1
= Ep(a:,z\y,e) [lng(:L’, 2% | 9)} (10)

where we have dropped the subscripts denoting the entire time series. Finally, we update the parameters by maximizing
the sample expectation of the log joint

0" = arg;naXpr(a:,dy,@) [logp(l‘a ZY | 0)] (11)

We used the L-BFGS optimizer to maximize this objective.

C.1 Particle filter

Here we describe the Rao-Blackwellized particle filter used in the particle EM algorithm. The posterior over the time
series z is

p(xie | Y1) o< p(@1et, Yi:t) (12)
=p(yt | 16 Y1:0—1) P(@t | T1t—1, Y1:0—1) D(T1:0-1|Y1:6—1) (13)
=pt | 20) p(t | 21:0-1) P(T16-1 | Y1:-1)- (14)

Let g(x1.¢ | y1.+) be the importance sampling density used in the particle filter. If we propose particles according to the
prior distribution, q(x¢ | z1.4—1,y1:.—1) = p(x¢ | £14—1), then the particle filter weights are

s p(:Ei:t | yl:t)

CX @t |) (15)

. p(yt | xf)p(xf ’ xi:t—l)p(lﬂi:t—l | yl:tfl)

= (16)
q(@f [2141, y14-1) ¢(@5 41 | Y1:4-1)

=p(ye | 7)) wi_y. (17)

The proposal can be written via a marginalization over z;
plae [wra1) =Y pae | z,201) p(zi | T1-1). (18)

Zt
Therefore we can sample from p(x; | £1.4—1) with

2t~ p(Zt ! $1:t—1) (19)
Ty ~ p(lBt \ Zt,l't—l) (20)

and ignoring z;. This procedure requires the ‘look-ahead’ posterior p(z; | x1.4—1) which can be computed using the
filtered posterior p(z; | x1..—1) and transition probabilities

p(2t | 214-1) = ZP(Zt | zt—1, @-1) p(2t-1 | T1:-1)- (21)
Zt—1
We compute and store the filtered posterior p(z; | x1.¢) for each time point ¢.

The final Rao-Blackwellized particle filter is given in Algorithm 1.

Algorithm 1 Rao-Blackwellized particle filter for rSLDS

1: Input: observations y, inputs u, and number of particles S

2: Initialize particles z7, weights w{, and initial p(z; | z7) for s = {1, ..., S}.
3: fort =2to 7T do

4. fors=1to Sdo

5: Compute look-ahead posterior using transition matrix

p(ae | 214-1) = ZP(Zt | ze—1,2{_1) p(2e—1 | 27,4_1)
Zt—1
6: Sample from look-ahead posterior and dynamics model

2y~ p(zt ‘ xi:t—l)

wy ~ ple | 26,27 q)

7: Compute posterior
Pz | 25.) o p(xf | 20) >z | 21, w5_1) plaia | #51)
2t—1
8: Compuite likelihood p(y; |)
9: Multiply weight wi = w;_; p(y: | f)
10: end for

11: Normalize weights wj = wj/ >, w}

12: Resample particle indices (I, ..., Is) ~ Mu(S, (w}, ..., w;))
13: For each index assign «5., = =1, and p(z | z%.,) = p(z | :r{f’T)
14: end for

15: Return x{.,, wi,, for all s

10

References

Archer, E., Park, I. M., Buesing, L., Cunningham, J., and Paninski, L. (2015). Black box variational inference for state
space models. arXiv preprint arXiv:1511.07367.

Gao, Y., Archer, E. W., Paninski, L., and Cunningham, J. P. (2016). Linear dynamical neural population models through
nonlinear embeddings. In Advances in Neural Information Processing Systems, pages 163—171.

Linderman, S., Nichols, A., Blei, D., Zimmer, M., and Paninski, L. (2019). Hierarchical recurrent state space models
reveal discrete and continuous dynamics of neural activity in c. elegans. bioRxiv.

11

	Additional Simulated Experiments
	Nonlinear collapsing boundaries
	Linear collapsing boundaries
	Trial-history
	Comparison of vLEM and BBVI
	Comparison of vLEM and particle EM

	Variational Laplace-EM Inference
	Update discrete state posterior
	Update continuous state posterior
	Update parameters
	Initialization

	Particle EM
	Particle filter

