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Abstract

The seasonal epidemic of influenza costs thou-
sands of lives each year in the US. While influenza
epidemics occur every year, timing and size of the
epidemic vary strongly from season to season.
This complicates the public health efforts to ade-
quately respond to such epidemics. Forecasting
techniques to predict the development of seasonal
epidemics such as influenza, are of great help to
public health decision making. Therefore, the
US Center for Disease Control and Prevention
(CDC) has initiated a yearly challenge to fore-
cast influenza-like illness. Here, we propose a
new framework based on Gaussian process (GP)
for seasonal epidemics forecasting and demon-
strate its capability on the CDC reference data
on influenza like illness: our framework leads to
accurate forecasts with small but reliable uncer-
tainty estimation. We compare our framework
to several state of the art benchmarks and show
competitive performance. We, therefore, believe
that our GP based framework for seasonal epi-
demics forecasting will play a key role for future
influenza forecasting and, lead to further research
in the area.

1. Introduction

The seasonal epidemic of influenza causes a tremendous
burden on public health each year (Chretien et al., 2014).
In the U.S. alone it is responsible for 9.2 to 35.6 million
cases, 140,000 to 710,000 hospitalizations, and 12,000 to
56,000 deaths (Centers for Disease Control and Prevention,
¢). To allow for better public health policies and resource
allocation, it is important to have reliable forecasts of
future influenza development at hand. Therefore, the
Center for Disease Control and Prevention (CDC) has
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invested effort into research on forecasting Influenza. This
includes establishing a challenge to forecast influenza
activities. In this challenge, various research groups utilize
a variety of techniques and data sets to forecast difference
influenza-related targets such as the number of influenza
cases during future weeks.

Since the establishment of this challenge in 2013, progress
has been made (Biggerstaff et al., 2016), within two
directions: identifying and utilizing new data sources and
developing new forecasting methodologies. The CDC
influenza-like illness (ILI) data is published with a 1-3
weeks delay (Paul et al., 2014), so indirect online data
has been used to obtain real-time ILI estimates. Google
Flu trends (Ginsberg et al., 2009) uses the frequency of
influenza related search terms such as “cough” or “fever” to
estimate the number of ILI cases in real-time. Similarly,
Twitter texts can be analyzed (Broniatowski et al., 2013)
or the number of visits to Wikipedia pages (Mclver &
Brownstein, 2014).

With respect to methodological advances, a variety of
statistical and mechanistic models have been developed to
use both CDC ILI data and other real-time data sources to
forecast influenza activities.(Adhikari et al., 2019; Brooks
et al., 2015; Farrow, 2016; Osthus et al., 2017; Ray et al.,
2017; Shaman et al., 2013; Yang et al., 2014; Zimmer et al.,
2018a;b).

In this work, we develop a new framework for influenza
forecasting that is based on Gaussian Processes regression.
Applying this framework to the official CDC reference data
set on influenza-like illness, we demonstrate the perfor-
mance of this framework by retrospective forecasting on
seven influenza seasons.

We compare our framework to several state of the art fore-
casting techniques and show that our results suggest clear
and significant improvement for seasonal influenza forecast-
ing in US compared to state of the art benchmarks.

Main contribution:

e A new framework based on Gaussian process regres-
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sion for forecasting seasonal epidemics and quantify-
ing the uncertainties in projections.

e Extensive benchmarking on the official CDC influenza
data set compared with state-of-the- art forecasting
methods.

e Statement of theoretical properties and its connection
to algorithm specification.

The problem of seasonal epidemics forecasting can be
briefly summarized as follows (details follow in section
3.2: for each year ¢ and each week 7, the CDC releases data
on ILI, d; Now, denote the current week as j* and the
current year as ¢*. The task of influenza forecasting is to
provide estimates for d;i L forat e N

Section 2 will discuss related work, our novel framework
will be introduced in Section 3 including some theoretical
properties. Section 4 will demonstrate our framework’s
ability to provide accurate forecasts and state the results to
benchmarks.

2. Related Work

Various methods have been developed for influenza
forecasting. Many of them (Osthus et al., 2017; Shaman
et al., 2013; Yang et al., 2014; Zimmer et al., 2018a;b)
are based on physical models compartmentalizing the
population in groups such as susceptible, infected and
recovered. Defining transition between those groups allows
to derive differential equations. Additional information
like humidity dependence of infection rates can also be
encoded (Shaman et al., 2013; Yang et al., 2014; Zimmer
et al.,, 2018b). These approaches are different to our
Gaussian Process (GP) based framework as they are based
on physical knowledge/assumptions (e.g. differential
equations). Their advantage is that they can also be applied
to non-seasonal disease forecasting in which there is no
previous seasons training data available. Additionally, they
can also reveal insights into the key parameters driving
the disease spread (Osthus et al., 2017; Yang et al., 2014;
Zimmer et al., 2018a). On the other hand, they are based
on physical assumptions and approximations which might
lower their performance in forecasting seasonal influenza as
our results indicate.

Statistical time series modeling (Brooks et al., 2015; Ray
et al.,, 2017) and crowd based approaches (see chapter
5.3.2 of (Farrow, 2016)) do not relay on the same set
of assumptions as physical models and are, therefore,
more similar to our GP based framework. Recently, also
deep learning techniques have been applied (Adhikari
et al., 2019). However, being Gaussian process based,
our framework is novel and different from those previous

techniques.

(Senanayake et al., 2016) use a spatio temporal covariance
and data from various states and all weeks of a year to
model influenza-like illness forecasting. Our approach
is different by training individual GP models for each
forecasts based on a relatively small set of features of
previous weeks, leading to small but reliable prediction
intervals.

All forecasts are based on data that has been observed un-
til the current time. The publication of the CDC official
ILI data is usually 1-3 weeks delayed (Paul et al., 2014)
as reports and tests from several units have to be collected.
As this delay is obviously disadvantaguous for forecasting,
there have been several attempts to use indirect web based
data, in order to come up with timelier estimates of the
CDC’s ILI These include Google flu trends (Ginsberg et al.,
2009), Twitter (Broniatowski et al., 2013), or Wikipedia
(Mclver & Brownstein, 2014). These attempts are usually
called nowcasting as they try to estimate the current situ-
ation. Our goal, forecasting, is different from nowcasting
as it tries to forecast the future. This means that our frame-
work is able to make use of those nowcasting approaches to
receive a more timely data stream.

3. Methods

3.1. Gaussian Processes

We employ a Gaussian Process (GP) model to approximate
the function f : X C R — Y C R (see (Rasmussen &
Williams, 2006) for more details). Let us assume that we
have so far collected n samples X = (z!,...,z") of d
dimensional inputs 2 = (z%,..., %) and corresponding
outputs Y = (y%,...,y"). A GP is specified by its mean
function () and kernel function k(x*, 7). Given noisy
observations, the GP posterior is given as

p(ylz, X,Y) = N (ylu(x),o(x)) , (1)

where the input x is a vector and consists of dimension
d,ie. x=(x1,...,74) € R% The output y contains the
corresponding output measurement. Mean and variance are
defined by

p(x) = k(z, X)" (K, +0°I)7'Y,

o(x) = k™ (x,x) — k(x, X)T (K, +0*T) 'k(x, X),
2
The covariance matrix is represented by K, € R"*™. In
this paper, we employ the Gaussian kernel as the covariance
function, i.e. k(x’, a’) = 0% exp(—1(a’ —a?)TAF(z' -
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x’)), which is parametrized by 8; = (o7, A3%). Further-
more, we have an n-dimensional identity matrix I, and
o2 as output noise variance (see (Rasmussen & Williams,
2006)). k™ (z, ) = 07 €R and the vector k € R™ contains

kernel evaluations relating « to the previous n inputs.

3.2. Framework for Seasonal Epidemic Forecasting

In this section, we will describe the framework that we use
to carry out weekly forecasts. As during the course of a
seasonal epidemics forecasts need to be generated in mul-
tiple weeks in a row and for various targets, we note that
we sequentially create individual forecasts for each week —
based on the data being available from previous weeks. To
this goal, we use available data from past seasons to train
Gaussian process regression for each week, and generate
forecasts based on the current years data.

We will first illustrate this with an example how to use the
GP framework to seasonal epidemics forecasting, and then
formalize the notation: let us assume to be in epidemic week
(EW) — Sunday through Saturday — 50 of year 2010 and our
target is the prediction of the next weeks data, namely EW
51. We use data from past years, e.g. the years 2003 until
2006, as training data. The input training data are values
for EW40 (assuming that this is the start week of the sea-
sonal epidemic) until EW50. The output training data are
the value of EW51. Using this data, we can train a GP
model describing the mapping from ’data seen in EW40
until EW50’ to ’data in EW51°. We can employ this model
to predict the value for EW51 in 2010 given the values of
EW40 until EWS50 in 2010.

Denote the weekly counts of epidemic cases as d; where ¢
the season and j the week of the season, e.g. d2°°7 is the
value of week 40 in 2007 and d22°7 is the value of week 3
in 2008 (again assuming that the season starts in EW 40).
Now, suppose we are currently in week j* of season ¢*.

First, we need to assemble the training data: the choice of
the training inputs depends on the week j* and the season
i* and we denote it by X/.. Then, X\, = (2]i € I) =
(dilj € J,ieI)with J C {0 <j < j*} being previous
weeks of a season and I C {year,,,...,i* — 1} being past
seasons and year,, the first year of data recording. Let our
target T' be the prediction of ¢ = 1,...,T weeks ahead.
Then, our training data outputs are the values of week j* 4t
and are defined as V. = (y; ;- i*e I)*, with yf .. = di. ;.
The GP is training on the set {X7}., V}. }.

Next, this GP can be used to calculated predictive distribu-
tion given the data ' = (d'"|; € J ) so far observed this

Algorithm 1 Seasonal Epidemics Forecasting

1: Input: current week j*, current year ¢*, forecasting hori-
zon T, one or more feature set of past weeks Ji, ..., Jg
and seasons [, data recorded so far d; for j < j* and
1 < 4"

2: fort =1toT do

for s =1to Sdo

4: Assemble target ¢ specific training data inputs:
Xio=(dilje s, iel)
and training data outputs Vi, = (y; ;.
Train a GP based on {X}., Vi }

7: Forecast target according to equation 3, resulting
in pg and o,

8: end for

9:  Build ensemble forecast over .S members

10: end for

o

iel)

season. The ¢-week ahead prediction, yzj is distributed as

D (y%’j*\:ci ,X;;,y;;) 3)

according to equation (1). The main steps are summarized
in Algorithm 1.

While this work focuses on ¢t week ahead prediction, the
framework can easily be extended to predicting the peak of
the epidemics (target T1) by defining ¥, = maxo<;< 52d§-.
Here, we assume the epidemic to be 52 weeks long. In case
of influenza, this can be shorter, e.g. ~ 30 weeks. Further
targets are the final epidemic size (T2), Y, = 232:1 ds, or
also time targets such as the timing of the peak incidence
(T3), Y7y = argmax. ;< 5,d; or the onset of epidemics.

The scheme described above can be applied for any week of
the season and any year to forecast any of the targets. This
means that for each 30 week long season and T targets, we
train 30 x T GP models for our forecasting.

While it is possible to only use the optimum feature set
of past weeks J, it is also possible to use an ensemble of
the best S feature sets of past weeks, Ji,...,Js. We will
follow this approach as ensemble models have been shown
to have strong and robust performance (Reich et al., 2019a).

The sets of features of past weeks J; and seasons I can be
optimized on a validation data set and we will explain in the
numerical evaluation section how we choose those sets for
real epidemic situations.

3.3. Theoretical Considerations

Each new epidemic season provides information to update
the training of the function approximation for f. We will
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here show how this improves the forecasting precision in
terms of decreasing predictive variance for each individual
GP based forecast of our framework:

We denote the maximal information gain after ob-
serving n data points (epidemic seasons) as vy, =
max gy cal({y'Hiy, {f(@")}ii,).  We know from
(Srinivas et al., 2010) that this information gain asymptoti-
cally behaves as 7,, = O(log(n)?*1) where d is the dimen-
sion of the input space, so here d = |.J|. Further, we know
from (Zimmer et al., 2018c) (appendix), Lemma 4, that the
sum of predictive variances can be bounded by the maximal
information: 37", o;1(2*) < CI({y' iy, {F(a") )1y ).
where o;_; denotes the predictive variance based on GP
trained with ¢ — 1 data points and C' a constant depending
only on the GP hyperparameters but not on n. Therefore,
we can conclude that the sum of predictive variances has the
following convergence rate:

Theorem 1. Let {z°}?_, be n arbitrary epidemic seasons
within a compact and convex domain X, and k be a kernel
Sunction such that k(-,-) <1

igmﬂxi) =0 (;lOg(n)d—H)
Proof.
;;%dw
Loy )

1
n

O<;wam“ﬂ

where the first bound is based on (Zimmer et al., 2018c) and
the asymptotic property on (Srinivas et al., 2010). [ ]

IA

IA

Note, that this statement is similar to Theorem 2 in (Zimmer
et al., 2018c) as it is the same convergence rate but also quite
different as Theorem 2 in (Zimmer et al., 2018c) builds up
on actively selected data points z* while our Theorem 1
does not. Epidemic seasons z* cannot be actively selected.
Even though it is the same convergence rate, our statement
is weaker as we can’t say that another sequence of seasons
would result in smaller variances (while Theorem 2 in (Zim-
mer et al., 2018c¢) could state that another sequence of points
has smaller variance as the data points are actively selected).
On the other hand, our statement is stronger as it holds for
any sequence of seasons (not only actively selected inputs)
which is key if data comes from seasonal epidemics.

Theorem 1 also shows that, while it might be tempting to use

as many previous weeks as possible (large set .J ), it is worth
to note that his adversely affects the speed of convergence.

After we observed ng seasons and know how much informa-
tion they contained, we can further bound the uncertainty of
the following seasons:

Lemma 1. Under the assumptions of Theorem 1

1 < 1 1
n 2 oml@) S 0% =03 o)

i=nop+1

Proof. As seen in the proof of Theorem 1 it holds
1« L1
— Zai—l(mz) < —Cvy,
n — n

Splitting up the sum on the left hand side and substracting
the first part (up to ng) yields the desired relation. [ ]

Note, that while Theorem 1 states a convergence rate for
the average predictive variance, this is only the predictive
variance for the model. In practice, predictions would also
contain observational noise and so this explains, why we
would not end up with perfect forecasts.

4. Results — Benchmarking

‘We will use the official CDC data set on seasonal influenza
forecasting to benchmark our framework to other state of
the art methods.

4.1. The CDC Influenza Data

We use the official CDC data on influenza-like illness (ILI)
as data source (Centers for Disease Control and Prevention,
a). The CDC defines ILI as “fever (temperature of 100F
[37.8C] or greater) and a cough and/or a sore throat without
a known cause other than influenza” (Centers for Disease
Control and Prevention, b). This data is openly available
on a weekly basis since 1997. We treat different influenza
seasons independently (as there is very little interaction
between influenza seasons) and assume that a season starts at
the epidemic week (EW) 40. While nowcasting approaches
could be used to enrich the data set, this work uses the
official CDC data in order to facilitate easier reproducability
and comparability.

4.2. Benchmarking

We perform retrospective forecasting in order to benchmark
the performance of several state of the art influenza
forecasting techniques. Retrospective forecasting assumes
to be in a certain week of a previous year and tries to
forecast e.g. the next weeks cases, assuming to not have yet



Influenza Forecasting Framework based on Gaussian Processes

seen the following weeks. Then, the forecasting accuracy
can be evaluated on the actual observed value. We use
t=1,...,T = 4 as the forecasting targets as in the CDC
challenge on influenza forecasting (Biggerstaff et al., 2016).
We do retrospective forecasting for the seasons 2012/13
until 2018/19.

To evaluate the forecast, we use log-score — defined as the
logarithm of the probability within a interval around the true
value — as in the influenza forecasting challenge of the CDC
(Biggerstaff et al., 2016). More precisely, log-score is the
logarithmic probability of the forecast being in the correct
bin (of size 0.1) or one of its five precedors or succesors.
While this scoring rule is still being debated (Bracher, 2019)
it remains the official CDC scoring rule(Reich et al., 2019b).
An illustration of the log-score rule can be found in Figure
A1l of (Zimmer et al., 2018b).

The reason to choose a probabilistic criterion is that
probabilistic forecasts that allow for an accurate uncertainty
estimation are of much more relevance for disease forecast-
ing than an actual point forecast. Nevertheless, we also
display results of point forecasts and root mean squared
error (RMSE).

We use the following methods for benchmarking: (A) Histor-
ical averages: While this is a naive benchmark, it is widely
used (see e.g. (Biggerstaff et al., 2016)) as the threshold any
new framework must pass. This benchmark simply uses the
influenza counts of past seasons to build a kernel density
estimate for predicting the target. (B) MSS is a recently pub-
lished framework based on a humidity based SIRS model
and a linear noise approximation (Zimmer et al., 2018a).
(C) Linear regression uses linear models with different sets
of past weeks as features. These features are selected on
a validation data set (seasons 2010/11-2011/12). LinEns
is a average ensemble over the three best linear models.
(D) Sarima uses Seasonal auto regressive integrated mov-
ing average models as are also used in (Ray et al., 2017).
Season is defined as one year and autogregressive and mov-
ing average terms are identified on the validation data set.
(E) Epideep is a recently developed deep learning based
influenza forecasting framework (Adhikari et al., 2019).

4.3. Implementation

We use Matlab 2016a and the GPML package (Rasmussen
& Nickisch, 2019) for training Gaussian processes and pre-
dictions.

We use the seasons 2003/04 - 2007/08 as training data and
the seasons 2010/11 and 2011/12 as validation data to de-
termine appropriate feature sets I of previous weeks for the
training data. We omit the 2008/09 - 2009/10 season as

it was a pandemic season with unusual behavior. As we
treat seasons independently by assumption, taking out two
season does not change the procedure.

In order to determine the set of past weeks I used as input
features of our framework, we use the 2010/11 - 2011/12
seasons as a validation data. We use various sets I (with up
to five past weeks as features, I C {i* —4,i* —3,...,i*})
and choose the best three performing sets to become part
of the ensemble as stated in Algorithm 1. This is done in
the same way for the benchmarks linear regression to deter-
mine the input features as well as SARIMA to determine
the autoregressive and moving average components.

The ensembles for the best set of features of past weeks for
the GP based framework, and the best features for the Linear
regression and the best autoregressive and moving average
terms for Sarima are built by averaging the the densities
of the predictive distributions of the individual methods’
probabilistic forecasts. While this is a “naive” ensemble and
could be improved by e.g. training ensemble weights (ide-
ally 4 target specific weights, and for each target 29 week
specific weights) on additional validation seasons, we have
not done this in the current work, as relatively few season
are available so far. We anticipate further gain once this
can be done in future research with additional data being
available.

4.4. Performance of our GP based Framework on
Seasonal Influenza forecasting

Our framework is able to do accurate point forecasting and
to accurately quantify the uncertainties in projections. Fig-
ure 1 shows retrospective 1 week forecasts and their un-
certainty estimation. We see for two seasons and two fore-
casting horizons that our framework performs well in point
forecasts as well as a good estimation of the 95% prediction
intervals. More seasons and targets can be found in the Ap-
pendix A.3. The appendix also contains a video visualizing
influenza forecasting, see Figure A.10.

Next, we check whether our forecasts reach the desired cov-
erage. We expect that on average 95% of the true values are
within the 95% prediction interval. As this is a binomially
distributed random variable, we can calculate its quantiles
to see whether our framework is within this range. Figure
2 shows this range in green color and the actual values our
framework achieves as a black line.

We note that the computational requirements for our frame-
work allow for usage on personal computers. Retrospective
forecasting for 7 seasons, 29 weeks per season and 4 targets
is in the order of minutes with our framework.
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Figure 1. Retrospective forecasts and their uncertainty: One
week retrospective influenza forecasting for two seasons and tar-
gets with our GP based framework for seasonal epidemics fore-
casting. Red x’s are the actual observed values, and blue lines
and shaded areas represent point forecasts and 95% prediction
intervals.
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Figure 2. Coverage of our framework: Fraction of true values
observed that are within the 95% prediction intervals (black line).
As this is a binomially distributed random number, we can add its
95% confidence intervals (green shaded area) to check whether
our framework yields reliable uncertainty estimation. Coverage
for more forecasting targets in the Appendix figure A.7.

4.5. Results for Benchmarking with State of the Art

As described in the subsection benchmarking, we perform
restrospective forecasts for the influenza season 2012/13 -
2018/19 with our GP based framework as well as several
state of the art benchmarks. Each of the seasons starts at epi-
demic week (EW) 44 and ends 29 weeks later. This means
29 weeks of forecasting.

We perform 1-4 week forecasts and therefore, end up with
a total of 7 x 29 x 4 = 812 forecasts. For each of those,
we can calculate the log-score. We note that the competi-
tors show good performance as well as displayed in their

retrospective forecast predicting interval figures A.4, A.S,
A.6. However, we can see strong improvements by our new
GP based framework: Figure 3 shows the reduction in log-
score over those 203 forecasts as boxplots. We can see that
our new GP based framework yields strong improvement
in forecasting accuracy over all the other benchmarks for
all forecasting targets. Wilcoxon signed rank test yields
significance (p < 0.001) for all 1 week benchmarks (Hist,
MSS, LinEns and SarimaEns). For 2-4 week targets, there
is a growing correlation between the forecasting weeks and,
therefore, Wilcoxon signed rank (assuming independence)
should not be applied anymore on the set of forecasts from
all season and weeks. However, Figure 3 shows that the
improvement is similarly strong in terms of percentage of
forecasts being improved by our framework.

Boxplots mainly focus on the median performance and it
is possible that they do not detect rare outliers with very
poor performance. Therefore, figure 4 shows the mean sea-
sonal log-score gain for the four forecasting targets and four
benchmarks and we do see an improvement of our frame-
work compared to all benchmarks. Our advantage in terms
of relative log-score gains is at least 20%-40% (LinEns)
and up to 90% (Hist) and can be seen in figure A.1 in the
appendix where we also show that our frameworks’ predic-
tions have smaller inter-quantile distances, figure A.2.

We also observe that the ensemble indeed performs better
and more robust than the individuals as can be seen in the
appendix figures A.8 and A.9.

The benchmark code for the Epideep (Adhikari et al., 2019)
is currently only available for point estimates, so we include
it in the Figure 5.

Even though less relevant in the context of seasonal epi-
demics forecasting, we also display squared error (SE) of
point predictions and note that we still perform well. Figure
5 shows that we are better than MSS, Hist and Epideep
for most forecasting targets. Sarima and LinEns perform
similar or slightly better in terms of point forecasts which
might be an effect of our framework being based on GPs
which emphasize a probabilistic forecasts. Achieving this
good probabilistic forecasts can come at the cost of slightly
worse point predictions as GP build on normal distribution
where an accurate uncertainty estimation might shift the
mean towards a worse point prediction.
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Figure 3. Improvement in log-score by using our framework:
The four panels show four different state of the art benchmarks
and each panel contains four forecasting targets. Each boxplot
shows the improvement in log-score by using our novel framework
compared to the respective state of the art method. Number below
states percentage of log-scores improved by our new framework.

5. Discussion and Conclusion

Our novel GP based framework for influenza forecasting
has shown strong performance in leading to accurate proba-
bilistic forecasts for seasonal influenza Figure 1 and 2. In
addition, it has shown significant improvements compared
to state of the art competitors.
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Figure 4. Average log-score gain by using our framework: The
four panels are four different forecasting horizons and each panel
contains results with respect to four different state of the art com-
petitors. Each bar shows the mean seasonal logscore gain.

We note that this work is focused on probabilistic forecasts
as they are more relevant in the context of seasonal epi-
demics forecasting than point predictions. While we do
see a strong improvement in terms of probabilistic fore-
casts (Figure 3), we note that our GP based framework
for seasonal epidemics forecasting is built for probabilistic
forecasts and, therefore, still beats some state of the art com-
petitors in point forecasting (Figure 5) but not all of them.
This does not negatively impact its relevance and public
health impact due to its strong performance on probabilistic
forecast.

While our ensembles already show stronger performance
than the individuals (Figure A.8 and A.9), we note that there
are other approaches for building ensembles than taking
the average, e.g. one could optimize the weights of each
individual contributor. Furthermore, one could determine
different weights for different targets and different epidemic
weeks. While this should in general be superior, we note
that it also requires a decently seized validation data set. If
determine weights individually for each target and epidemic
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Figure 5. Comparison of RMSE: Even though less relevant in
influenza forecasting, we also display RMSE. Each panel corre-
sponds to one forecasting target and each panel contains 5 different
state of the art benchmarks. Each bar represents the improvement
(positive value) or decrease (negative value) in RMSE over all
seasons and EWs compared to our framework.

week, each validation season gives us only one validation
data point, so we would need several seasons to determine
reliable weights. As influenza data has only been recorded
year round since 2003, we postpone this idea to future re-
search once more seasons have become available.

In summary, we developed a new Gaussian process based
framework for seasonal epidemics forecasting. We demon-
strate its capability by forecasting seasonal influenza and
show that it is capable to produce precise point forecasts as
well as accurate uncertainty quantification. We benchmark
against several state of the art competitors and show signifi-
cant improvement in results. Therefore, we believe that our
Gaussian process based framework is a key contribution to
improving influenza forecasting.
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